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Abstract

Background: Growth of endochondral bones is regulated through the activity of cartilaginous growth
plates. Disruption of the physiological patterns of chondrocyte proliferation and differentiation — such as in
endocrine disorders or in many different genetic diseases (e.g. chondrodysplasias) — generally results in
dwarfism and skeletal defects. For example, glucocorticoid administration in children inhibits endochondral
bone growth, but the molecular targets of these hormones in chondrocytes remain largely unknown. In
contrast, recent studies have shown that C-type Natriuretic Peptide (CNP) is an important anabolic
regulator of cartilage growth, and loss-of-function mutations in the human CNP receptor gene cause
dwarfism. We asked whether glucocorticoids could exert their activities by interfering with the expression
of CNP or its downstream signaling components.

Methods: Primary mouse chondrocytes in monolayer where incubated with the synthetic glucocorticoid
Dexamethasone (DEX) for 12 to 72 hours. Cell numbers were determined by counting, and real-time PCR
was performed to examine regulation of genes in the CNP signaling pathway by DEX.

Results: We show that DEX does influence expression of key genes in the CNP pathway. Most
importantly, DEX significantly increases RNA expression of the gene encoding CNP itself (Nppc). In
addition, DEX stimulates expression of Prkg2 (encoding cGMP-dependent protein kinase Il) and Npr3
(natriuretic peptide decoy receptor) genes. Conversely, DEX was found to down-regulate the expression
of the gene encoding its receptor, Nr3c/ (glucocorticoid receptor), as well as the Npr2 gene (encoding the
CNP receptor).

Conclusion: Our data suggest that the growth-suppressive activities of DEX are not due to blockade of
CNP signaling. This study reveals a novel, unanticipated relationship between glucocorticoid and CNP
signaling and provides the first evidence that CNP expression in chondrocytes is regulated by endocrine
factors.

Background limbs, the vertebrae and the ribs. Endochondral ossifica-
Bone formation involves the distinct, but related proc-  tion begins when mesenchymal cells condense, differenti-
esses of intramembranous ossification and endochondral ~ ate into chondroblasts and then proceed successively
ossification [1,2]. While the former forms flatter bones  through the resting, proliferating, and hypertrophic
like those of the skull, endochondral ossification is  chondrocyte stages in the cartilage growth plate [2,3]. The
responsible for development of the long bones of the  differentiation of mesenchymal cells into chondroblasts is
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regulated by the activity of the Sox9 transcription factor,
which controls the expression of principal genes encoding
the extracellular matrix proteins of cartilage, such as colla-
gen type Il and aggrecan [4]. Another transcription factor,
Runx2, promotes hypertrophic differentiation and stimu-
lates expression of type X collagen, a marker of hyper-
trophic chondrocytes [5]. The cartilage anlagen serve as
the models of future bones, and the rate of proliferation
and in particular the volume increase during chondrocyte
hypertrophy are the driving forces for bone elongation
that determine our final height. Due to the complex
nature of cartilage development, it is critical to understand
each step involved in regulation of this process, as there
are many acquired and inherited cartilage diseases result-
ing from disturbances in this pathway, including gluco-
corticoid-induced growth retardation and human
chondrodysplasias [6-8]. Recent studies have demon-
strated an intricate weave of signaling pathways regulating
endochondral ossification, including many hormones
and growth factors, such as glucocorticoids and C-type
natriuretic peptide (CNP) [6-9].

Long-term administration of anti-inflammatory glucocor-
ticoids (for example in the treatment of childhood
asthma, autoimmune diseases or pediatric cancers) results
in growth retardation, bone loss, and possible premature
or exaggerated osteoporosis [10]. Most glucocorticoid
effects on endochondral bone growth appear to be due to
direct regulation of chondrocytes, as opposed to general-
ized endocrine effects [11,12]. While effects of glucocorti-
coids on chondrocyte proliferation, differentiation and
apoptosis as well as on vascular invasion of hypertrophic
cartilage have been reported, the contributions of these
effects to growth retardation and the molecular mecha-
nisms involved are not completely understood [7,8,13].
Glucocorticoids signal largely through the glucocorticoid
receptor (encoded by the Nr3cI gene), a member of the
nuclear receptor family that translocates into the nucleus
upon ligand binding and acts as transcription factor [14],
but the molecular targets of glucocorticoids in chondro-
cytes are largely unknown. Here, we investigated whether
expression of genes involved in the CNP signaling path-
way is impacted by the administration of a synthetic glu-
cocorticoid, dexamethasone (DEX).

