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Background

Skeletal muscle atrophy can occur under many different
conditions, including prolonged disuse or immobiliza-
tion, cachexia, cushingoid conditions, secondary to sur-
gery, or with advanced age. Atrophy is characterized by
decreases in muscle mass, muscle mass to body ratio [1,2],
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Methods: We examined the effects of ectopic expression of FGFRI during disuse-mediated
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mouse muscle which appeared to be resistant to atrophy. Electroporation and ectopic expression
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undergoing suspension induced muscle atrophy. Ectopic FGFRI expression in muscle also
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weight bearing muscle fibers.

Conclusion: These results support the theory that FGF signaling can play a role in regulation of
postnatal skeletal muscle maintenance, and could offer potentially novel and efficient therapeutic
options for attenuating muscle atrophy during aging, illness and spaceflight.
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and myofiber cross-sectional area [3]. Additional changes
noted in atrophied skeletal muscle are a decrease in over-
all nucleic acid quantities, as well as a loss of myonuclei
[4]. These physical characteristics are accompanied by
decreased muscle strength [5], and increased propensity
to muscle fatigue [6]. If severe enough, these changes can
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significantly impact the quality of life and productivity of
an individual.

The mechanisms by which unloading of muscle is sensed
and translated into signals controlling tissue reduction
remains a major question in the field of musculoskeletal
research. Two ubiquitin ligases have been identified that
are involved with initiating approximately 50% of skeletal
muscle atrophy associated with denervation [7]. However,
there are currently no universally effective treatments
available for skeletal muscle atrophy during disuse. Sev-
eral strategies have been used in an attempt to attenuate
or reverse muscle atrophy associated with disuse. The suc-
cess of these attempts appears to depend on the action of
growth factors used, the delivery system employed, and
the model of atrophy studied. For example, intra-muscu-
lar injection of IGF-I protein inhibited muscle atrophy
associated with denervation [8] and electroporation of
IGF-I expression plasmid inhibited muscle loss associated
with hind limb suspension [9], while administration of
GH and/or IGF-I did not attenuate muscle atrophy associ-
ated with hind limb suspension [10]. Exercise was
required in addition to administration of GH and IGF-I in
order to inhibit muscle degeneration associated with dis-
use atrophy [10]. However, in certain clinical situations
such as bed-ridden or casted patients, exercise is not an
option when attempting to attenuate muscle atrophy.

The fibroblast growth factors (FGFs) have been shown to
be intimately involved in fetal skeletal muscle growth and
development and development of cultured skeletal mus-
cle in vitro. FGFs are strong regulators of myoblast prolif-
eration in vitro [11-17]. FGF expression and synthesis is
localized to developing skeletal muscle masses in vivo, and
in muscle cultures in vitro [18-27]. In these masses, FGF
and FGFR expression is associated with the proliferative
myoblast state [28]. In vitro, FGFR1, FGF1, FGF2, FGF6
and FGF7 are expressed in proliferating cultures of MM 14
skeletal muscle precursor cells, and down-regulated upon
differentiation [29]. Because of these expression patterns
and regulatory effects mentioned above in skeletal muscle
in vitro, it was believed classically that FGFs were respon-
sible for stimulating proliferation of myogenic precursor
cells in vivo. While this may be true for some FGFs, it is
becoming clearer that not all FGF-family members will
have a proliferation stimulating/differentiation inhibiting
function with regard to skeletal muscle development in
vivo. FGF5 and FGF4 significantly inhibit the development
of differentiated skeletal muscle myofibers, without any
significant stimulatory effect on myoblast proliferation in
vivo [28,30].

The role of the FGF-family in regulation of postnatal skel-
etal muscle growth and maintenance is less clear. Expres-
sion of FGF-1 and 2 is significantly increased in the
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muscle fibers of facioscapulohumeral muscular dystrophy
(FSHD) [31]. Electrically stimulated rat muscles showed a
threefold increase of the mRNA levels of both FGF-1 and
FGF-2 [32], indicating release during exercise and possible
roles in the response of skeletal muscle to work. In addi-
tion to the changes seen in expression under various phys-
iological conditions, FGF-2 can aid in muscle healing in
vivo. Application of exogenous FGF-2 to injured muscle
increased the number of regenerating fibers and the twitch
and tetanus strength of muscle as compared to control
muscles [33]. Injection of FGF-2 into the muscle of mdx
mice increases the number of regenerating myofibers and
this effect is positively correlated to the quantity of FGF-2
injected [34]. Physical trauma of skeletal muscle in FGF-6
null mice results in an inhibition of the healing process,
and extensive fibrosis and myotube degeneration. When
mdx mice were crossed with FGF-6 null mice the resultant
offspring showed severe myopathies. These included
myotube necrosis and large amounts of fibrosis, indicat-
ing inhibition of muscle regeneration [35].

The FGFs exert their biological effects on cells via both
high affinity tyrosine kinase (FGFRs) and low affinity
heparan sulfate proteoglycan (HSPGs) cell surface recep-
tors [36]. In adult skeletal muscle, the two main FGFRs
expressed are FGFR1 and FGFR4 [36]. FGFR1 is proposed
to be a receptor for several members of the FGF family,
and is believed to be associated with cellular proliferation.
In electrically stimulated muscle, expression of FGFR1 was
isolated to skeletal muscle fibers, and is doubled over
non-stimulated muscles [32]. FGFR-4 expression is signif-
icantly increased in the connective tissue of facioscapulo-
humeral muscular dystrophy (a form of muscular
dystrophy) [31].

While evidence is beginning to accumulate that FGFs will
be involved in postnatal muscle maintenance and growth,
their exact role has yet to be completely elucidated. In this
manuscript, we examined FGFR1 expression during dis-
use-mediated skeletal muscle atrophy. We found FGFR1
to be expressed in muscle fibers within atrophying mus-
cle, fibers which appeared to be resistant to atrophy. We
also found that ectopic expression of FGFR1 within skele-
tal muscle fibers inhibited disuse mediated muscle atro-
phy. In muscles of suspended animals, FGFR1
overexpression stimulated protein synthesis. These results
support the theory that FGFR1 plays a role in regulation of
postnatal skeletal muscle maintenance, conserving a pop-
ulation of fibers which could be potentially used for
mobility during times of stress. These results could offer
potentially novel and efficient therapeutic options for
attenuating muscle atrophy during aging, illness and
spaceflight.

