
Hagmann et al. BMC Musculoskeletal Disorders 2014, 15:322
http://www.biomedcentral.com/1471-2474/15/322
RESEARCH ARTICLE Open Access
Fluorescence activated enrichment of CD146+
cells during expansion of human bone-marrow
derived mesenchymal stromal cells augments
proliferation and GAG/DNA content in
chondrogenic media
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Abstract

Background: While numerous subpopulations of BM-MSCs have been identified, the relevance of these findings
regarding the functional properties remains mostly unclear. With regards to attempts of enhancing differentiation
results by preselecting certain MSC subtypes, we have evaluated the efficiency of CD146 purification during
expansion, and evaluated whether these measures enhanced MSC differentiation results.

Methods: Human MSCs were derived from bone marrow of six donors and cultured in two different culture media.
After P1, MSCs were purified by either magnetic or fluorescence sorting for CD146, with unsorted cells as controls.
Growth characteristics and typical MSC surface markers were assessed from P0 to P3. After P3, chondrogenic,
osteogenic and adipogenic differentiation potential were assessed.

Results: Despite a high variability of CD146 expression among the donors, fluorescence sorting significantly increased
the number of CD146+ cells compared to control MSCs, while magnetic sorting led to a lesser enrichment. Osteogenic
and adipogenic differentiation potential was not affected by the sorting process. However, FACS-sorted cells showed
significantly increased GAG/DNA content after chondrogenic differentiation compared to control MSCs.

Conclusion: FACS sorting of CD146+ cells was more efficient than magnetic sorting. The underlying mechanism of
increased GAG/DNA content after enrichment during expansion remains unclear, but may be linked to increased
proliferation rates in these cells.

Keywords: Mesenchymal stromal cells, MSC surface markers, CD146, Sorting, Osteogenic differentiation,
Chondrogenic differentiation
Background
Mesenchymal stromal or stem cells (MSCs) are multipo-
tent cells that have been isolated from various tissues, such
as bone-marrow [1,2], adipose tissue [3,4], cord blood and
tissue [2,5] and peripheral blood [6,7]. Their multilineage
potential has led to an accelerating research in these cells
in orthopaedics [8-10], cardiology [11,12], hematology
* Correspondence: babakmoradi@gmx.de
1Department of Orthopedic and Trauma Surgery, University Hospital
Heidelberg, Schlierbacher Landstrasse 200a, 69118 Heidelberg, Germany
Full list of author information is available at the end of the article

© 2014 Hagmann et al.; licensee BioMed Cent
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
[13,14] and neurology [15,16], to name only a few. Add-
itionally, MSCs were shown to possess important immuno-
regulatory properties [17-19], which has become another
therapeutic approach.
Although initially understood as a distinct entity, more

and more studies have revealed that MSCs must be
understood as a heterogeneous population with multiple
different subpopulations [20-25]. In the attempt to fur-
ther characterize MSCs, numerous surface markers have
been identified. Some of them have been included in
minimal criteria for MSCs defined by the International
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Society for Cellular Therapy [26]. However, there have
been numerous reports on new surface markers that are
also applicable for characterizing MSCs [20,27-30]. One
of these novel markers described on MSCs is CD146, or
melanoma cell adhesion molecule (MCAM, MUC18). It
is not only recognized as a marker for endothelial pro-
genitor cells and perivascular stem cells [31,32], but has
been shown to be a marker for MSCs as well [1,33].
CD146 expression seems to vary in MSCs derived from
different tissues [34], and was reported to distinguish
MSCs from fibroblasts [35]. Previous studies of our
group and other groups have also detected that CD146
expression is dependent on the composition of MSC
culture media and is downregulated by FGF-2 adminis-
tration during expansion [36,37]. An ultimate goal that
drives the research on MSC subtypes is to optimize the
aspired tissues, thus making tissue engineering in any of
these fields more effective. The isolation of MSC sub-
types seems a promising technique in order to utilize
specific MSC properties [38]. Two principal methods
seem appropriate in this regard: isolation by magnetic
or fluorescence labelling. Several studies have described
methods to isolate the CD146+ fraction from endomet-
rium [39] or the peridontal ligaments [40]. CD146+ MSCs
have also been isolated from bone marrow by CD34 nega-
tive sorting [1].
However, up to date, it has not yet been sufficiently