CNP is a member of the natriuretic peptide family consist-
ing of atrial natriuretic peptide (ANP), brain/B-type natri-
uretic peptide (BNP) and CNP [15]. ANP and BNP act
through the same membrane-bound guanylyl cyclase
receptor GC-A or NPR1 (gene name in mouse: Nprl),
while CNP acts through GC-B/NPR2 (Npr2) to initiate the
cGMP-signaling cascade [9]. Elevation in intracellular
cGMP levels in response to receptor-ligand interactions
results in the activation of downstream mediators such as
cyclic nucleotide phosphodiesterases (PDEs), cGMP-regu-
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lated ion channels, and cGMP-dependent protein kinases
cGKI and cGKII (Prkg1, Prkg2, respectively) [9,16]. A third
type of natriuretic peptide receptor (Npr3) does not posses
guanylyl cyclase activity and is thought to act as a decoy/
clearance receptor that regulates the levels of natriuretic
peptides available for interaction with NPR1 and NPR2

[9].

Both ANP and BNP are primarily involved in body fluid
regulation and cardiovascular function, while a range of
functions have been described for CNP, including dilation
of smooth muscle cells and regulation of endochondral
bone growth [17,18]. CNP-deficient mice display dwarf-
ism, with significantly reduced lengths of endochondral
bones such as femur, tibia, and vertebrae [19]. Histologi-
cal studies in these mice show decreased growth plate
width, resulting from reduced proliferative and hyper-
trophic zones [19]. A similar phenotype was observed in
mice deficient for the CNP receptor Npr2 [20,21]. Most
notably, loss-of-function mutations in the human NPR2
gene cause reduced height and skeletal effects in acromes-
omelic dysplasia, type Maroteaux [22,23]. Conversely,
CNP treatment results in enhanced endochondral bone
growth in organ culture [24,25]. Moreover, ectopic CNP
can rescue the effects of activating mutations in the gene
encoding fibroblast growth factor receptor 3 in rodent
models of achondroplasia, the most common form of
human dwarfism [26,27]. In summary, there is strong evi-
dence for both an obligatory role of endogenous CNP sig-
naling in normal cartilage development and a potential
therapeutic role for exogenous CNP in the treatment of
skeletal growth disorders.

CNP is expressed by chondrocytes and appears to control
endochondral ossification in an autocrine/paracrine man-
ner [19], but the mechanisms regulating CNP expression
in cartilage are unknown. In this study we asked whether
glucocorticoids exert their growth-suppressing effects on
bone growth by down-regulation of CNP signaling com-
ponents.

Methods

Cell Culture and Cell Counts

All media components were purchased from Invitrogen,
unless stated otherwise. Tibias from CD1 timed-pregnant
mice (Charles River Canada) were isolated from 15.5 day
embryos under a Stemi DV4 Stereomicroscope (Zeiss).
Limb bones were allowed to recover from dissection over-
night in serum-free organ culture media containing 0.2%
Bovine Serum Albumin (BSA) (Fisher Scientific), 0.5 mM
L-glutamine, 40 units penicillin/ml and 40 ug streptomy-
cin/ml. The following day bones were digested with
0.25% trypsin/EDTA for 15 minutes, followed by diges-
tion with 3 mg/mL of Collagenase-P (Roche) in DMEM
and 10% FBS for 2 hours at 37°C with constant rotary
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motion. Cells were plated at a density of 500,000 cells/
well in NUNC 6-well plates to adhere overnight in pri-
mary cell culture media, consisting of 60% F-12,
40%DMEM, 10% Fetal Bovine Serum (FBS), 0.5 mM L-
glutamine, 40 units penicillin/ml and 40 pg streptomy-
cin/ml. Monolayer cultures were treated with DMSO or
DEX (10-7M) in DMSO vehicle the following morning.
Cells were harvested before treatment and at 12, 24, 48,
and 72 hr time points. RNA from primary cells was iso-
lated using QIAGEN (Mississauga) RNeasy® Mini kit and
protocol for animal cells.

