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1,25-Dihydroxyvitamin D3 prevents bone loss of
the secondary spongiosa in arthritic rats by an
increase of bone formation and mineralization
and inhibition of bone resorption
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Abstract

Background: Active vitamin D metabolites have been shown to have protective effects in experimental arthritis
especially when used as preventive treatment. However, because the direct effects of 1,25-dihydroxyvitamin

D3 (1,25(0H) ,Ds3) on bone formation and resorption are very complex, the net effect of 1,25(0OH),D5 on
histomorphometric parameters of bone turnover and mineralisation should be investigated. Therefore, we
examined the influence of 1,25(0H),Ds therapy on arthritis-induced alterations of periarticular and axial bone as
well as disease activity, inflammation and joint destruction in antigen-induced arthritis (AIA) of the rat.

Methods: AIA was induced in 20 eight-week-old female Wistar rats. 10 rats without arthritis were used as healthy
controls. AlA rats received 1,25(0H),D5 (0.2 pg/kg/day, i.p, n=10) or vehicle (n=10) at regular intervals for 28
consecutive days beginning 3 days before arthritis induction. Bone structure of the secondary spongiosa of the
periarticular and axial bone was analyzed using histomorphometry. Parameters of mineralization were investigated
using tetracycline labelling. Clinical disease activity, inflammation and joint destruction were measured by joint
swelling and histological investigation, respectively.

Results: AlIA led to significant periarticular bone loss. 1,25(0H),D5 treatment resulted in a highly significant increase
in trabecular bone volume and bone formation rate in comparison to both vehicle-treated AIA and healthy controls
at periarticular (p < 0.01 and p < 0.001, respectively) and axial bone (p < 0.001 and p < 0.001, respectively). In
addition, bone resorption was reduced by 1,25(0OH),D5 at the axial bone (p < 0.05 vs. vehicle-treated AlA). Joint
swelling as well as histological signs of inflammation and joint destruction were not influenced by 1,25(0OH),Ds.

Conclusions: The results of the study indicate a marked osteoanabolic effect of 1,25(0OH),D5 presumably due to a
substantial increase in mineralization. Thus, 1,25(0H),D5 may be an effective osteoanabolic treatment principle to
antagonize the inflammation-associated suppression of bone formation in rheumatoid arthritis.
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Background

Rheumatoid arthritis (RA) is characterized by early peri-
articular demineralization followed by periarticular bone
destruction and often complicated by systemic bone loss
resulting in fractures [1-3]. Both increased osteoclastic
bone resorption due to an imbalance between the pro-
duction of receptor activator of NFkB ligand (RANKL)
which stimulates bone resorption and its decoy receptor
osteoprotegerin (OPG) [4-8] and decreased bone forma-
tion and repair mediated by increased production of wnt
inhibitors [8-11] contribute to bone destruction and sys-
temic osteoporosis. Furthermore, the finding that the
knockout of nuclear factor erythroid 2-related factor 2
(Nrf2), a transcription factor that maintains the cellular
defence against oxidative stress, in mice with antibody-
induced arthritis was associated not only with an increase
in cartilage destruction but also with a high number of
spontaneous fractures underlines the importance of react-
ive oxygen species for bone damage in arthritis models
[12]. Based on these pathogenetic mechanisms, which are
often only incompletely suppressed by immunosuppres-
sive therapy, adjuvant treatment of RA with substances,
that are potentially able to prevent bone loss, is of
particular interest. The vitamin D hormone 1,25-dihy-
droxycholecalciferol (1,25(0OH),D3) has been shown to
induce osteoblast differentiation [13-15]. Furthermore,
1,25(0OH),D3 acts as an antiinflammatory substance by
marked influences on T cell differentiation with a
suppression of Th1l and Th17 cells and induction of dif-
ferentiation into Th2 und regulatory T cells as well as
by suppression of costimulation receptors on antigen-
presenting cells, inhibition of differentiation of dendritic
cells and inhibition of NFkB activation, p38 activation
and cytokine production in monocytes/macrophages
and suppression of angiogenesis [16-23]. RA is often as-
sociated with vitamin D deficiency and serum levels of
1,25(0OH),D3 have been shown to decrease in patients
with high disease activity [24,25]. Therefore, 1,25(OH),D3
may have a beneficial effect on both bone metabolism and
inflammation in RA and animal models of this disease.
A very detailed and comprehensive analysis regarding
immunological processes, cytokines involved in bone
resorption and bone turnover was performed in vitamin
D receptor (VDR) knockout mice with spontaneously
developing arthritis [20]. Furthermore, a preventive or
protective effect of the treatment with 1,25(OH),D3; or
with other active vitamin D metabolites in experimental
arthritis (animal models of RA) has been shown [26-34].
However, most of the cited studies focused on incidence,
severity and duration of arthritis [29-33] including
detailed investigation of immunological mechanisms
of arthritis [34] and an analysis of bone was not
performed or bone turnover was not measured using
histomorphometry. A detailed investigation of the
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effect of 1,25(OH),D3 on bone turnover is necessary
because the direct effects of 1,25(OH),D3; on bone
include the expression of RANKL which may result
in increased bone resorption [35], whereas bone re-
sorption could be suppressed indirectly by inhibition
of inflammation [20]. To determine the net effect of
1,25(0OH),D3 on bone and inflammation, we investigated
the influence of 1,25(0OH),D3 on histomorphometric
parameters of bone turnover and mineralisation at
periarticular and axial bone as well as on inflammatory
disease activity in antigen-induced arthritis (AIA) of the
rat, a T cell-dependent model of RA [36,37].