Page 2 of 12

(page number not for citation purposes)



BMC Musculoskeletal Disorders 2007, 8:32

Methods

Hindlimb suspension

All experimental procedures involving mice were per-
formed in accordance with guidelines set forth by the Pur-
due Animal Care and Use Committee. Hindlimb
suspension (HS) was performed on mice using the tail
cast model established by Morey et al. [37] and modified
by Park and Schultz [38]. Mice were attached to a two-
dimensional track system by their tails. This modification
allows mice free access to food and water ad libitum, but
prevents mice from placing a load on their hind limbs.

Twelve-week-old male mice (AKR/J, Jackson Labs, Bar
Harbor, ME) were weighed and randomly assigned to
either HS for4 d (n = 12), for 7d (n = 11), or kept in nor-
mal weight bearing/non-suspension (NS, n = 12) state.
After suspension, body weights were recorded, mice were
euthanized and muscle samples were collected. Gastroc-
nemius muscles were weighed, snap frozen in 2-methylb-
utane cooled in liquid nitrogen, and stored at -80°C for
histological analysis. Frozen cross-sections 10 pm were
cut at -23°C using a Microm HM500 Cryostat (Walldorf,
Germany) and subbed to silane-coated slides.

In situ hybridization

Sense and anti-sense RNA probes were generated using
the full-length coding sequence for FGF-4 cloned into
Bluescript (Stratagene, La Jolla, California) [24], forming
a template for a MAXIScript in-vitro transcription
(Ambion, Austin, TX) using a [33P] UTP label. FGFR1
probes were generated using reverse transcription proto-
cols and PCR primers as described [40]. Briefly, cDNA
templates for PCR were generated by reverse transcribing
total RNA from mouse muscle. FGFR1 cDNA was ampli-
fied using the following forward and reverse primers:
(AGAGACCAGCTGTGATGA) and (AATACGACTCAC-
TATAGGGTGAGGAAGACAGAGTCCTCC), respectively,
where the reverse primer contained the T7 promoter
sequence. FGFR1 cDNA was electrophoresed and purified
using the QIAquick Gel Extraction Kit (Qiagen, Valencia,
CA). Purified FGFR1 cDNA was used as a template with
the aforementioned MAXIScript in-vitro transcription
(Ambion, Austin, TX) and [33P] UTP to generate ribo-
probes for in situ hybridization as outlined previously.
Control probes were generated using either labeled sense
probes or excess cold antisense RNA probes as described
[41].

In situ hybridization was performed as described previ-
ously [40]. Briefly, sections were fixed with 4% (w/v)
paraformaldehyde in 1 x phosphate buffered saline (PBS)
for 20 min and rinsed twice for 5 min in 1 x PBS. Sections
were overlaid with proteinase K solution (20 pg/ml pro-
teinase K diluted in 50 mM Tris-HCI, 5 mM EDTA; pH
8.0) for 5 min and washed in 1 x PBS for 5 min. Sections
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were post-fixed as described previously in the 4% (w/v)
paraformaldehyde solution. Slides were acetylated for 10
min using triethanolamine/acetic anhydride at pH 8.0.
Sections were washed in 1 x PBS, dehydrated using abso-
lute ethanol and air dried. Labeled probes were added to
hybridization solution (4 x SSC, 1 x Denhardt's, 16 pg
tRNA, 10% dextran sulfate, 50% formamide) at a final
concentration of 50,000 cpm/pl. Sections were incubated
overnight at 55 °C. Following hybridization, sections were
washed once for 15 min and twice for 30 min in wash
solution (50% formamide in 2 x SSC at 65°C) and twice
for 60 min in 35% formamide, 1 x SSC, 0.5 x PBS at 65°C.
Three muscle sections from 10 animals from each treat-
ment (control, 4 days hind limb suspension, and 7 days
of hind limb suspension) were analyzed. Following
hybridization, slides were subjected to a phosphor screen
(Packard BioScience, Meriden, CT) overnight. Images
were acquired using the Cyclone Storage Phosphor Sys-
tem (Packard BioScience, Meriden, CT), and analyzed
using the Optiquant image analysis software provided
with the system (Packard BioScience, Meriden, CT).

Immunohistochemistry

Muscle cross-sections were blocked for 5 min at room
temperature in a solution containing 0.3% horse serum
(v/v) and 0.3% hydrogen peroxide (v/v) diluted in 1 x
phosphate buffered saline (PBS). After blocking, sections
were washed in 1 x PBS. The mouse-on-mouse immu-
noglobulin blocking solution (Vector M.O.M Immunode-
tection Kit; Vector Laboratories, Inc., Burlingame, CA) was
used. Sections were blocked 1 h at room temperature in
the mouse-on-mouse blocking solution. Slides were
rinsed in 1 x PBS and incubated 5 min with the mouse-
on-mouse working solution. Excess solution was removed
and sections were incubated for 30 min with a mouse
monoclonal FGFR1 antibody (QED Bioscience, San
Diego, CA) diluted 1:2000 in working solution, or anti a-
Actinin (Sigma-Aldrich, St. Louis, MO) diluted 1:800.
Slides were rinsed in 1 x PBS and incubated 10 min at
room temperature with biotinylated anti-mouse IgG. Sec-
tions were rinsed in 1 x PBS and exposed to an avidin-
biotin-horseradish peroxidase complex (ABComplex®
Elite Kit; Vector Laboratories, Inc. Burlingame, CA). Slides
were rinsed with 1 x PBS and reacted with 3,3'-diami-
nobenzidine substrate. Slides were washed in 1 x PBS,
dried and coverslipped. Slides stained by immunohisto-
chemistry for analysis were of muscle sections from the
middle region of the muscle. Digital images were captured
with a Leaf Microlumina camera (Scitex, Tel-Aviv, Israel)
mounted on an Olympus BX50 microscope (Olympus,
Melville, NY). Sections stained with anti a-Actinin were
scanned at 20 x magnification and used to measure cross-
sectional area of muscle fibers. A total of 16 fields were
scanned from both legs from each mouse. From each field
10 randomly selected fibers were outlined using Adobe
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Photoshop® (Adobe Systems, Inc., San Jose, CA) to deter-
mine cross-sectional area using the histogram function. A
total of 800 myofibers were examined in the gastrocne-
mius from mice which had undergone 7 days of hindlimb
suspension, while 960 fibers the gastrocnemius were
examined from mice which had undergone 4 days of
hindlimb suspension, and from control mice.