demonstrated whether the CD146+ MSCs exert distinct
differentiation properties. Additionally, it is still unclear
which isolation method (fluorescence or magnetic) is
more favourable to accumulate CD146+ MSC subsets
from bone marrow.
We therefore investigated the impact of a CD146+ cell

purification during expansion of human bone-marrow
derived MSCs. It was further evaluated if chondrogenic,
osteogenic and adipogenic differentiation of the MSCs
were affected. Furthermore, we employed two different
expansion media, one with a simple and one with a more
elaborate formula, to evaluate if the methods were suitable
for different culture conditions.

Methods
Bone marrow donors
A total of n = 6 donors (mean age 62.2 ± 16.4 years, 3
female, 3 male donors) were included in the study. Bone
marrow aspiration was performed from the femur dur-
ing total hip arthroplasty (for end-stage osteoarthritis) or
from the iliac crest during autologous bone grafting (for
enhancing healing in an osteotomy). All donors ap-
proved written informed consent prior to bone marrow
donation. The study protocol was approved by the ethics
committee of the University of Heidelberg and was con-
ducted according to the latest version of the Helsinki
Declaration.
Isolation of human bone marrow-derived MSCs
Bone marrow was collected into syringes containing
5000 I.E. heparine (ratiopharm, Ulm, Germany) and diluted
in “Ringer” isotonic saline solution (Braun, Melsungen,
Germany). After washing with PBS (Invitrogen, Karlsruhe,
Germany), bone marrow mononuclear cells (BM-MNCs)
were collected from the interphase created by Ficoll paque
plus gradient centrifugation (GE Healthcare, Uppsala,
Sweden) and washed in PBS. Washing was repeated twice;
afterwards the cells were resuspended in PBS and counted
in triplicates in a Neubauer chamber (Brand, Wertheim,
Germany) after staining with Tuerk solution (Sigma-
Aldrich, Schnelldorf, Germany). BM-MNCs of each
donor were resuspended in two different culture media
(shown below) at a density of 1.25×105 cells /cm2 in
T75 cell culture flasks (Greiner Bio One, Frickenhausen,
Germany). The cells were cultured in a humidified thermo-
stat at 37°C and 6% CO2. After 24 hours, medium replace-
ment was performed and only adherent cells remained in
cell culture. Cells were inspected by polarization micros-
copy daily. At 80% confluence, cells were detached with
trypsine/EDTA solution (Biochrom, Berlin, Germany) after
washing with PBS. Whole medium was added, and the
cells were counted as described above. The cells were then
washed in whole medium and resuspended at a density of
5×104 cells/cm2 in the respective media. These procedures
were repeated until the end of passage 3.
The cells of each donor were cultured in a) Dulbecco’s

modified Eagle’s medium low glucose (DMEM-LG,
Invitrogen, Karlsruhe, Germany) with 20% fetal calf serum
(FCS, Invitrogen, Karlsruhe, Germany) and 1% penicilline/
streptomycine (Invitrogen, Karlsruhe, Germany) and b) a
variation of Embryonal Stem Cell expansion medium (ES),
consisting of DMEM-high glucose (DMEM-HG, Invitrogen,
Karlsruhe, Germany) 12.5% FCS, 2 mM L-glutamin,
50 mM b-mercaptoethanol, 1% nonessential amino
acids 100, 1% penicilline/streptomycine (all Invitrogen,
Karlsruhe, Germany), and 4 ng/ml basic fibroblast
growth factor (bFGF/FGF-2, Acris, Herford, Germany).
As a marker for proliferation, a growth index per day
(GID) was calculated through the formula: GID =
(number of cells at beginning of passage/number of
cells at end of passage)/days in passage. For the sorted
groups, a relative GID was then calculated by a quo-
tient of the respective GID and the GID of untreated
control cells to allow comparability among the donors.
As a positive control for CD146 positive cells, HeLa

cells were cultured in medium condition a) and b) for
63 days. Fluorescence cytometry for CD146 (see below)
was conducted weekly throughout this time.