For cell counts, 100,000 chondrocytes per well were
plated into 24-well plates in primary cell culture medium
supplemented with DMSO, 10-¢ or 10-7 M DEX. After 72
hours, cells were counted using a hematocytometer. Cell
counts present average and standard deviation from three
independent experiments, performed in triplicate each.

Real-Time PCR

Real-Time PCR analysis for Col2a1 and Col10al were per-
formed as described [28-30] using the Applied Biosystems
7900HT Real-Time PCR System and TagMan® Gene
Expression Assays. Nppc, Npr2, Npr3, Nr3c1, Prkgl, Prkg2
and Gapdh probes were purchased as Assays-on-demand
(Applied Biosystems) and used the same ways as the
Col2al and Col10al probes. Gene expression levels were
determined using the Standard Curve quantitative
method with Gapdh levels as the basis of comparison. All
data represent averages and SEM from three to four inde-
pendent cell isolations.

Statistical Analyses
Two-Way ANOVA (parametric) test with Bonferroni post-
test was performed using the Graph Pad/Prism software.

Results

We first examined whether DEX would affect the cell
number of primary mouse chondrocytes in monolayer
culture. In control cultures, cell numbers increased 3.6-
fold over a 72 hour time course (Fig. 1A). In contrast,
treatment with 10-° M DEX reduced this increase to 2.4-
fold, in agreement with earlier studies [31-33]. 107 M
DEX caused an even larger reduction, allowing only a dou-
bling of cell numbers. However, the differences between
the two DEX concentrations were not statistically signifi-
cant. Real-time PCR analyses at the same time point dem-
onstrated that 107 M DEX does not change the mRNA
levels for collagen Il significantly (Fig. 1B). DEX treatment
appears to increase collagen X mRNA levels slightly, but
this increase is not statistically significant (Fig. 1B). These
data suggest that DEX treatment did not alter the differen-
tiation status of chondrocytes in these experiments.
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We next asked whether DEX would regulate the expres-
sion of its own receptor. The expression of the glucocorti-
coid receptor gene (Nr3c1) was slightly upregulated after
48 and 72 hours in control cultures (Fig 2). However,
beginning at the 24 hour time point, DEX significantly
down-regulated glucocorticoid receptor mRNA expres-
sion. This effect was maintained throughout the time
course, reaching maximal inhibition of 38% at 48 hours

of DEX treatment.
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DEX treatment reduces chondrocyte cell numbers.
A) Primary mouse chondrocytes were plated at a density of
100,000 cells/well, incubated with DMSO or 10-¢ or 107 M
DEX for 72 hours and counted. While cell numbers in con-
trol conditions (DMSO) increased 3.5-fold over the culture
period, DEX treatment at both concentrations significantly
reduced this increase. Data present averages and standard
deviations from three independent experiments, performed
in triplicate each (*P < 0.05). B) Primary chondrocytes were
incubated with DMSO or 107 M DEX for 72 hours, and
mRNA levels for collagen Il and collagen X genes were ana-
lyzed by real-time PCR. Neither gene was affected signifi-
cantly by DEX. Data represent mean £ SEM from three
independent trials.
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Figure 2

DEX treatments results in down-regulation of Nr3cl
expression. Primary chondrocytes were incubated with
DMSO or 107 M DEX for 12 to 72 hours, and Nr3c/ mRNA
levels were determined by real-time PCR relative to Gapdh.
Nr3cl expression increased under control conditions during
the time-course, but decreased upon DEX treatment. Data
represent mean £ SEM from three independent trials (*P <
0.05).