Methods

Arthritis induction

Eight-week-old female Wistar rats (Central Animal
Research Facility, University Hospital, Jena, Germany)
maintained under standardized conditions were sub-
jected to a 12 h/12 h light/darkness cycle and fed with
pellet food (Altromin, No 1326, Lage, Germany) and
water ad libitum.

Because of the complex regulation of vitamin D me-
tabolism including both a strongly regulated renal syn-
thesis of 1,25(0OH),D3 and a substrate dependent 1,25
(OH),D3 synthesis in osteoblasts and immune cells
[13-15,19], 1,25(0OH),D; effects could also be influ-
enced by vitamin D intake. To keep the influence of
vitamin D intake on the results of our experiment
constant, a diet containing a physiological and stan-
dardized concentration of vitamin D was started in
arthritic animals before arthritis induction and also in
healthy animals.

The diet contained 0.9% calcium (0.9 g calcium/100 g),
0.7% phosphorus (0.7 g phosphorus/100 g) and 600 IU
vitamin D3 per kg. With respect to vitamin D3 and cal-
cium content this is a conventional diet comparable to
those used by Vieth et al. [38].

The animals were subcutaneously immunized with
0.5 mg of methylated bovine serum albumin (mBSA,
Sigma, Deisenhofen, Germany) in 0.5 ml of saline and
emulsified in 0.5 ml of complete Freunds adjuvant
(Sigma), containing 2 mg/ml of heat-killed Mycobacter-
ium tuberculosis strain H37RA (Difco, Detroit, MI,
USA) 21 and 14 days before AIA induction.

Arthritis was elicited by injecting 0.5 mg mBSA in
50 ul sterile phosphate-buffered saline (PBS) into the
right knee joint cavity. The same volume of PBS was
injected into the left knee as an intra-individual control.
Ethical guidelines for experimental investigations in ani-
mals were used [39]. All procedures complied with the
regulations of the Thuringian Commission for Animal
Protection. The approval of our local ethics committee
was obtained for our study.
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Drug administration

Rats with AIA were divided into 2 groups to receive in-
traperitoneal injections before and after AIA induction
according to the following regimens:

Group 1: 1,25(0OH),Dj3 (Calcijex, Abbott, Chicago
USA), 0.2 pg/kg beginning three days before arthritis
induction up to day 15 after arthritis induction every
day and after day 15 every other day. The cumulative
dose of 1,25(0OH),Dj5 in this group was 6.5 pg/kg.

Group 2: 50 pl of solvent for 1,25(0OH),D3 (vehicle)
beginning three days before arthritis induction up to
day 15 after arthritis induction every day and after day
15 every other day (untreated AIA; n = 10). The solvent
contains 20.4 mg/ml polysorbate and 2.5 mg/ml
sodium ascorbate.

The time point to start 1,25(OH),D; application in
our experiment three days before AIA induction was
determined by both using more a therapeutic than a
prophylactic regimen of 1,25(OH),D3; administration and
to achieve a complete treatment effect in the early acute
phase of AIA. At this time point the immunologic changes
characteristic for AIA were established [36,37]. On the
other hand, regarding the time course of AIA with an early
acute phase with high disease activity and a longer chronic
phase with lower disease activity we targeted a complete
treatment effect in the early acute phase of the arthritis.

