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Abstract

Background: Symptomatic extensor tendon irritation is a frequent complication in volar plate osteosynthesis of
distal radius fractures. It is typically caused by dorsal screw protrusion and overdrilling of the dorsal cortex. The
use of self-drilling locking screws (SDLS) could overcome both causes. The practical applicability of SDLS depends
on two prerequisites: (1) the feasibility of preoperative distal screw length determination, and (2) sufficient primary
biomechanical stability of SDLS compared to standard locking screws (SLS).

Methods: We first assessed the feasibility of preoperative screw length determination (1): Distal radius width,
depth and distal screw lengths were measured in 38 human radii. Correlations between distal radius width and
depth were assessed, a cluster analysis (Ward’s method and squared Euclidean distance) for distal radius width
conducted, and intra-cluster screw lengths analyzed (ANOVA). The biomechanical performance of SDLS (2) was
assessed by comparison to SLS in a distal radius fracture model (AO-23 A3). 75 % distal screw length was chosen
for both groups to simulate a worst-case scenario. Uniaxial compression tests were conducted to measure stiffness,
elastic limit, maximum force and residual tilt. Statistics comprised of independent sample t-tests and a Bonferroni
correction (p < 0.0125).

Results: (1) Distal radius width and depth showed a high correlation (R2 = 0.79; p < 0.001). Three distal radius
width clusters could be identified: small <34 mm; medium 34–36.9 mm; large >36.9 mm. ANOVA and Tukey
post-hoc analysis revealed significantly different volar-dorsal depths (p < 0.05) for nearly all screws. (2) To assess
biomechanical stability nine specimens were tested each; no significant differences were found between the SDLS
and SLS groups.

Conclusions: This feasibility study demonstrates that (1) distal radius width can be used as a predictor for distal
screw length and (2) that SDLS provides mechanical stability equivalent to SLS. These results highlight the feasibility
of applying SDLS screws in volar plate osteosynthesis at least in extraarticular fractures.
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Background
Volar locking plate osteosynthesis is the current standard
treatment for unstable distal radius fractures (DRF) [1, 2].
Although widely applied and generally considered a safe
procedure [3], complication rates of up to 18 % have been
reported [4]. One of the most common complications is

symptomatic extensor tendon irritation [5, 6]. Extensor
tendon irritation can be caused either by direct tendon
damage due to overdrilling of the dorsal cortex or by
dorsal protrusion of the distal screws [7–9]. In order to
reduce extensor tendon irritation, means must be found
to avoid both causes.
Dorsal screw protrusion typically results from incorrect

intraoperative screw length measurement. Screw length
measurements are hampered by the irregular shape of the
dorsal cortex and the dorsal soft tissue. A recent ultrasound
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study suggests that dorsal screw protrusion might occur
even more often than reported. Sügün et al. [10] found
26 % of distal screws to protrude the dorsal cortex, with
only 6 % becoming symptomatic. In order to prevent dorsal
screw protrusion, both the AO Foundation [11] and
“Campbell’s Operative Orthopaedics” [12] now recommend
choosing distal screw length two to four millimeters shorter
than measured. Recent experimental evidence has sup-
ported these recommendations: studies indicate that 75 %
of distal screw lengths provide similar primary stability to
full-length unicortical distal screws (100 %) in extraarticular
distal radius fractures [13–15]. Consequently, dorsal screw
protrusion can be avoided by choosing distal screws up to
25 % shorter than measured without compromising the
mechanical stability.
However, no study has yet tried to overcome the problem

of primary extensor tendon damage due to overdrilling.
While the use of self-drilling locking screws (SDLS) would
eliminate the necessity of pre-drilling, they require the
ability to preoperatively determine distal screw length.
Additionally, their biomechanical stability has to be
comparable to standard locking screws (SLS).
When using SDLS pre-drilling is not required and hence