Since DEX reduces chondrocyte cell numbers and CNP
has shown to increase chondrocyte proliferation
[19,24,25], we asked whether DEX treatment alters the
expression of CNP or its receptors. In control conditions,
the CNP gene (Nppc) was expressed at constant levels
throughout the culture period (Fig. 3A). Surprisingly, DEX
caused a significant increase in Nppc mRNA levels, starting
at 12 hours and reaching 3.7-fold stimulation after 72
hours of treatment. Expression of the CNP receptor Npr2
increased almost three-fold over the time course under
control conditions (Fig. 3B). DEX caused a slight, but sig-
nificant reduction in Npr2 mRNA levels at 72 hours, with
no effects at earlier time points. In control cells, expres-
sion of the decoy receptor Npr3 increased more rapidly
that that of Npr2, reaching a three-fold increase after 24
hours and dropping slightly after that (Fig. 3C). DEX treat-
ment counteracted this down-regulation and caused
increased Npr3 mRNA levels at 48 and 72 hours.

Finally, we examined the effects of DEX treatment on the
expression of cGMP-dependent kinases I and II (Prgkl
and Prkg2), two of the main mediators of CNP signaling.
Prkgl gene expression increased slightly during the time
course and was not affected by DEX treatment (Fig. 4A).
Expression of Prkg2 remained relatively constant through-
out the incubation period and was increased slightly, but
significantly by DEX treatment (Fig. 4B). Similar to Nppc
(but in contrast to the other genes examined), Prkg2
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Figure 3

DEX regulates expression of CNP and CNP recep-
tors. Primary chondrocytes were incubated with DMSO or
10-7M DEX for 12 to 72 hours, and Nppc (encoding CNP, A),
Npr2 (encoding the CNP signaling receptor, B) and Npr3
(encoding the CNP decoy receptor, C) mRNA levels were
determined by real-time PCR relative to Gapdh. Nppc
expression is significantly increased upon DEX treatment,
while DEX down-regulated Npr2 slightly and up-regulated
Npr3 at the 48 and 72 hr time points. Data represent mean *
SEM from three or four independent trials (*P < 0.05).

expression responded to DEX at the earliest time point
investigated (12 hours).

Discussion

The process of endochondral ossification involves finely
controlled pathways that are not completely understood.
These signalling networks likely include crosstalk between
different pathways. Here, we have investigated how gluco-
corticoids impact the expression of various genes in the
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DEX increases Prkg2 expression in chondrocytes. Pri-
mary chondrocytes were incubated with DMSO or 107 M
DEX for 12 to 72 hours, and Prgk| (encoding cGMP-depend-
ent protein kinase |, A) and Prkg2 (encoding cGMP-depend-
ent protein kinase Il, B) mRNA levels were determined by
real-time PCR relative to Gapdh. While Prkg| expression
remained relatively unchanged over time and in response to
DEX treatment, Prkg2 levels were significantly increased dur-
ing the time course and in response to DEX. Data represent
mean + SEM from three or four independent trials (*P <
0.05).

CNP cascade. It is known that sustained glucocorticoid
treatment negatively impacts bone growth in humans,
while CNP is a positive regulator of endochondral bone
growth. Thus, we speculated that interaction of these two
pathways, in particular down-regulation of endogenous
CNP signaling by glucocorticoids, could account for some
of the effects of these mediators.

We investigated this possibility using primary chondro-
cytes isolated from 15.5d ay old mouse embryonic fore-
limbs. Isolated cells were cultured with and without
dexamethasone (DEX) for three days. DEX treatment par-
tially inhibited the increase in cell numbers over the incu-
bation period that was seen in control cultures [31-33].
Our data as well as previous studies suggest that this
decrease most likely arises from reduced rates of prolifer-
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ation, but a contribution from increased apoptosis cannot
be excluded [31-37]. However, DEX treatment did not
result in significant changes in either collagen II or colla-
gen X mRNA expression, indicating that the differentia-
tion status of chondrocytes is not markedly affected by
DEX, at least within culture conditions applied here.