Additionally, ten healthy animals (without immunization
and AIA) were used as healthy controls.

The serum levels of vitamin D were not measured
throughout the experiment.

Assessment of arthritis

Arthritis was monitored by measuring the mediolateral
joint diameter using a vernier caliper [40]. Swelling was
expressed as the difference in mm between the right
arthritic and the left reference joint at the days 3, 7, 14,
22 and 28 after arthritis induction.
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Preparation of bones for histomorphometric and
histopathologic analysis

All 20 arthritic rats, as well as 10 healthy age-matched
controls, were sacrificed on day 28 after AIA induction.
Both the right tibia head of the arthritic knee joint and
the third lumbar vertebra were removed and used for
histomorphometric analysis. After preparation, the bones
were fixed in acetone for 24 hours and embedded using
the embedding system Technovit 9100 NEU (Heraeus-
Kulzer, Wehrheim, Germany) for mineralized tissue. In
principal, the system is based on chemical polymerization
employing a catalytic system consisting of peroxide and
amine without oxygen. A Polycut S-Special Microtome was
used to cut 5 um thick sections (Jung/Leica, Heidelberg,
Germany). Trichrome Masson/Goldner staining was per-
formed to differentiate mineralized bone and osteoid [41].
In addition, Giemsa staining was performed to allow dis-
tinction of the cellular components of bone tissue.

Histopathologic assessment of inflammation and joint
destruction

Cross sections from knee joints were stained with
hematoxylin and eosin (HE) and were evaluated using a
photomicroscope (Axioskop 2, Carl Zeiss, Jena, Germany).
To analyze the inflammatory and destructive activity of
arthritis, knee joint sections were examined in a blind
fashion using a semiquantitative score (0=no, 1=mild,
2 = moderate, 3 = severe alterations) for the extent of acute
(quantity of fibrin exudation and relative number and
density of granulocytes in the synovial membrane and in
joint space) and chronic inflammatory changes (relative
number and density of infiltrating mononuclear leukocytes
in the synovial membrane, degree of synovial hyperplasia,
and extent of fibrosis in the synovial tissues). To asses the
degree of cartilage destruction a score from 0 to 4 was
used (0 = no destruction, 1 =unequivocal erosions of less
than 10% of cartilage and bone cross sections, 2 = erosion
of 10-25%, 3 =erosion of 25-50%, 4 = erosion of more
than 50% of cartilage and bone cross sections) [40,42].
Additional histological sections were stained with safranin

——AlA + Vehicle
——AIA +1,25D3

0 T T
day0 day3 day7

day14 day17 day28

destruction were not influenced by 1,25(0H),Ds therapy.

Figure 1 Knee joint swelling (A) and histopathologic score (sum of the semiquantitative scores expressed as points for both,
inflammation and joint destruction, see Methods for details) of arthritis on day 28 after AIA induction (B). The knee joint swelling
measured as difference between right and left joint during the time course of AIA as well as the histopathologic signs of inflammation and joint

AIA + Vehicle (n=10)  AIA + 1,25D3 (n=10)
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Figure 2 Influence of 1,25(0H),Ds therapy on trabecular bone
volume, osteoid volume and cellular bone turnover parameters
(secondary spongiosa of the right tibia head - arthritic joint) in
AlIA of the rat. In comparison to healthy controls, vehicle-treated
AlA (AIA + vehicle) was associated with a highly significant decrease of
trabecular bone volume (A), a significant increase in osteoid-covered
surface (D) and a numerical increase in osteoid volume (B) and
osteoid-covered surface with osteoblasts (E). 1,25(0H),D5 therapy
completely inhibited AlA-induced bone loss and resulted in a
significant increase of trabecular bone volume (A) and osteoid
volume (B) in comparison to vehicle-treated AIA and healthy
controls. Osteoid-covered surface with osteoblasts was reduced
by 1,25(0H),D5 treatment to values of healthy controls (E).
Osteoid-covered surface remained increased in comparison to
healthy animals (D). Resorption surface with osteoclasts was not
significantly influenced by AIA and by 1,25(0H)2D3 therapy (C).