screw length cannot be measured directly during the oper-
ation. Therefore, distal screw length has to be determined
prior to surgery. The authors are not aware of any study
assessing screw length preoperatively. Preoperative screw
length assessment based on posterior-anterior (pa) radio-
graphs appears possible, if the following two prerequisites
are met: First, radius width (measured from pa radio-
graphs) correlates to radius depth, i.e. distal screw length.
Second, the distal screw orientation is known. Ljungquist
et al. [16] have shown recently that the lunate depth can
be used as a predictor. Due to its dependency on a pre-
operative CT image, we chose to use the distal radius
width, which can be measured easily on regular radio-
graphs. Measurements should be conducted on true pa ra-
diographs centered on the distal radius, as outlined in a
previous study [17]. This study showed a high correlation
between distal radius width and depth. This indicates a
possible correlation between distal pa-radius width and
distal screw length, in case the screw orientation is known.
The use of a drill-guide block could standardize distal
screw orientation.
While there is experience with SDLS in other medical

fields [18, 19] they have not yet been used in volar plate
osteosynthesis for DRF. Consequently it is yet unknown,
whether SDLS provide sufficient stability.
Overall, extensor tendon irritations can only be elimi-

nated if both dorsal screw protrusion and overdrilling of
the dorsal cortex are avoided. As outlined above, preopera-
tive distal screw length determination seems possible. If
SDLS prove to have similar stability to SLS, their applica-
tion could be possible and would utterly eliminate both

causes of extensor tendon irritation. A further advantage of
this approach would be the reduction of operation time
and a possible increase in overall patient satisfaction.
Therefore, we have divided this work into two parts,

to test the prerequisites for the use of SDLS in DRF out-
lined above independently:

Part 1: Is the distal radius width a reliable predictor for
distal screw length?

Part 2: Do SDLS provide sufficient mechanical stability
for volar plate osteosynthesis of DRFs?

Methods
The ethics committee of the University Hospital Munich,
LMU, approved the study (LMU #409-13). 22 pairs of
fresh-frozen radii were obtained from the Centre of
Anatomy and Cell Biology, Medical University of Vienna,
Austria. Following thawing, the radii were cut to
14 cm lengths. High-resolution peripheral computer
tomography (HRpQCT) scans (XtremeCT, Scanco
Medical AG, Switzerland) were performed and bone
mineral density (BMD) and bone mineral content
(BMC) were calculated [20]. Specimens were excluded
if the scans revealed bone lesions, previous fractures or
severe osteoarthritis.

Part 1: Distal radius width as a predictor for screw length
We evaluated whether the distal radius width can serve as
a reliable predictor of distal screw length if the screw
orientation is known. Maximum distal radius width and
depth (Fig. 1A) were measured using a digital caliper. Dis-
tal volar polyaxial locking plates (Aptus 2.5, A-4750.61/2,
Medartis Inc., Basel, Switzerland) fitted with a distal drill-
guide block (Fig. 1C III, Medartis A-2723.01/02) were used
for all measurements; the use of a drill-guide block is a
prerequisite to ensure predictability and repeatability of
the screw trajectory. Plates were placed on the bone, where
they showed the best fit just proximal to the watershed line
and fixed using a non-locking screw (Fig. 1C V). Plate
positioning was subjective on purpose, to simulate intraop-
erative variance in plate positioning. Each distal screw
length (Fig. 1B wholes #1–5 and 8) was then measured; a

Fig. 1 Outline of the morphometric and distal screw length
measurements. A) Maximum width (a) and maximum depth (b);
B) Screw numeration for right and left plate; C) Adapted digital
caliper (I), distal radius (II), distal drill guide block (III), volar plate
(IV), screw to fix plate to bone (V)
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digital caliper (Fig. 1C I) with adaptations for precise
positioning was used. All measurements were recorded for
each specimen.
Using the above data, statistical analyses were per-

formed to determine whether correlations exist between
geometric dimensions and whether these can be clus-
tered into size groups:

� Intra-bone linear dependency between distal radius
width and depth

� Cluster analysis for distal width to identify distal
radius width groups

� Descriptive screw length statistics for each screw
hole within each size cluster

As a next step we evaluated whether a standard screw
length could be defined per hole and within each size
cluster. The evaluation was based on two aspects:

� Dorsal screw protrusion must be avoided. Therefore,
the shortest screw per hole was chosen as standard
length within each cluster.