DNA constructs

A full length cDNA encoding FGFR1 cloned into the MIRB
expression vector was kindly provided by D.M. Ornitz
(Washington University, St. Louis, MO). Plasmid DNA
containing the full coding region of FGF-4 cloned into
Bluescript (Stratagene, La Jolla, California) was provided
by Lee Niswander (University of Colorado, Denver, CO).
Control pcDNA 3.1 (+) plasmid DNA was purchased from
Invitrogen (catalog no. V790-20, Carlsbad, CA). Cytome-
galovirus (CMV)-Lac-Z encoding B-galatosidase was pro-
vided by B.B. Olwin (University of Colorado, Boulder,
CO). Renilla luciferase vector containing the SV40 pro-
moter region (pRL-SV40) was purchased from Promega
(catalog no. E2231, Madison, WI). Plasmid DNA encod-
ing for Runx2/Osf2 under the control of a cytomegalovi-
rus promoter (pCMV-Osf2) and mouse osteocalcin gene 2
(mOG2) promoter fused to a luciferase reporter (pII 1.5
Luc) were gifts from R.T. Franceschi (University of Michi-
gan, Ann Arbor, MI). Plasmid DNA encoding an ubiqui-
tin-tagged luciferase (Ub-Fl) was a gift from D. Piwnica-
Worms (Washington University, St. Louis). All DNA plas-
mids for animal injections were purified using Endo Free
Plasmid Maxi Kits from Qiagen (catalog no. 12362,
Valencia, CA).

In-Vivo plasmid DNA transfection

Plasmid DNA was electroporated into skeletal muscle fib-
ers of twelve-week-old ND4 male mice (Harlan, Indiana-
polis, IN) as described previously [42]. Mice were
anesthetized using an intraperitoneal injection cocktail
containing ketamine (9 mg/ml) and xylazine (1 mg/ml)
in 0.9% saline at 0.01 ml/gram body weight. Hind limbs
were shaved and the gastrocnemius and soleus muscles
were injected with 50 ul of a 0.9% saline solution contain-
ing either 30 ug FGFR1 plasmid DNA and B-galactosidase
(20 pg), or control plasmid (30 ng) and B-galactosidase
(20 pg) in the contralateral limb through the skin. After
DNA injection, electrotransfer gel was applied to each
limb, and two plate electrodes connected to an ECM 830
electrical pulse stimulator (BTX®inc., Holliston, MA) were
positioned on the lateral and medial aspects of the leg
adjacent to the muscle. Limbs were pulsed 8 times at 200
V/cm, 20 msec/pulse with a delay of 1 sec between pulses.

Forty-eight hours after electroporation, mice were ran-
domly assigned to either HS for 7 d (n = 6), HS for 14 d
(n = 6), or a reloaded treatment (n = 6). For the reloaded

http://www.biomedcentral.com/1471-2474/8/32

treatment, mice were suspended for 7 d, and then allowed
to recover in a non-suspended, weight bearing status for 7
d. Following treatments, mice were euthanized and mus-
cle samples were collected and frozen as described previ-
ously.

Gastrocnemius muscles were sectioned and stained for -
galactosidase [43]. Briefly, sections were fixed in 0.5% glu-
teraldehyde for 5 min at room temperature and rinsed in
1 x PBS. Sections were incubated in the dark overnight at
37°C in a solution containing 1 mg/ml X-Gal (5-bromo-
4-chloro-3-indolyl-B D-galactopyranosidase; BP1615-1,
Fisher Scientific, Fair Lawn, NJ), 10 mM K-ferricyanide, 10
mM K-ferrocyanide and 0.2 mM MgCl,, diluted in 1 x
PBS. After color development, sections were rinsed in 1 x
PBS and coverslipped. Images were captured with Scion
Image for Windows Beta 4.0.2 (Scion Corporation, Fred-
erick, MD) using a Nikon DN100 digital camera (Nikon
Corporation, Tokyo, Japan) mounted on a Nikon Lab-
phot light microscope (Nikon Corporation, Tokyo,
Japan). Cross-sectional area of at least thirty B-galactosi-
dase positive myofibers/per section/per animal were
determined using Adobe Photoshop (Adobe Systems,
Inc., San Jose, CA). Ten sections/animals were analyzed.
This experiment was performed three times.

Downstream detection of FGF signaling

Gastrocnemius and soleus muscles of mice were electro-
porated as described with 50 ul of a 0.9% saline solution
containing 30 pg of plasmid DNA encoding FGFR1, a
Runx2 expression plasmid (20 pg), a mOG2-luciferase
reporter gene (20 pg) and CMV-renilla luciferase (10 pg).
Contralateral control limbs received 30 pg of control plas-
mid DNA, Runx2 expression plasmid (20 pg), mOG2-
luciferase reporter gene (20 pg) and renilla luciferase (20
ug). Five days after transfection mice were euthanized,
and gastrocnemius muscle samples were frozen in liquid
nitrogen. Muscle samples were powdered in a mortar and
pestle cooled in liquid nitrogen and homogenized in pas-
sive lysis buffer (PLB) (catalog no. E1941, Promega, Mad-
ison, WI) containing leupeptin (2.1 pM/L), aprotinin,
(0.15 uM/L), and phenylmethylsulfonyl fluoride (10 uM/
L). Luciferase activity in each muscle sample was deter-
mined using the Dual-Luciferase® Reporter Assay System
(catalog no. E1960, Promega, Madison, WI), measured on
a TD-20/20 luminometer (Turner Designs, Sunnyvale,
CA). Luciferase activity of mOG2 was normalized to
renilla luciferase activity in each sample to correct for
transfection efficiency.

Protein synthesis

ND4 male mice (Harlan, Indianapolis, IN) were electro-
porated into the gastrocnemius/soleus muscle, as
described above, with 100 pg FGFR1 plasmid DNA. The
contralateral muscle then received 100 ug of control plas-
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mid DNA. Mice were randomly assigned to either HS
treatment (n = 9) for 10 d, or normal weight bearing treat-
ment for 10 d (n = 10). DNA transfections and HS were
performed as previously outlined. To determine protein
synthesis, a modification the flooding dose method
described [44] was performed. Briefly, 250 pCi L-[4-3H]
phenylalanine (catalog no. TRK204, Amersham, Piscata-
way, NJ) per mouse and 150 pmol unlabeled phenyla-
lanine/100 g body weight was administered
intraperitoneally. Thirty min after dosing, mice were euth-
anized, hindlimbs were skinned, and placed on ice for dis-
section. Gastrocnemius and soleus muscles were
removed, snap frozen in liquid nitrogen and stored at -
80°C for later analysis.

Frozen samples were powdered using a mortar and pestle
cooled in liquid nitrogen and homogenized in PLB as
described previously. Protein concentration of the
homogenate was determined using the bicinchoninic acid
protein assay (catalog no. 23225, Pierce, Rockford, IL). A
volume containing 200 pg of total protein was precipi-
tated in one quarter volume 0.2 M perchloric acid (PCA)
and pelleted. Pellets were washed twice with 0.2 M PCA
and solubilized using 0.5 ml of 0.5 M NaOH. Solubilized
pellets were added to 10 ml EcoLite™(+) scintillation fluid
(catalog no. 882475, ICN Biomedicals, Inc., Irvine, CA)
and counted using liquid scintillation (Model B1600,
Packard BioScience, Meriden, CT). This experiment was
performed three times.