**p < 0.01; *p < 0.05 vs. AIA + vehicle; +++p < 0.001; ++p < 0.01; +

p < 0.05 vs. healthy controls.

O to determine the loss of proteoglycan in the cartilage
matrix, using scoring system as used for the evaluation of
inflammatory features.

Histomorphometric analysis of bone structure
Histomorphometric analysis of the bone structure was
performend in the secondary spongiosa consisting of la-
mellar bone which represents homogeneous bone tissue.
Secondary spongiosa is beginning at a distance of
1,25 mm from growth plate and was differentiated from
primary spongiosa by means of morphological criteria
(absence of cartilage cores) [43,44].

In the secondary spongiosa trabecular bone volume
and histomorphometric parameters of bone formation
and bone resorption were evaluated by standard
histomorphometry [41,45,46]. For tetracycline label-
ing, all animals received intraperitoneal injections of
45 mg/kg tetracycline (Supramycine; Griinenthal,
Stolberg, Germany) at a volume of 1 ml PBS on day
22 and 25 after AIA induction.

Single-labeled and double-labeled surface as well as
the mean distance between double labels were measured
at uncoulored bone sclices of the same region used for
histomorphometry by fluorescence microscopy (Axioplan,
Carl Zeiss, Jena, Germany). Based on the measurements,
parameters of bone formation and mineralization were
calculated [47].

The measured parameters of standard histomorpho-
metry of the trabecular bone of the secondary spongiosa
are listed.

A) Bone volume
1) Trabecular bone volume in relationship to tissue
volume (%)
2) Osteoid volume in relationship to bone volume (%).
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B) Bone resorption
Resorption surface with osteoclasts in relation to
whole bone surface (%) [i.e. levels of osteoclastic
bone resorption].
C) Bone formation
1) Osteoid-covered surface in relation to whole
bone surface (%) [i.e. bone surface covered with
non-mineralized, newly formed bone matrix].
2) Osteoid-covered surface with osteoblasts in
relation to whole bone surface (%) [i.e. levels of
cellular bone formation].
3) Mineralizing surface.

single-labeled surface + double-labeled surface

MS/0S (%) = :

4) Mineral apposition rate (MAR), calculated by
mean distance between double labels divided by
the interval labeling time (3 days) (um/day)

5) Bone formation rate (BFR/BS), calculated as
MAR x MS/BS (um3/pum?2/day x 10-2).

Statistical analysis

Data were presented as means + standard deviation.
The data were analysed statistically using the SPSS for
Windows Statistical Programme [48]. Data were sub-
jected to the non-parametric Kruskall-Wallis-analysis
and, subsequently to the non-parametric Mann-
Whitney U-test. Differences of p <0.05 were consid-
ered significant.

Results

Influence of 1,25(0H),D; therapy on arthritis severity
After arthritis induction rats developed rapid inflamma-
tion indicated by the acute joint swelling with a maximum
between day 3 and 7 (Figure 1A). The clinical disease
activity measured as joint swelling during the course of
arthritis as well as the histological signs of inflammation
and joint destruction as sum of the semiquantitative
scores expressed as points for both, inflammation and
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joint destruction on day 28 after AIA induction were not
influenced by 1,25(0OH),Dj3 treatment (Figure 1A and 1B).

Influence of AIA on periarticular and axial bone
(secondary spongiosa)

AIA resulted in a highly significant decrease in trabecu-
lar bone volume of the secondary spongiosa of the right
tibia head (periarticular bone of the arthritic joint;
p<0.001, Figures 2A and 3B). Arthritic animals were
characterized by a numerical increase of resorption sur-
face with osteoclasts (Figure 2C) and a significant in-
crease of osteoid-covered surface and osteoid-covered
surface with osteoblasts at periarticular bone (p <0.01,
Figure 2D,E). Mineralizing surface, mineral apposition rate
and bone formation rate at the periarticular bone were not
influenced by AIA (Figure 4A-C). In contrast, trabecular
bone volume of the axial bone (third lumbar vertebra) was
unaffected by AIA (Figure 5A). Resorption surface with os-
teoclasts was numerically increased, osteoid-covered sur-
face and osteoid-covered surface with osteoblasts at the
axial bone were significantly increased in arthritic animals
(p <0.05, Figure 5C,D,E). The parameters of bone forma-
tion measured by tetracycline labeling were not influenced
by AIA at the axial bone (Figure 6A-C).