� Sufficient biomechanical stability must be achieved.
Based on previous studies a screw length of 75 % of
the volar dorsal distance was deemed sufficient [15].

Statistics were calculated using SPSS 21.0 (IBM Com-
pany). Tests performed include the Kolmogorov-Smirnov
Test, standard descriptives, Pearson correlations and a
hierarchical cluster analysis using the Ward’s method and
the squared Euclidean distance. Group differences were
calculated using ANOVA and Tukey post hoc test (level
of significance α = 0.05).

Part 2: Mechanical stability of SDLS in DRF
In the second part of this study, we aimed to evaluate
the biomechanical performance of SDLS in volar plate
osteosynthesis. Therefore the primary stability of SDLS
was compared to SDL using a biomechanical worst-case
scenario.
For biomechanical testing eleven pairs of radii were ran-

domly picked from the original 22. These were randomized
pair-wise and side-alternating into the SLS and the SDLS
group respectively. The pair-wise study design intended to
ensure similar age and bone quality on both groups. 75 %
distal screw length was chosen for both groups simulating
a worst-case screw length scenario. Based on the initial
screw length measurements, 75 % distal screws length
(Fig. 1B screws #1–5, 8) were calculated and rounded to
the next available screw length (2 mm increments). For
both groups, distal screws were inserted using the drill-
guide block. In the SLS group standard locking screws
(Medartis A-5750) were inserted following pre-drilling
(Fig. 2a/2b); for the SDLS group self-drilling locking screw
prototypes (Fig. 2a), manufactured by Medartis, were used
and inserted without pre-drilling (Fig. 2b). Plates were
additionally fixed to the radius shaft with three proximal
locking screws (Fig. 1B, screws # 9, 12, 13).
The herein applied, standardized, best evidence bio-

mechanical fracture model has been descried in detail
previously [21]. In short, dorsal fracture comminution
was simulated by a 10 mm dorsal wedge osteotomy [22].
Specimens were aligned in a custom-made aluminum jig
and 40 mm of the shaft and a shallow edge of the distal
articular surface were embedded in polyurethane
(SG141/PUR145, FDW Handelsgesellschaft, Austria) as
outlined in Fig. 2c.

Fig. 2 Outline of the two groups, the screws used and the final setup. a) Individual screws; b) Tangential (skyline)- and lateral views of the
prepared specimens; c) Biomechanical test-setup (mounted with only one container shell for illustration)
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The embedded specimens were mounted to the material
testing machine (Z010/TN2A, Zwick GmbH & Co. KG,
Ulm, Germany). A CMS20S ultrasound motion tracking
system (Zebris Medical GmbH, Isny im Allgäu, Germany)
was installed to assess residual fragment tilt to quantify
plastic deformation. The final setup is outlined in Fig. 2c.
Axial load to failure tests were performed at a rate of
1 mm/sec until either 3 mm displacement or a 20 % drop
in force; a preload of 10 N and 10 preconditioning cycles
at 0.2 mm displacement were applied [21, 23].
Primary stability was assessed based on maximum force,

elastic limit, stiffness, and residual distal fragment tilt. Re-
sidual tilt was computed based on the initial and final
marker positions of the motion tracking system using a
rigid registration according to Veldpaus et al. [24]. The
remaining parameters were calculated automatically using
custom Python scripts based on the load-displacement
curves.
Statistics were calculated using SPSS 21.0 (IBM

Company). Independent sample t-tests were conducted
following Shapiro-Wilk and Levene tests to verify sample
normality and variance equality. Due to multiple testing,
a Bonferroni correction was applied (p < 0.0125). Effect
size was calculated using Cohen’s d (d = 0.2 small effect,
d = 0.5 medium effect, d = 0.8 large effect) [25].