CD146 isolation of BM-MSCs
In addition to the culture conditions detailed above, two
different isolation techniques for BM-MSCs during their
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expansion. An initial experiment showed that the purifi-
cation in both media was more effective in P1 than in
P0 (data not shown), which is why the separation process
was performed in P1. After detaching, counting and wash-
ing the cells with whole medium, cells were separated into
three parts per medium. For the first group (control
group), MSCs were resuspended as described above. The
second group underwent magnetic sorting for CD146+
cells. MSCs were therefore washed with PBS and incubated
with 20 μl of FcR blocking reagent human (Miltenyi Biotec,
Bergisch Gladbach, Germany) per 107 cells for 5 min. After-
wards, MSCs were washed in auto MACS running buffer
(Miltenyi Biotec, Bergisch Gladbach, Germany), and 20 μl
of CD146 microbeads (Miltenyi Biotec, Bergisch Gladbach,
Germany) per 107 cells were added. After an incubation of
15 min, cells were washed and resuspended in the auto
MACS buffer, and magnetic isolation was performed
according to manufacturers’ protocols using LS columns
and a MidiMACS™ separator (Miltenyi Biotec, Bergisch
Gladbach, Germany). Afterwards, MSCs were washed in
MACS buffer. After this separation step, cells were analysed
by flow cytometry (see below) and further cultured in the
same manner as the control group.
The third group underwent fluorescence cell sorting.

MSCs were therefore washed with PBS and incubated
with 20 μl of FcR blocking reagent per 107 cells for
5 min. Afterwards, MSCs were washed and resuspended
in auto MACS buffer. Cells were then stained with 10 μl/
106 cells of a mouse anti-human CD146 PE antibody (BD
Biosciences, Heidelberg, Germany) for 30 min at 4°C in the
dark. MSCs were then washed and fluorescence cell sorting
was performed using a FACS Aria II sorter (BD Biosci-
ences, Heidelberg, Germany) and the FACSDiva software
(Version 6.1.3., BD Biosciences, Heidelberg, Germany).
Following this separation step, MSCs were analysed by
flow cytometry (see below) and further cultured in the
same manner as the control group.

Flow cytometry
Confirmation of purification for CD146 was performed
by flow cytometry in all groups after separation. For cell
saving reasons, flow cytometry was performed for the
entirety of the antibodies listed below in P0, P2 and P3,
and in the control MSCs after P1. MSCs were suspended
in PBS with 0.5% FCS and 2 mM EDTA and labelled
with the following mouse anti-human antibodies: CD14
FITC, CD34 PE, CD45 APC-Cy™7, CD90 FITC, CD73
PE, CD105 PerCP-Cy™5 and CD146 PE (all BD Biosci-
ences, Heidelberg, Germany). Cell viability was assessed
using a 7AAD Viability Staining Solution (eBioscience,
Frankfurt, Germany). Flow cytometry was conducted with
a MACS Quant™ analyser and the MACS Quantify 2.1 soft-
ware (Miltenyi Biotec, Bergisch Gladbach, Germany). Iso-
type matched antibodies were employed for background
fluorescence detection. Positive fluorescence was defined as
any event occurring above a gate defined by containing
99.5% of the events measured for background fluorescence
in a histogram plot. The gating strategy is demonstrated in
Figure 1.

Chondrogenic differentiation
MSCs were detached from the culture flasks with tryp-
sine/EDTA solution as described above, washed and
resuspended in whole medium. 5×105 cells were then cen-
trifuged at 3000/min for 5 min for high density pellet cul-
ture and then cultured in chondrogenic medium, which
consisted of 286 ml DMEM HG (Invitrogen, Karlsruhe,
Germany), 5 μg/ml transferrin, 5 ng/ml sodium selenite,
1 mM Sodium pyruvate (all Sigma-Aldrich, Schnelldorf,
Germany), 1,25 mg/ml BSA, 100 units/ml P/S (both
Invitrogen, Karlsruhe, Germany), supplemented by 0,1 μM
dexamethasone, 5 μl ascorbic acid/5 ml (both Sigma-
Aldrich, Schnelldorf, Germany), 10 ng/ml TGF-β (Acris,
Herford, Germany) and 5 μg/ml insuline glargin (Sanofi
Aventis, Frankfurt, Germany). Chondrogenic medium was
changed three times a week, and MSCs were incubated
for 42 days. N = 2-5 pellets per group were analysed, and
intraindividual means were calculated. For quantitative
analysis of GAG deposition, the pellets were digested with
pepsin solution overnight and then stained with 1,9-di-
methyl-methylene blue (dye content 80%, Sigma-Aldrich,
Schnelldorf, Germany). Absorption was measured at
530 nm for the pellets and a chondroitin 4-sulfate
standard (Sigma-Aldrich, Schnelldorf, Germany). DNA
content in the pellets was analyzed with a Quant iT ds Pico
Green DNA Assay Kit (Invitrogen, Karlsruhe, Germany)
according to manufacturers’ protocols, and GAG/DNA
content was calculated.