Influence of treatment with 1,25(0OH),D3 on the secondary
spongiosa of the right tibia head (periarticular bone)

1,25(0OH),D3 therapy led to a significant increase in
trabecular bone volume (Figures 2A and 3C) not only
in comparison to vehicle-treated AIA (p<0.01) but
also compared to healthy animals (p < 0.01). Furthermore,
a significant increase in osteoid volume in compari-
son to vehicle-treated AIA (p <0.05) and to healthy
animals (p <0.001) was observed with 1,25(OH),D3
therapy (Figure 2B). Resorption surface with osteo-
clasts and osteoid-covered-surface were not influenced
by 1,25(0OH),D3 as compared to vehicle-treated AIA
(Figure 2C and 2D). Accordingly, osteoid-covered sur-
face in animals receiving 1,25(OH),D3 was significantly

Healthy controls

AlA + Vehicle

AlA +1,25D3

Figure 3 Assessment of bone histology, secondary spongiosa of the right tibia head (representative Masson/Goldner stained sections).
In comparison to healthy controls (A), vehicle-treated AlA resulted in a significant bone loss in secondary spongiosa (B). Therapy with 0.2 pg/kg
1,25(0OH),D5 prevented AlA-induced bone loss completely and resulted in a highly significant increase in trabecular bone volume in comparison
to both vehicle-treated AIA and healthy controls (C).
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Figure 4 Influence of 1,25(0H),D; therapy on parameters of
bone formation measured by tetracylin labeling (secondary
spongiosa of the right tibia head - arthritic joint) in AIA of
the rat. Mineralizing surface (A), mineral apposition rate (B) and
bone formation rate (C) were unaffected by AIA. Treatment with
1,25(0H),D5 resulted in a highly significant increase of mineral
apposition rate and bone formation rate and a significant increase
in mineralizing surface compared with vehicle-treated AIA and
healthy controls. **p < 0.001; *p < 0.05 vs. AIA + vehicle; +++
p <0.001; ++p < 0.01 vs. healthy controls.
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higher in comparison to healthy animals (p < 0.05). In
contrast to osteoid-covered surface, osteoid-covered
surface with osteoblasts was significantly reduced by
1,25(0OH),D3 therapy compared with vehicle-treated
AIA (p <0.05), resulting in a decrease of this parameter
to the values of healthy animals (Figure 2E). Despite a
decrease in osteoid-covered surface with osteoblasts,
both mineralizing surface and mineral apposition rate
were significantly increased by 1,25(OH),Dj3 therapy in
comparison to vehicle-treated AIA (p<0.05 and p<
0.001, respectively) and compared to healthy animals
(p <0.01 and p < 0.001, respectively, Figure 4A and 4B).
The increase of these both parameters of bone forma-
tion resulted in a highly significant increase of bone
formation rate in 1,25(OH),D3-treated rats in compari-
son to both vehicle-treated AIA and healthy animals
(p <0.001, Figure 4C).

Influence of treatment with 1,25(OH),D3 on the secondary
spongiosa of the third lumbar vertebra (axial bone)
According to the findings at the periarticular bone, both
trabecular bone volume and osteoid volume were highly
significant increased by 1,25(OH),D; treatment in com-
parison to vehicle-treated AIA and healthy animals (p <
0.001, Figure 5A and 5B). Both resorption surface with
osteoclasts and osteoid-covered surface with osteoblasts
were significantly reduced by 1,25(0OH),D; therapy in
comparison to vehicle-treated AIA (p <0.05, Figure 5C
and 5E) to levels according to those of healthy animals.
Osteoid-covered surface remained numerically higher in
comparison to healthy animals in 1,25(OH),D3-treated
rats (Figure 5D). Mineralizing surface and mineral ap-
position rate were significantly increased during 1,25
(OH),Dj3 therapy in comparison to vehicle-treated AIA
(p<0.001) and compared to healthy animals (p <0.01;
Figure 6A and 6B). Accordingly, 1,25(OH),D3 treatment
resulted in a highly significant increase in bone forma-
tion rate in comparison to both vehicle-treated AIA and
healthy animals (p < 0.001, Figure 6C).