Results
Part 1: Distal radius width as a predictor for screw length
38 radii with a mean age of 79 ± 12 years (42 % female)
were included in the final analysis. Three pair of radii had
to be excluded due to previous fractures. The prerequisite
of normality was met. Distal radius width and depth were
highly correlated (R2 = 0.79; p < 0.001); standard descriptive
statistics for distal width, depth and distal screw length are
presented in Table 1.
Using cluster analysis three homogeneous clusters for

distal radius width were defined:

Small: < 34 mm; Medium: 34 – 36:9 mm;
Large: > 36:9 mm:

In a next step box-plots were generated for every
screw position in all clusters to define standard screw
lengths (Fig. 3). The shortest screw for every screw hole
and cluster was used as the standard screw length; using

this methodology out of 228 screws only 7 fell short of
the “safe screw length corridor” (Fig. 3 red boxes); in
these cases the screw length chosen was less than 75 %
of the actual length measured.

Part 2: Mechanical stability of SDLS in DRF
Of the eleven pairs of radii selected for biomechanical test-
ing two pairs had to be excluded due to previous fractures.
The remaining 9 pairs with a mean age of 71 ± 8 years
(33 % female) were tested successfully. Normality and vari-
ance equality criteria were met. BMD (237 ± 72 vs. 233 ± 76
mgHA/cm3; p = 0.6) and BMC (1295 ± 457 vs. 1315 ± 533
mgHA; p = 0.6) did not differ significantly between the two
groups. Table 2 provides group-wise statistics for all bio-
mechanical outcome parameters. Overall the SDLS group
showed better mechanical properties but differences were
not statistically significant. The effect size calculation indi-
cated a medium effect for maximum force (d = 0.58) [26].

Discussion
For the first time, this study demonstrated the feasibility
of SDLS volar plate osteosynthesis for DRF. Both prereq-
uisites, i.e. screw length estimation based on distal radius
width and primary stability of SDLS were fulfilled. First,
three distal radius width clusters were identified and the
definition of a standard screw length for each screw hole
in each group appeared possible. Second, SDLS provided
equal primary stability in volar locking plate osteosynth-
esis compared to SLS.

Part 1: Evaluation of preoperative screw length
determination based on distal radius width
Based on the data presented, the definition of group-
and screw hole specific standard screw lengths appears
feasible. When applying the “safe screw length corridor”
concept, only seven out of 228 distal screws would have
fallen short of the 75 % lower bound (Fig. 3 red boxes):
in five specimens one screw each and in one sample two
screws were shorter than 75 % of the volar-dorsal
distance. Based on the results by Wall et al., it is ques-
tionable whether this would have a measurable impact
on the overall stability.
We are aware that our cluster- and screw length analysis

is based on a rather small sample size. And while the
observed mean radius width is similar to values reported

Table 1 Standard descriptive statistics for distal radius width, depth and distal screw length [mm]

Depth Width Screw #1 Screw #2 Screw #3 Screw #4 Screw #5 Screw #8

Mean ± SD 25.4 ± 2.5 35.2 ± 2.8 20.6 ± 2.4 24.1 ± 1.8 24.0 ± 2.3 23.3 ± 1.8 21.7 ± 2.1 23.1 ± 2.1

95 % CI 24.5–26.2 34.3–36.1 19.8–21.4 23.5–24.7 23.2–24.7 22.7–23.9 21.0–22.4 22.4–23.8

Min 22.0 30.0 15.0 21.0 20.0 20.5 18.5 18.0

Max 30.0 40.0 26.0 28.0 28.0 27.0 26.0 27.0

SD, Standard deviation, 95 % CI 95 % confidence interval, Min Minimum, Max Maximum
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in literature [17, 27, 28], the sample’s width range
(30 mm–40 mm) is not. Previous studies published width
ranges of 24 mm to 46 mm [17]. The small width range is
most likely due to the limited sample size and the use of
paired radii, which further reduces the morphometric
variety. Additionally, morphologic population differences
may also influence the results [17, 27, 29]. To predict
cluster- and screw hole specific screw lengths, this study
should be repeated in larger samples to observe differ-
ences associated in gender and ethnicity. Also, distal screw
length depends on the plate position. While most manu-
facturers recommend placing the plate just proximal to
the watershed-line, fracture pattern and the plate’s
shape influence the intraoperative plate position. We
tried to account for this variability at least partially by