Osteogenic differentiation
MSCs were harvested with trypsine/EDTA solution as
described above, washed and resuspended in whole
medium. 35,000 MSCs per well were seeded in 24 well
plates (Nunclon Surface, Sigma Aldrich, Schnelldorf,
Germany) containing 0.5 ml of osteogenic induction
medium. Four assays per time point were conducted.
Osteogenesis was induced with a medium consisting of
DMEM HG, 10% FCS, 1% penicilline/streptomycine
(all Invitrogen, Karlsruhe, Germany), 0.1 mM dexametha-
sone, 0.17 mM ascorbic acid 2-phosphate, and 10 mM β-
glycerophosphate (all Sigma-Aldrich, Schnelldorf, Germany).
Osteogenesis was induced for 21 days, quantified by an
alkaline phosphatase assay and alizarin red staining at
d3, d7, d14 and d21. MSCs therefore were lysated in
0.5 ml 1% Triton X-100 (Sigma-Aldrich, Schnelldorf,
Germany), and the lysate was incubated 1:1 with 1 mg/ml
p-nitrophenylphosphate in ALP-buffer (0.1 M glycine,
1 mM MgCl2, 1 mM ZnCl2, pH 10.4). Substrate turnover



FSC/SSC Isotype AB CD73+ MSCs
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Figure 1 Gating strategy for flow cytometry analysis of MSCs. FSC/SSC: forward scatter/sideward scatter. Isotype AB: isotype control
antibody. The bar defines the border of 99.5% of the isotype control fluorescence signal. In this example, 99.46% of the MSCs express CD73.
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was measured in an MRX ELISA reader (Dynatech
Laboratories, Stuttgart, Germany) at 405/490 nm, and
results were calculated with an ALP standard. ALP levels
were standardized to protein content, which was analyzed
using a Micro BCA Protein Assay Kit (Pierce, Rockford,
USA) according to manufacturers’ instructions. Calcium
deposition was quantified by 0.5% Alizarin Red S staining
(Sigma-Aldrich, Schnelldorf, Germany) at 570 nm, calcu-
lated according to an Alizarin standard and then standard-
ized to whole protein content as described above.

Adipogenic differentiation
MSCs were seeded with 35,000 cells per well in 24
well plates (Nunclon Surface, Sigma Aldrich, Schnelldorf,
Germany) in adipogenic induction medium and cultured
for 14 days (n = 2-4 assays per donor). Adipogenic differ-
entiation medium consisted of DMEM HG (Invitrogen,
Karlsruhe, Germany), 10% FCS (Invitrogen, Karlsruhe,
Germany), 1 mM dexamethasone, 0.2 mM indometha-
cine, 0.5 mM isobutyl methylxanthine (all Sigma-Aldrich,
Schnelldorf, Germany) 0.01 mg/ml insulin glargin (Sanofi-
Aventis, Frankfurt, Germany) and 1% penicilline/strepto-
mycine (Biochrom, Berlin, Germany).
Adipogenic differentiation was assessed by fixation

with 4% paraformaldehyde and staining with 0.3% Oil Red
O solution (Chroma, Münster, Germany). Evaluation of
adipogenic differentiation was conducted by a qualitative
microscopic assessment of lipid vacuole formation.