Proteasome activity

Proteasome activity was assayed using the ubiquitin-luci-
ferase reporter as described by Luker et al [45]. Gastrocne-
mius and soleus muscles of 12-week-old ND4 male mice
(Harlan, Indianapolis, IN) were electroporated with a
0.9% saline solution containing either 30 ug FGFR1, Ub-
Fl (20 pg), and renilla luciferase (10 pg), or control (30
ug), Ub-Fl (20 pg), and renilla luciferase (10 pg) plasmid
DNAs. The ubiquinated luciferase construct synthesizes a
ubiquitin-luciferase fusion protein that is degraded by,
and an indicator or activity of, the ATP-depended proteo-
some. Mice were randomly assigned to either HS treat-
ment (n = 5) for 10 d, or remained in weight bearing
treatment (n = 4) for 10 d. At the conclusion of the treat-
ment period, mice were euthanized, muscles were col-
lected and processed as described previously for
determining firefly and renilla luciferase activity.

Statistical analysis

To test the effect of FGFR1 treatment and hindlimb
unloading on muscle fiber area (CSA), tritium incorpora-
tion, and proteasome activity, a general linear model of
SAS was used to perform the analysis of variance. A mixed
model with mouse as a blocking factor for repeated meas-
ures analysis was performed on contralateral limbs as
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repeated measurements within each mouse. The data
from the protein synthesis study showed a poisson distri-
bution, so data were transformed (square root). Probabil-
ity values less than 0.05 were considered statistically
different.

Results

Muscle morphology

In comparison to the weight bearing controls, after 7 days
of hindlimb suspension fiber CSA was significantly
decreased in the gastrocnemius by an average of 311 pm?2
(control : 1688 um2; 4 days of hind limb suspension :
1454 pm?; 7 days of hind limb suspension : 1277 um?2;
SEM = 52 um?; all means significantly different p < .05).

In-situ hybridization

Quantitative in-situ hybridization of the gastrocnemius
using probes for FGFR1 and FGF-4 demonstrated detecta-
ble levels of growth factor expression in control animals.
Hind limb suspension significantly altered the expression
of FGFR1 and FGF4 after 4 and 7 days when compared
with weight bearing controls. Following 4 days of disuse
FGFR1 mRNA expression was significantly increased, with
expression levels at 178% of controls (p < 0.05). After 7
days of disuse FGFR1 mRNA expression was significantly
decreased, with expression at only 66% of controls (p <
0.05; Figure 1.A,B). FGF-4 mRNA levels were significantly
elevated after 4 days of hind limb suspension at 192% of
control (p < 0.01; Figure 1.A,C). After 7 days of disuse
FGF-4 expression was still significantly elevated when
compared to controls (145% of control; p < 0.01; Figure
1.A,C), but was significantly lower than expression levels
noted after 4 days of disuse (p < 0.01; Figure 1.A,C). Con-
trol sense ribroprobes did not yield significant hybridiza-
tion signal (data not shown).

FGFRI immunohistochemistry

A population of fibers immunostained strongly positive
for FGFR1 in gastrocnemius muscles from mice following
7 days of disuse atrophy (Figure 2.A,B). This localized
increase in FGFR1 immunoreactivity was not detected in
control muscle. The average CSA of fibers expressing
increased levels of FGFR1 protein in atrophied muscle was
significantly larger than fibers not demonstrating this
increase (in atrophied muscle) by 522 ym? (p < 0.01; Fig-
ure 2.C). The average diameter of the FGFR1 expressing
fibers in atrophying muscle (1615 um?2) was similar to
that of the weight bearing controls (1688 pm?2).

Overexpression of FGFRI in muscle blunts muscle atrophy
To determine if the elevated FGFR1 was playing a direct
role in maintaining muscle fiber size during disuse atro-
phy, muscle fibers were electroporated with an FGFR1
expression plasmid and subjected to HS. After 7 d HS, fib-
ers expressing electroporated FGFR1 were 17% larger (P <
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FGFRI and FGF4 mRNAs are up-regulated in muscle undergoing disuse atrophy. FGFRI and FGF4 mRNAs were
analyzed in sections of gastrocnemius muscle obtained from control mice or mice suspended for 4 or 7 days by in situ hybridi-
zation. In comparison to controls, FGFR| and FGF4 mRNA signal, as depicted by white silver grains in dark field images, were
upregulated in gastrocnemius muscles suspended for 4 days (A). Direct dpm analyses were obtained using the Cyclone Storage
Phosphor System, and FGFR| and FGF4 mRNA levels were found to be significantly greater in muscles suspended for 4 days
than control muscle or muscle suspended for 7 days. Dotted lines represent the outline of the gastrocnemius muscles. SEM
indicated over control; means with different superscripts differ p <.05; n = 10 for each mean.
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Figure 2

FGFRI protein is up-regulated in muscle fibers during disuse atrophy. FGFR| was immunolocalized in sections of
gastrocnemius muscle obtained from control mice or mice suspended for 7 days. In comparison to the control gastrocnemius
(A), FGFRI protein, as depicted by the brown precipitate (black arrows), was increased in atrophying muscle (B). In sections of
the gastrocnemius isolated from suspended mice, the area of the FGFRI-positive muscle fibers was significantly greater than
the FGFRI negative fibers (C). The area of the FGFRI positive myofibers in the atrophying muscle was the same as the area of
control myofibers (1688 mm?2). This data suggests that FGFR1 acts to inhibit fiber atrophy associated with disuse. ** indicates
p < .0l; SEM indicated; bar represents 50 mm.
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0.05) than those fibers from the contralateral control
limbs expressing a control plasmid. Similarly, fibers
expressing electroporated FGFR1 in mice suspended 14 d
were 62% larger (P < 0.01) than fibers from the contralat-
eral control limbs expressing a control plasmid. In
reloaded animals, muscle fibers expressing electroporated
FGFR1 were 24% larger (P < 0.01) than contralateral con-
trol muscle fibers expressing control plasmid (Figures 3
and 4). These results demonstrate that FGFR1 plays an
active role in inhibiting the loss in muscle fiber diameter
that occurs during unloading. No significant difference
was noted in the CSA of fibers transfected with FGFR1 and
LacZ when compared with fibers transfected with only
LacZ in the muscles of weight bearing mice (LacZ express-
ing fibers: 1623 pm; FGFR1/LacZ expressing fibers: 1615
um; SEM = 323).