not standardizing the plate position. Finally, future
studies will have to assess the suitability of these pa-
width measurements in the fractured case. Although
fracture dislocation occurs primarily dorsally in extra-
articular fractures (AO-23-A3), which should only has
a limited affect on the pa-distal radius width measure-
ment, control measurements should be taken in case
the fracture is reduced prior to surgical treatment.
Despite the limitations stated above, the data pre-

sented suggest that defining standard screw lengths
based on the distal radius width is feasible. While the
use of screws with standardized, predetermined lengths
should mostly eliminate dorsal screw protrusions, a final
control using the radiographic skyline view [30, 31] or a
similar technique would remain a prerequisite.

Part 2: Primary stability of SLS compared to SDLS in a
mechanical worst-case scenario
SDLS in volar locking plate osteosynthesis for DRF were
compared to SLS in a worst-case biomechanical test setup.
Using axial load to failure tests [21, 22] we were able to
show a similar primary stability for SDLS compared to
SLS.
The stiffness and maximum forces observed were in

agreement with values previously published, ranging
from 450 N/mm to 800 N/mm and 300 N to 1050 N,
respectively [21, 32, 33]. All samples tested easily with-
stood the critical load of 250 N occurring during early
rehabilitation [34, 35]. The mean stiffness, elastic limit
and maximum forces were higher in the SDLS group
compared to the SLS group. While the differences were

Fig. 3 Box-plots for each screw length in each group. S: Group small; M: Group medium; L: Group large; Red box and crosses: Screws falling short
of the “safe screw length corridor”; ANOVA: Overall significant differences between each group for each screw. Tukey post hoc test revealed
significant differences for all groups, but those highlighted as “ns” (= non significant)

Table 2 Group statistics for the biomechanical outcome
parameters

Source Parameter Group Mean SD

Load-displacement-Curves Stiffness [N/mm] SLS 833 160

SDLS 904 279

Elastic Limit [N] SLS 205 42

SDLS 259 106

Max Force [N] SLS 632 273

SDLS 768 188

Motion Tracking Residual Tilt [°] SLS 5.7 1.3

SDLS 5.6 0.9

No significant differences were found for any parameter
Max Force maximum force, N Newton, mm millimeter, ° degree, SD standard
deviation, ns not significant

Synek et al. BMC Musculoskeletal Disorders  (2016) 17:120 Page 5 of 7



not statistically significant, this might indicate a higher
primary stability using the SDLS. This is in line with
previous single screw pull-out tests reporting superior
performance of SDLS compared to SLS [18, 19, 36].
Several limitations remain. The use of isolated radii

(without ulna and the surrounding soft tissue) may over-
simplify the biomechanical situation; however, it is the
method typically employed in biomechanical testing and
eliminates confounding factors [21, 32, 33]. A simple
uniaxial loading in compression was used; while this will
still cause shear loads and moments, the varying in-vivo
loading patterns due to different hand postures will not
be fully represented [37]. Finally, only one extra-articular
fracture type (AO-23-A3) was tested. Whether similar
results can be obtained for intra-articular fractures needs
to be investigated, but we assume that more complex
fracture patterns require the use of individually oriented
screws. This would prevent the use of a drill guide block
(which sets a predefined axis for every screw) and thus
the use of screws with predetermined lengths.

Conclusion
Out tests show that SDLS provide sufficient primary
mechanical stability in volar locking plate osteosynthesis.
Additionally, distal radius width appears to be a valid
predictor for screw hole specific standard distal screw
length. While a larger sample size might be necessary to
refine the distal radius width groups, the results ob-
tained from this limited set give a first orientation. The
results of this study highlight the feasibility of applying
SDLS in volar plate osteosynthesis for the distal radius
at least for extraarticular fractures saving not only oper-
ation time, but also eliminating the causes of extensor
tendon irritations.
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