Statistical analysis
Statistical analysis was performed with the SPSS com-
puter software (SPSS Inc., released 2009, PASW Statis-
tics for Windows, Version 18.0. Chicago). QQ-plots, box
plots, a ratio analysis and Kolmogorov-Smirnov (with
Lilliefors significance correction) as well as Shapiro-Wilk
tests were performed to evaluate normal distribution of the
data. For parametric data, two-tailed paired t-tests were
performed for comparisons between two different media
conditions, while analyses of variance (ANOVA) followed
by Bonferroni correction were performed for comparisons
of more than two groups (population doubling per passage,
passage time, ALP content and calcium deposition). Non-
parametrical data was analysed by Wilcoxon tests for the
comparison of two and Friedman tests for the comparison
of more than two groups (surface marker expression, rela-
tive GAG/DNA content). Differences were considered sta-
tistically significant for p-values smaller 0.05. Results are
shown as means ± standard deviation.

Results
Proliferation rates
No morphological differences were observed between
sorted and unsorted cells and between the two media con-
ditions (Figure 2). No significant differences concerning
proliferation were observed between the two media condi-
tions. The mean relative growth index per day was higher
in FACS-separated cells and lower in MACS-separated
cells in P2, resulting in a significantly higher proliferation
of FACS vs. MACS-sorted cells (Figure 2, p = 0.022).
MACS-sorted cells closed up to FACS-sorted MSCs in P3
(Figure 2, comparison MACS/FACS: p = 0.388).

MSC surface marker expression
Representative histograms for the surface markers are
shown in Figure 3. Except for CD34, which was consistently
expressed on less than 1% of the MSCs in all passages and
in all donors, an important variation of the other surface
markers could be observed. The P0 populations showed a
more heterogeneous surface marker profile than P1, P2 and
P3 populations regarding CD73, CD90, CD14 and CD45 in



Figure 2 Morphological aspects of MSCs and proliferation rates. a) MSCs sorted for CD146 by fluorescence cytometry (DMEM-FACS and
ES-FACS) or magnetically (DMEM-MACS and ES-MACS) showed no morphological differences to the control MSCs cultured in DMEM-LG or ES
medium. Light microscopy, magnification x100. b) Results displayed are the means and SD of the growth index per day divided by the growth
index of control cells for each respective donor. *p < 0.05.
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both media (Table 1). No differences between the groups
were observed for 7-AAD positive cells; however both
media and all groups showed a mild increase in 7-AAD
positive cells from under 1% to 4% from P0 to P3 (data
not shown). CD45 expression was markedly higher than
the other negative markers (Table 1, Figure 3), with no
significant differences between the media.
No significant differences regarding surface marker dis-

tribution could be detected between the two media except
for CD90, which showed a higher expression in P0 in cells
cultured in DMEM compared to ES medium (89.78 ±
6.52% vs. 78.72.02 ± 9.04%, p = 0.028).
The greatest heterogeneity of the MSC preparations was

observed for CD146, which was highly donor-dependent
(expression ranging from 48.69% to 89.43% in P0, Figure 4).
While no significant differences between the passages could
be detected, CD146 expression was higher when MSCs
were cultured in DMEM compared to ES medium in P0
and P2 (Table 1, Figure 3, P0 and P2: p = 0.028).
The HeLa cell cultures showed equally high CD146

expression in both culture conditions over 63 days (means:
99.39 ± 0.74% in condition a, 99.04 ± 0.98% in condition b,
97; p = 0.373).

Magnetic vs. fluorescence separation
Representative sorting results for both methods are shown
in Figure 3. Due to the important heterogeneity of CD146
expression among the donors, individual purification re-
sults were calculated for each donor. The mean overall
purification effect of fluorescence sorting for CD146 in all
donors was factor 1.8 (±0.62) compared to the pre-sorting
results (p = 0.002). Purification ranged from factor 1.17 in
a donor with high CD146 expression to factor 3.27 in the
donor with the lowest CD146 expression.
MACS-sorting did only slightly enhance the number

of CD146 expressing cells, with a mean overall purifica-
tion of factor 1.09 (±0.35) (p = 0.646 compared to the
control group).
Neither magnetic nor fluorescence cell sorting affected

the distribution of any of the other surface markers, which
were consistently high for the positive markers CD73,
CD90 and CD105 and consistently low for the negative
markers CD14 and CD34, while all groups showed a
CD45 expression of under 10%, comparable to the control
cells (data not shown).