Control FGFR1

7 d HS 4 A

14 d HS
. F ~ i
Reloaded po ) ? /
1 . = Em
Figure 3

Ectopic expression of FGFRI inhibits atrophy. 3-galac-
tosidase expression in muscle fibers from gastrocnemius
muscles of mice co-transfected with a 3-galactosidase
expression vector and either a control (control) or FGFRI
expression plasmid DNA (FGFRI). Rows represent fibers
from muscles of mice suspended for 7d (7 d HS), 14d (14 d
HS), or reloaded for 7 d after 7 d HS (reloaded). The bar in
the bottom right figure represents 50 pm.
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Figure 4

Overexpression of FGFRI inhibits muscle atrophy.
Cross-sectional area (CSA) of fibers from gastrocnemius
muscles of mice transfected with either control (control) or
FGFRI expression plasmid DNA (FGFR1), subjected to hind-
limb suspension for 7 d (7 d HS), 14 d (14 d HS), reloaded for
7 d after 7 d of hindlimb suspension (7 d reloaded), or non-
suspended controls (NS). Means (+SEM) bearing different let-
ters differ significantly (P < 0.05).

FGFRI in muscle regulates protein synthesis and
degradation

To determine the effects of FGFR1 on protein turnover,
protein synthesis and protein degradation were evaluated
in FGFR1 electroporated muscles. Gastrocnemius/soleus
muscles from mice subjected to HS for 10 d incorporated
less (P < 0.05) tritium than those of unsuspended mice
(Figure 5). These results confirm previous studies that
demonstrate a reduction of protein synthesis that occurs
during hind limb suspension [46]. In both weight bearing
and suspended gastrocnemius/soleus muscles electropo-
rated with FGFR1, there was an average 16% greater (P <
0.05) tritium incorporated than in contralateral muscles
electroporated with control plasmid (Figure 5). These
results show that ectopic expression of FGFR1 stimulates
protein synthesis in skeletal muscle fibers in vivo.

The 26S proteasome represents a key component in ubiq-
uitin-mediated proteolysis, so activity of the proteasome
was used to determine the regulation of proteolysis by
FGFR1. The proteasome reporter plasmid encodes a poly-
ubiquitinated sequence linked to luciferase [45]. Higher
luciferase activity indicates lower proteasomal activity,
and thus interpreted as lower proteolysis. Proteasome
activity was significantly (P < 0.01) increased 2.3 fold in
muscles from control, suspended muscle as compared to
muscles isolated from weight bearing control mice. This
data is in agreement with previous studies showing prote-
olysis is increased in muscle undergoing hind limb sus-
pension induced-atrophy [45]. Proteasome activity of
muscles from suspended mice electroporated with FGFR1
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Figure 5

Overexpression of skeletal muscle with FGFRI
increases protein synthesis. Incorporation of L-[4-3H]
phenylalanine in gastrocnemius and soleus muscles of weight
bearing or hindlimb suspended mice transfected with control
(control) or FGFRI expression plasmid DNA (FGFRI). Val-
ues represent back transformation of means (+SE/-SE) gener-
ated using a square root transformation. Values bearing
different letters differ significantly (P < 0.05).

was not significantly different from contra-lateral muscles
electroporated with control plasmid. In muscle from
weight-bearing control mice electroporated with FGFR1,
there was a 2.5 fold increase (P < 0.01) in proteosome
activity (Figure 6) as compared to the contralateral muscle
electroporated with control plasmid.

Downstream detection of FGF signaling in muscle

As described previously [9], we sometimes have difficulty
using immunohistochemistry to display ectopic plasmid
protein expression. Although we used muscles that
showed no overt necrosis and mineralization in response
to electroporation, there still seemed to be an insult to the
muscle that appeared as a strong affinity for the secondary
antibody during immunohistochemistry. Even on sec-
tions from muscles 30 days post-electroporation, there
was a strong background of secondary antibody immu-
nostaining, that we could not block with MOM Kkits
(Mouse On Mouse, Vector Laboratories) or excess
quenching with unlabeled secondary antibodies. There-
fore, to verify FGF signaling was stimulated by overexpres-
sion of FGFR1, a reporter assay using plasmid DNAs for
Runx2 and mOG2-luciferase as described by Xiao et al.
[47] was utilized. FGF signaling is required for Runx2
phosphorylation, which is required for activation of OG2
transcription. Increased mOG?2 reporter gene activity is
indicative of increased FGF-signaling. Gastrocnemius and
soleus muscles electroporated with FGFR1 plasmid DNA
exhibited a two-fold increase (P < 0.05) in OG2 luciferase
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Figure 6

Proteasome activity is unaffected by overexpression
of FGFRI in muscle subjected to hindlimb suspension
(HS). Luminescence of extracts from the gastrocnemius and
soleus muscles of mice transfected with either control (con-
trol) or FGFRI expression plasmid DNA (FGFRI), subjected
to either hindlimb suspension (HS), or non-suspended con-
trols (NS). Data are expressed as luciferase dependent light
units of Ub-Fl normalized to renilla luciferase dependent light
units. Means (+SEM) bearing different letters differ signifi-
cantly (P < 0.05).

activity as compared to control muscles electroporated
with control plasmid (Figure 7). These results verify that
FGF-signaling was stimulated by ectopic expression of
FGFR1.

Discussion
FGFs are demonstrated regulators embryonic skeletal
muscle growth and repair. However, their importance

0.01 -
0.009 -
0.008 -

——c

_ 0.007
w 0.006 -
N
8 0.005 - a
g 0004 T

0.003 - T

0.002

0.001

0 T 1
Control FGFR-1

Figure 7

Downstream detection of activated FGF signaling.
Activity of mouse osteocalcin gene 2 promoter (mOG2)-luci-
ferase reporter gene in gastrocnemius and soleus muscles of
mice transfected with either control (control) or FGFRI
expression plasmid DNA (FGFRI). Data are expressed as
luciferase dependent light units normalized to renilla luci-
ferase dependent light units (mOG2/Fl). Means (+SEM) bear-
ing different letters differ significantly (P < 0.01).
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during adult muscle maintenance in vivo has not been
examined. In this manuscript, we found FGFR1 to be syn-
thesized in a population of muscle fibers within atrophy-
ing muscle which appeared to be resistant to reduced
load. We also found that ectopic expression of FGFR1
within skeletal muscle fibers in vivo inhibited disuse
mediated muscle atrophy through a mechanism that
included stimulation of protein synthesis. In muscle fibers
bearing a load, we found ectopic FGFR1 stimulates pro-
tein synthesis and degradation.