Discussion

A suppressive effect of 1,25(0OH),D3 therapy on inflam-
mation and joint destruction was not observed in our
study. From the background of the T cell-dependence of
AIA, this is surprising, because important immunomod-
ulatory effects of 1,25(0OH),D3; are mediated by the
modulation of T cell differentiation contributing to
protective effects of 1,25(OH),D3 in different T cell-
mediated diseases [16-19,23]. The most probable explan-
ation for the missing anti-inflammatory effect of 1,25
(OH),D3 in the present study may be the relatively short
1,25(0OH),D3 administration period in the prearthritic phase
of AIA beginning only on day 3 before arthritis induction.
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Figure 5 Influence of 1,25(0H),D; therapy on trabecular bone
volume, osteoid volume and cellular bone turnover parameters
(secondary spongiosa of the third lumbar vertebra) in AIA

of the rat. Vehicle-treated AIA was associated with a significant
increase of osteoid-covered surface and osteoid-covered surface
with osteoblasts (D; E) and a numerical increase in resorption surface
with osteoclasts (C) in comparison with healthy controls. Trabecular
bone volume and osteoid volume at the axial bone remained
unaffected by AlA (A; B). 1,25(0OH),Ds therapy led to a highly significant
increase of trabecular bone volume (A) and osteoid volume (B) in
comparison to vehicle-treated AIA and healthy controls and resulted
furthermore in a significant decrease in resorption surface with
osteoclasts (C) and osteoid-covered surface with osteoblasts (E) in
comparison to vehicle-treated AIA and reduced these parameters to the
values of healthy controls. **p < 0.001; *p < 0.05 vs. AIA + vehicle; +++

p < 0.001; +p < 0.05 vs. healthy controls.

In contrast to our investigation, in studies with evidence for
inhibitory effects of active vitamin D metabolites on inci-
dence, severity and/or progression of arthritis in collagen-
induced arthritis (CIA) of rats [30,33] and mice [32] and in
adjuvant arthritis of the rat [29] treatment was initiated
prior to immunization or at the time point of immunization
or the animals were treated over a longer period during the
prearthritic phase, respectively. Due to the long time period
between the two immunizations on day 21 an day 14 before
arthritis induction and the first administration of 1,25(OH)
»Dj3 in our study, it is probable that a substantial part of T
cells has been differentiated into the proinflammatory Th17
and Th1 cells before 1,25(OH),Dj3 application.

In contrast to the missing anti-inflammatory effect, we
observed substantial effects of 1,25(0OH),D3 therapy on
periarticular and axial bone.

The main finding of our study is the dramatic osteoana-
bolic effect of 1,25(OH),D5 therapy resulting in an import-
ant increase in trabecular bone volume in comparison to
untreated AIA rats and healthy controls at both periarticu-
lar and axial bone, despite the ineffectiveness of the treat-
ment on the inflammation. Interestingly, the increase in
parameters of bone formation and mineralization such as
bone formation rate in 1,25(OH),Ds-treated AIA rats
occurs despite a significant reduction of osteoid-covered
surface with osteoblasts in comparison to untreated AIA
indicating an increase of the capacity of the single osteo-
blast to form new bone due to treatment with active vita-
min D hormone. Although the direct effects of 1,25(OH)
,D3 on osteoblasts are dependent on the species exam-
ined, the time course of 1,25(0OH),D5 treatment and the
differentiation state of osteoblasts, an osteoanabolic vita-
min D receptor-mediated signaling in mature osteoblasts
has been clearly shown in other studies [14,15,49]. Osteoa-
nabolic effects of 1,25(OH),D5 include an increase of the
expression of genes involved in mineralization such as
alkaline phosphatase and osteocalcin [13,14,50,51]. Al-
though the findings on the effect of 1,25(OH),D3 on
mineralization are not consistent and dose-dependent
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Figure 6 Influence of 1,25(0OH),D; therapy on parameters of
bone formation measured by tetracylin labeling (secondary
spongiosa of the third lumbar vertebra) in AIA of the rat.
Mineralizing surface (A), mineral apposition rate (B) and bone
formation rate (C) were unaffected by AIA. 1,25(0OH),D5 therapy
resulted in a highly significant increase of mineralizing surface,
mineral apposition rate and bone formation rate in comparison to
both vehicle-treated AIA and healthy controls. ***p < 0.001 vs.
AlA + vehicle; +++p < 0.001; ++p < 0.01 vs. healthy controls.
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[52], a stimulation of mineralization by higher doses
of 1,25(OH),D3; has been demonstrated in vitro [53]
and in vivo in rats at doses of 0.125 and 0.2 pg/kg/
day [54,55]. In a recent study it has been shown,
that suppression of interferon-f§ mediated inhibitory
effects on mineralization by 1,25(OH),D; may be
critical for the stimulatory effects of 1,25(OH),D; on
mineralization [56].