Because of the opposing effects of DEX and CNP on
chondrocyte cell numbers, we asked whether DEX affects
the expression of components of the CNP signalling sys-
tem, using real-time PCR analyses. The most striking
result of our studies was the almost four-fold induction of
CNP mRNA expression by DEX. Since CNP and glucocor-
ticoids have opposing effects on endochondral bone
growth, these effects were unexpected. Down-regulation
of mRNA for the CNP signaling receptor Npr2 and up-reg-
ulation of transcript levels for the decoy receptor Npr3 by
DEX might counteract increased CNP levels to some
degree; however, changes in the mRNA levels for the
receptor genes are relatively minor compared to changes
in CNP mRNA expression. Furthermore, DEX also
increased expression of Prkg2 mRNA, an essential compo-
nent of CNP signalling in endochondral bone growth
[38]. Thus, it is unlikely that glucocorticoid-induced retar-
dation of endochondral bone growth occurs through the
blockade of the CNP cascade. Future studies will need to
address changes in the protein levels and activities in
response to glucocorticoids to assess whether the
observed changes in transcripts indeed result in increased
CNP signaling. However, recent studies using transgenic
mice show that increased CNP mRNA levels directly cause
increased CNP signalling [19,27], suggesting that induc-
tion of endogenous CNP mRNA (e.g. in response to DEX)
results in increased production of active CNP in a similar
manner.

Our data also show that DEX induces modest down-regu-
lation in the expression of its own receptor. These data
suggest the existence of a negative feedback response loop
limiting glucocorticoid effects, a scenario that is consistent
with earlier reports demonstrating that DEX down-regu-
lates expression of the glucocorticoid receptor in other cell
types [39]. Nevertheless, cells remained responsive to DEX
as demonstrated by our gene expression profiles. In this
context, it is of interest that among all examined genes,
only Nppc and Prkg2 responded to DEX at the earliest
tested time point (12 hours). These data suggest that Nppc
could be a direct target of transcriptional regulation by
glucocorticoids. However, sequence analyses of the
mouse Nppc gene did not identify any apparent glucocor-
ticoid response elements (data not shown). In contrast to
Nppc and Prkg2, all other examined genes displayed a
slower response to DEX treatment and are likely control-
led by glucocorticoids through indirect mechanisms. For
example, it has been shown earlier that CNP suppresses
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the expression of its own receptor, NPR2 [40]. The
observed decrease in Npr2 mRNA levels in response to
DEX might therefore be secondary to increased CNP lev-
els. Similarly, our recent studies show that increased CNP
levels promote the expression of the decoy receptor
encoded by Npr3, in another negative feedback loop (Ago-
ston et al., submitted). However, an alternative explana-
tion is that other target genes of glucocorticoids (outside
of the CNP signalling system) are responsible for the
changes in Npr2 and Npr3 expression.

These studies with primary cells provide the impetus for
future exploration into the interactive roles of the gluco-
corticoid and natriuretic peptide pathways. Despite the
opposing roles of the glucocorticoid and CNP signaling
pathways in endochondral bone growth, the strong upreg-
ulation of CNP mRNA expression by DEX is intriguing,
and the elucidation of its role in the cartilage response to
glucocorticoids will be of great interest. Furthermore,
these studies also demonstrate that the endogenous
expression of CNP (and some of the genes mediating CNP
signaling) during skeletal development is controlled by
endocrine factors.

Conclusion

Our data show that DEX regulates the expression of sev-
eral components of the CNP signaling pathway. There-
fore, our study identifies a novel and potentially
important interaction between two pathways that both
control endochondral ossification and that both have
been implicated in pathologies of endochondral bone
growth. Further studies into these pathways and their
interactions will contribute to a deeper understanding of
endochondral ossification and associated pathologies.

Abbreviations

cGK, cyclic GMP-dependent kinase; CNP, C-type natriu-
retic peptide; DEX, dexamethasone; NPR, natriuretic pep-
tide receptor; PCR, polymerase chain reaction
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