FGFRs have been implicated in regulation of myoblast
proliferation and differentiation [48], but an FGFR role in
fiber maintenance post-differentiation has not been
widely reported. The position of FGFR1 as a cell surface
receptor places it in a position where it may affect many
cellular processes, as well as the response of an individual
fiber to the surrounding micro-environment. The elevated
expression noted in individual myofibers could indicate
that increased FGFR1 confers some form of protection
from atrophy by increasing the sensitivity of the myofiber
to whatever soluble growth factors are present. Our work
demonstrated that there was a concurrent increase in
expression of at least one ligand in atrophying muscle,
FGF4. Significant increases in FGF4 expression have been
previously noted in a model of skeletal muscle hypertro-
phy [49], but have not been previously reported in any
models of disuse or atrophy.

Our results would indicate FGFR1 has a role in maintain-
ing postnatal muscle fiber size and strength in a specific
population of myofibers during periods of disuse. When
a muscle undergoes atrophy during reduced load such as
the hind limb suspension model, proteins are degraded
into amino acids via the ATP-dependent proteosome [7].
These amino acids can then converted into glucose by the
liver and then utilized by the brain. It would be by this
mechanism that a body keeps the brain functioning at a
time of stress at the expense of other immediately "less
important" organs such as the skeletal muscle. However,
for optimal survival at some point post-stress it would still
be important to have some ability to move, and not have
all muscle fibers significantly depleted. Our work suggests
a model where FGFR1 would conserve a population of
muscle fibers during an atrophic phase for an unknown
period of time in order to allow some ability of post-stress
escape or movement. This sparing effect seemed to be spe-
cific for FGFR1, as RT-PCR analysis demonstrated no
change in FGFR4 expression in response to hind limb sus-
pension and FGFR2 and 3 are not expressed in adult skel-
etal muscle (data not shown). In cultured muscle, FGFR1
expression is typically associated with the proliferative
state of muscle, while FGFR4 expression is correlated with
the differentiated myofiber [50]. However, in muscle in
vivo the expression patterns of FGFR1 and FGFR4 are not
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as clear cut. Satellite cells isolated from the Extensor digi-
torum longus and Soleus muscles differ in the expression
of FGF receptors. FGFR1 and R4 mRNA were strongly
expressed in proliferating cultures whereas in differentiat-
ing cultures, only FGFR1 was present in EDL satellite cells
while FGFR4 was also still expressed in Soleus cells. In
human muscle FGFR1 immunoreactivity has been dem-
onstrated in localized areas of myofibers [51]. These
observations, in addition to our work, add support to the
theory that FGFR1 regulation of a muscle fiber is much
more complex than simply regulating embryonic myob-
last differentiation.

We did not observe a localized accumulation of FGFR1 in
weight-bearing muscle as found in atrophying muscle.
However, we still found detectable mRNA for FGFR1. This
would suggest that FGFR1 can be expressed in and exert a
biological effect weight-bearing differentiated myofibers,
as it does in unloaded muscle fibers. The actual biological
effect of FGFR1 in weight bearing muscle would be less
clear. In our studies the ability of FGFR1 to regulate fiber
size only occurred during disuse atrophy, as ectopic
expression of FGFR1 in weighted muscle fibers stimulated
protein synthesis and degradation, but had no significant
phenotypic effect (See Figure 8). Even though there is no
direct effect on fiber size, it is possible that FGFR1 is stim-
ulating or involved in a fiber type conversion or recon-
struction. As mentioned above, FGFR1 expression is more
prevalent in fast muscles such as the EDL. This could
account for the increased degradation as the "old type"
proteins were being degraded in preparation for the
increased synthesis of the "new type" proteins/enzymes.
The effects of FGF signaling on fiber type conversion are
currently being examined.

Protein Muscle Fiber Size

Degradation

Weight Bearing t t

Reduced Load

Protein Synthesis

No Change

Larger diameter
t (compared to
” atrophying non-
FGFR1
synthesizing fibers)

Figure 8

Proposed role of FGFRI in adult skeletal muscle.
Increased production of FGFRI in a weight bearing muscle
fiber would result in an increase in protein synthesis and deg-
radation, which would counteract each other and result in no
observable increase in muscle fiber size. However, in a fiber
undergoing atrophy, increased FGFRI| would not elevate the
significant amount of proteolysis that would already be
occurring in an atrophying fiber. However, FGFR| would still
elevate protein synthesis in the atrophic fiber, thereby main-
taining fiber size and strength.
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It is known that FGFR signals via the Ras-Raf-MEK-MAPK
pathways. Activation of this pathway via acute up-regula-
tion of FGF-signaling promoted protein degradation in
differentiated muscle fibers from Caenorhabditis elegans
[52]. Our results confirm that this protein turnover regu-
lating property of FGFR is conserved in mammalian mus-
cle fibers and demonstrates a link between FGF signaling
and the ATP-dependent proteasome pathway. The fact
that FGFR1 activation of proteolyses in weight-bearing
muscle contrasts from its function in unloaded muscle
might simply be due to the fact that proteolysis is already
activated in unloaded muscle and overexpression of
FGFR1 can not exert any more of an effect on that process.

In summary, our results support a theory that FGFs play
crucial roles in regulation of postnatal skeletal muscle
maintenance. As the mechanisms regulating skeletal mus-
cle growth, atrophy, and hypertrophy are more clearly elu-
cidated, effective treatments for conditions resulting in a
loss of skeletal muscle function will be further developed.
The effects of FGFR1 noted in this study make this growth
factor receptor a strong candidate for future study of its
therapeutic or preventative potential.

Competing interests
The author(s) declare that they have no competing inter-
ests.

Authors' contributions

JE and AO carried out the animal and molecular studies.
JE carried out the protein synthesis and degradation
assays. JE, AO, GB, DG and KH participated in the design
of the study and performed the statistical analysis. JE, AO,
GB, DG and KH all conceived the aspects of this study,
and participated in its design and coordination. All
authors read and approved the final manuscript.

References

. Riley DA, Slocum GR, Bain JL, Sedlak FR, Sowa TE, Mellender JWV: Rat
hindlimb unloading: soleus histochemistry, ultrastructure,
and electromyography. | Appl Physiol 1990, 69:58-66.

2. Haida N, Fowler WM |r., Abresch RT, Larson DB, Sharman RB, Tay-
lor RG, Entrikin RK: Effect of hind-limb suspension on young
and adult skeletal muscle. I. Normal mice. Exp Neurol 1989,
103:68-76.

3. Roy RR, Bello MA, Bouissou P, Edgerton VR: Size and metabolic
properties of fibers in rat fast-twitch muscles after hindlimb
suspension. | Appl Physiol 1987, 62:2348-2357.