Interestingly, the resorption surface with osteoclasts
was not increased by 1,25(0OH),D3 at the periarticular
bone in our study and even significantly reduced at the
axial bone. This result is surprising, because one of the
most evident actions of 1,25(OH),D3; on the bone is
the induction of RANKL in osteoblasts resulting in a
stimulation of osteoclastogenesis [35]. An indirect ef-
fect of 1,25(OH),D3 on bone resorption mediated by
reduction of inflammation resulting in a secondary de-
crease of bone resorption can be excluded as a cause
for this observation, because 1,25(OH),D3 has clearly
no suppressive effect on inflammation in our treatment
protocol. Despite the induction of RANKL, 1,25(OH)
»D3-mediated inhibitory mechanisms on bone resorp-
tion have also been described. Thus, 1,25(OH),D5 has
been shown to interfere with RANK-mediated signal-
ing by inhibiting the induction of c-Fos in a dose-
dependent manner via vitamin D receptor (VDR) in
osteoclast precursor cells resulting in an inhibition of
their differentiation into mature osteoclasts [57]. In
addition, an inhibitory effect of 1,25(OH),D3; on the
differentiation of osteoclast precursors associated with
a decreased RANK expression and an increased ex-
pression of the CCAAT enhancer-binding protein, an
inhibitor of osteoclastogenesis on these cells has been
proved in osteoclast precursors of normal peripheral
blood and of synovial fluid of RA patients [58]. Fur-
thermore, the RANKL/OPG ratio which is critical for
the regulation of bone resorption is dependent on the
differentiation state of the osteoblast [10,59]. For both
human and mouse osteoblastic cells a decrease in
RANKL/OPG ratio and in their osteoclastogenic po-
tential, respectively, has been shown during the differ-
entiation into mature osteoblasts [59-64]. The capacity
of mineralisation is a feature of the mature osteoblast.
Therefore, the finding of our study of a combination of
an increase in mineralization with a reduction of
osteoid-covered surface with osteoclasts is in accord-
ance with the assumption, that 1,25(0OH),D3 treatment
may induce the differentiation process of osteoblasts
resulting in both increase in mineralization and a de-
crease in the osteoclastogenic potential of osteoblasts.
Furthermore, a suppression of PTH secretion by 1,25
(OH),D3 or by 1,25(OH),D3-induced slight hypercalce-
mia may also contribute to the reduction of resorption
surface with osteoclasts.
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Because of the finding of reduced 1,25(OH),D3 levels
in both adjuvant arthritis of the rat [27,28] and in RA
patients with high disease activity [24] and with respect
to the insignificant increase in periarticular osteoid
volume in untreated AIA as a potential feature for slight
osteomalacia, the question arises, if 1,25(0OH),D3 admin-
istration and effects in our study reflects in part a
correction of an inflammation-associated 1,25(OH),D3
deficiency. Although, serum levels of vitamin D metabo-
lites were not measured in this study, this assumption is
not probable, because 1,25(0OH),D3 serum levels in un-
treated AIA (25.5+16.6 pg/ml, n=7) have been found
to be not reduced compared to healthy animals (15.8 +
15.6 pg/ml; n = &; n.s.) in an earlier investigation [65].

Conclusions

In summary, the results of our study indicate that the
administration of active vitamin D hormone completely
inhibited arthritis-induced bone loss by stimulation of
mineralization at periarticular and axial bone and by in-
hibition of bone resorption at the axial bone despite
missing effects on inflammation. The main cause of this
beneficial effect of 1,25(0OH),D3 may be the induction of
osteoblast differentiation resulting in both increasing
mineralizing capacity of the single osteoblast and reduced
osteoclastogenic potential of the mature osteoblast. Both
an adequate vitamin D supply and the administration of
active vitamin D metabolites could counteract and inhibit
important mechanisms of bone loss in rheumatoid arth-
ritis and should be used as an adjuvant therapeutic
principle in this disease.
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