4.  Hikida RS, Van Nostran S, Murray |D, Staron RS, Gordon SE, Kraemer
WJ: Myonuclear loss in atrophied soleus muscle fibers. Anat
Rec 1997, 247:350-354.

5. McDonald KS, Blaser CA, Fitts RH: Force-velocity and power
characteristics of rat soleus muscle fibers after hindlimb sus-
pension. | Appl Physiol 1994, 77:1609-1616.

6. McDonald KS, Delp MD, Fitts RH: Fatigability and blood flow in
the rat gastrocnemius-plantaris-soleus after hindlimb sus-
pension. | Appl Physiol 1992, 73:1135-1140.

7. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA,
Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valen-
zuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ: Iden-
tification of ubiquitin ligases required for skeletal muscle
atrophy. Science 2001, 294:1704-1708.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

http://www.biomedcentral.com/1471-2474/8/32

Day CS, Riano F, Tomaino MM, Buranatanitkit B, Somogyi G, Sotere-
anos D, Huard J: Growth factor may decrease muscle atrophy
secondary to denervation. | Reconstr Microsurg 2001 Jan;17(1):51-
72001.

Alzghoul MB, Gerrard D, Watkins BA, Hannon K: Ectopic expres-
sion of IGF-I and Shh by skeletal muscle inhibits disuse-medi-
ated skeletal muscle atrophy and bone osteopenia in vivo.
Faseb | 2004, 18:221-223.

Allen DL, Linderman JK, Roy RR, Grindeland RE, Mukku V, Edgerton
VR: Growth hormone/IGF-I and/or resistive exercise main-
tains myonuclear number in hindlimb unweighted muscles.
J Appl Physiol 1997 Dec;83(6):1857-61 1997.

Linkhart TA, Clegg CH, Hauschika SD: Myogenic differentiation
in permanent clonal mouse myoblast cell lines: regulation by
macromolecular growth factors in the culture medium.
Developmental Biology 1981, 86:19-30.

Linkhart TA, Clegg CH, Hauschka SD: Control of mouse myob-
last commitment to terminal differentiation by mitogens.
Journal of Supramolecular Structure 1980, 14:483-498.

Olwin BB, Rapraeger A: Repression of myogenic differentiation
by aFGF, bFGF, and K-FGF is dependent on cellular heparan
sulfate. | Cell Biol 1992, 118:631-639.

Rando TA, Blau HM: Primary mouse myoblast purification,
characterization, and transplantation for cell-mediated gene
therapy. Journal of Cell Biology 1994, 125:1275-1287.
Gospodarowicz D, Weseman |, Moran |: Presence in brain of a
mitogenic agent promoting proliferation of myoblasts in low
density culture. Nature 1975, 256:216-219.

Allen RE, Rankin L: Regulation of satellite cells during skeletal
muscle growth and development. [Review] [55 refs]. Proceed-
ings of the Society for Experimental Biology & Medicine 1990, 194:81-86.
Sheehan SM, Allen RE: Skeletal muscle satellite cell prolifera-
tion in response to members of the fibroblast growth factor
family and hepatocyte growth factor. | Cell Physiol 1999,
181:499-506.

Savage M, Hart C, Riley B, Sasse ], Olwin B, Fallon J: Distribution of
FGF-2 suggests it has a role in chick limb bud growth. Devel-
opmental Dynamics 1993, 198:159-170.

Savage M, Fallon J: FGF-2 mRNA and its antisense message are
expressed in a developmentally specific manner in the chick
limb bud and mesonephros. Developmental Dynamics 1995,
202:343-353.

Orr-Urtreger A, Givol D, Yayon A, Yarden Y, Lonai P.: Develop-
mental expression of two murine fibroblast growth factor
receptors, flg and bek. Development 1991, 113:1419-1434.
delapeyriere O, Ollendorff V, Planche J, Ott MO, Pizette S, Coulier
F, Birnbaum D: Expression of the Fgfé gene is restricted to
developing skeletal muscle in the mouse embryo. Develop-
ment 1993, 118:601-61 1.

Fu YM, Spirito P, Yu ZX, Biro S, Sasse }, Lei ], Ferrans V), Epstein SE,
Casscells W: Acidic fibroblast growth factor in the developing
rat embryo. | Cell Biol 1991, 114:1261-1273.

Haub O, Goldfarb M: Expression of the fibroblast growth fac-
tor-5 gene in the mouse embryo. Development 1991,
112:397-406.

Niswander L, Martin GR: Fgf-4 expression during gastrulation,
myogenesis, limb and tooth development in the mouse.
Development 1992, 114:755-768.

Joseph-Silverstein ], Consigli SA, Lyser KM, Ver Pault C: Basic fibro-
blast growth factor in the chick embryo: immunolocalization
to striated muscle cells and their precursors. | Cell Biol 1989,
108:2459-2466.

Marcelle C, Eichmann A, Halevy O, Breant C, Le Douarin NM: Dis-
tinct developmental expression of a new avian fibroblast
growth factor receptor. Development 1994, 120:683-694.
Marcelle C, Wolf |, Bronner-Fraser M: The in vivo expression of
the FGF receptor FREK mRNA in avian myoblasts suggests
a role in muscle growth and differentiation. Developmental Biol-
ogy 1995, 172:100-114.

Edom-Vovard F, Bonnin MA, Duprez D: Misexpression of Fgf-4 in
the chick limb inhibits myogenesis by down-regulating Frek
expression. Dev Biol 2001, 233:56-71.

Hannon K, Kudla AJ, McAvoy M], Clase KL, Olwin BB: Differentially
expressed fibroblast growth factors regulate skeletal muscle
development through autocrine and paracrine mechanisms.
Journal of Cell Biology 1996, 132:1151-1159.

Page 11 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2144272
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2144272
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2144272
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2912752
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2912752
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2956235
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2956235
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2956235
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9066912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7836176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7836176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7836176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1400027
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1400027
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1400027
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11679633
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11679633
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11679633
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14597562
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14597562
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7286393
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7286393
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6454029
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6454029
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1379245
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1379245
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1379245
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8207057
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8207057
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8207057
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=239350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=239350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=239350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10528236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10528236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10528236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8136521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8136521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7626791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7626791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7626791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1667382
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1667382
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1667382
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8223280
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8223280
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1716635
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1716635
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1794310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1794310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1618140
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1618140
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2738095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2738095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2738095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8162862
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8162862
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8162862
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7589791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7589791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7589791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11319857
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11319857
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11319857
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8601591
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8601591

BMC Musculoskeletal Disorders 2007, 8:32

30.

31

32.

33.

34.

35.
36.

37.

38.
39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51

Clase KL, Mitchell P}, Ward P, Dorman CM, Johnson SE, Hannon K:
FGF5 stimulates expansion of connective tissue fibroblasts
and inhibits skeletal muscle development in the limb [In
Process Citation]. Dev Dyn 2000, 219:368-380.

Saito A, Higuchi |, Nakagawa M, Saito M, Uchida Y, Inose M, Kasai T,
Niiyama T, Fukunaga H, Arimura K, Osame M: An overexpression
of fibroblast growth factor (FGF) and FGF receptor 4 in a
severe clinical phenotype of facioscapulohumeral muscular
dystrophy. Muscle Nerve 2000, 23:490-497.

Dusterhoft S, Putman CT, Pette D: Changes in FGF and FGF
receptor expression in low-frequency-stimulated rat mus-
cles and rat satellite cell cultures. Differentiation 1999,
65:203-208.

Menetrey ), Kasemkijwattana C, Day CS, Bosch P, Vogt M, Fu FH,
Moreland MS, Huard J: Growth factors improve muscle healing
in vivo. | Bone Joint Surg Br 2000, 82:131-137.

Lefaucheur JP, Sebille A: Basic fibroblast growth factor pro-
motes in vivo muscle regeneration in murine muscular dys-
trophy. Neurosci Lett 1995, 202:121-124.

Floss T, Arnold HH, Braun T: A role for FGF-6 in skeletal muscle
regeneration. Genes Dev 1997, 11:2040-2051.

Olwin B, Hannon K, Kudla A: Are fibroblast growth factors reg-
ulators of myogenesis in vivo?. [Review] [108 refs]. Progress in
Growth Factor Research 1994, 5:145-158.

Morey ER, Sabelman EE, Turner RT, Baylink DJ: A new rat model
simulating some aspects of space flight. Physiologist 1979
Dec;22(6):523-4 1979.

Park E, Schultz E: A simple hindlimb suspension apparatus.
Aviat Space Environ Med 1993, 64:401-404.

Bales KR, Hannon K, Smith CK 2nd, Santerre RF: Single-stranded
RNA probes generated from PCR-derived DNA templates.
Mol Cell Probes 1993, 7:269-275.

Hannon K, Johnstone E, Craft LS, Little SP, Smith CK 2nd, Heiman
ML, Santerre RF: Synthesis of PCR-derived, single-stranded
DNA probes suitable for in situ hybridization. Anal Biochem
1993, 212:421-427.

Nieto MA, Patel K, Wilkinson DG: In situ hybridization analysis
of chick embryos in whole mount and tissue sections. Meth-
ods Cell Biol 1996, 51:219-235.

Taylor |, Babbs CF, Alzghoul MB, Olsen A, Latour M, Pond AL, Han-
non K: Optimization of ectopic gene expression in skeletal
muscle through DNA transfer by electroporation. BMC Bio-
technol 2004, 4:11.

Goring DR, Rossant |, Clapoff S, Breitman ML, Tsui LC: In situ
detection of beta-galactosidase in lenses of transgenic mice
with a gamma-crystallin/lacZ gene. Science 1987, 235:456-458.
Garlick PJ, McNurlan MA, Preedy VR: A rapid and convenient
technique for measuring the rate of protein synthesis in tis-
sues by injection of [3H]phenylalanine. Biochem | 1980,
192:719-723.

Luker GD, Pica CM, Song J, Luker KE, Piwnica-Worms D: Imaging
26S proteasome activity and inhibition in living mice. Nat
Med 2003, 9:969-973.

Goldspink DF, Morton AJ, Loughna P, Goldspink G: The effect of
hypokinesia and hypodynamia on protein turnover and the
growth of four skeletal muscles of the rat. Pflugers Arch 1986,
407:333-340.

Xiao G, Jiang D, Gopalakrishnan R, Franceschi RT: Fibroblast
growth factor 2 induction of the osteocalcin gene requires
MAPK activity and phosphorylation of the osteoblast tran-
scription factor, Cbfal/Runx2. J Biol Chem 2002,
277:36181-36187.

Marics |, Padilla F, Guillemot JF, Scaal M, Marcelle C: FGFR4 signal-
ing is a necessary step in limb muscle differentiation. Develop-
ment 2002 Oct;129(19):4559-69 .

Mitchell P, Steenstrup T, Hannon K: Expression of fibroblast
growth factor family during postnatal skeletal muscle hyper-
trophy. | Appl Physiol 1999, 86:313-319.

Kastner S, Elias MC, Rivera A, Yablonka-Reuveni Z: Gene expres-
sion patterns of the fibroblast growth factors and their
receptors during myogenesis of rat satellite cells. | Histochem
Cytochem 2000, 48:1079-1096.

Sogos V, Balaci L, Ennas MG, Dell'era P, Presta M, Gremo F: Devel-
opmentally regulated expression and localization of fibro-
blast growth factor receptors in the human muscle. Dev Dyn
1998, 211:362-373.

http://www.biomedcentral.com/1471-2474/8/32

52. Szewczyk NJ, Jacobson LA: Signal-transduction networks and
the regulation of muscle protein degradation. Int | Biochem Cell
Biol 2005, 37:1997-201 I.

Pre-publication history
The pre-publication history for this paper can be accessed

here:

http://www.biomedcentral.com/1471-2474/8/32/prepub

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central

O BioMedcentral

Page 12 of 12

(page number not for citation purposes)

« yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp



http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11066093
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11066093
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11066093
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10716758
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10716758
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10716758
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10653356
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10653356
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10653356
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10697329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10697329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8787846
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8787846
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8787846
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9284044
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9284044
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7919221
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7919221
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8503815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8232343
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8232343
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8214583
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8214583
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8722478
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8722478
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15149549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15149549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3099390
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3099390
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3099390
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6786283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6786283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6786283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12819780
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12819780
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3763379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3763379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3763379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12110689
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12110689
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12110689
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9887145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9887145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9887145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10898801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10898801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10898801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9566955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9566955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9566955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16125109
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16125109
http://www.biomedcentral.com/1471-2474/8/32/prepub
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Hindlimb suspension
	In situ hybridization
	Immunohistochemistry
	DNA constructs
	In-Vivo plasmid DNA transfection
	Downstream detection of FGF signaling
	Protein synthesis
	Proteasome activity
	Statistical analysis

	Results
	Muscle morphology
	In-situ hybridization
	FGFR1 immunohistochemistry
	Overexpression of FGFR1 in muscle blunts muscle atrophy
	FGFR1 in muscle regulates protein synthesis and degradation
	Downstream detection of FGF signaling in muscle

	Discussion
	Competing interests
	Authors' contributions
	References
	Pre-publication history