Differentiation results
All groups were successfully differentiated into adipo-
genic, chondrogenic and osteogenic lineage. There was
no apparent difference in adipogenic differentiation in
both media conditions and depending on whether and
which CD146+ separation was applied, as reflected by
optical density analysis and qualitative assessment of lipid
vacuole formation (Figure 4). All groups showed adequate
ALP increase and calcium deposition over time. No sig-
nificant differences regarding osteogenic differentiation
were observed (Figure 4).
There was an important variation in chondrogenesis re-

lated to the donors. When compared to the control MSCs,
FACS-sorted cells showed higher GAG/DNA content
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Figure 3 Surface marker distribution on MSCs. a) MSCs were clearly negative for CD14 and CD34 while CD45 was expressed on some of the
cells. MSCs were positive for CD73, CD90 and CD105. The histograms displayed are P2 control MSCs cultured in DMEM-LG. All histograms have
been adjusted for height. b) Representative histograms from P0 cells in DMEM and ES medium. CD146 expression was significantly lower in ES
than in DMEM in P0. c) Exemplary histograms of P2 control vs. FACS-sorted MSCs. d) Exemplary histograms of P2 control vs. MACS-sorted MSCs.
There was an important variation of CD146 expression between patients, as demonstrated by the P2 samples from c and d. Magnetic sorting
resulted in a lower purification than fluorescence sorting, while higher CD146 expression in naïve MSCs resulted in a higher purification result.
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(Figure 4, p = 0.023). No significant differences concerning
GAG/DNA content could be observed when comparing
MACS-sorted cells to the control MSCs (Figure 4, p =
0.117). Neither in MACS-, nor in FACS-sorted cells,
GAG/DNA content correlated with the expression of any
of the surface markers MSCs were analyzed for, including
CD146 (Pearson Correlation for P3 -0.290, p = 0.096).

Discussion
MSCs are promising for applications in medicine both for
their regenerative and immunoregulatory properties. While
the use of these cells in human subjects increases, there is
an ongoing controversy about whether the phenotypic het-
erogeneity of these cells may be a benefit or a disadvantage
for these capacities. In order to better understand the na-
ture of MSC subpopulations, attempts have been made to
compare homogenous MSC preparations to crude MSCs.
The aim of our study was to evaluate two different methods
to purify bone-marrow derived MSCs for CD146, a marker
that has been associated with endothelial cells, but recently
with MSCs as well [41,42]. Fluorescence sorting provided a
significant increase in CD146 expression, an increase in
proliferation and chondrogenic differentiation, while osteo-
genic and adipogenic differentiation remained unchanged.
Our experiments focussed on a comparison of two

different isolation techniques for CD146. In contrast to
Sorrentino et al. [1], who derived a purified CD146+
population by sorting out CD34+ cells from an enriched
BM-MSC population, we chose to directly sort the cells
by positive selection for CD146 to determine whether
these procedures affected the functional characteristics
of the MSCs. While we observed an important donor-
related variation of CD146 expression in both media, a
major difference between our experiments and the above



Table 1 Surface marker expression in P0, P1, P2 and P3 in DMEM and ES media (see text for media composition)

DMEM P0 P1 P2 P3 p value

P0/P1, P0/P2, P0/P3

CD73 85.41 ± 10.96 97.34 ± 1.96 97.83 ± 3.62 99.3 ± 0.62 0.068, 0.028, 0.109

CD90 89.78 ± 6.52 98.39 ± 0.44 98.89 ± 0.69 98.18 ± 1.62 0.068, 0.028, 0.043

CD105 89.02 ± 17.18 95.45 ± 4.34 97.72 ± 1.53 98.33 ± 0.57 0.715, 0.249, 0.686

CD146 72.98 ± 9.21 78.62 ± 10.42 74.3 ± 17.31 72.64 ± 20 0.068, 0.917, 0.893

CD14 9.66 ± 7.61 1.21 ± 0.7 <1 <1 0.068, 0.028, 0.028

CD34 <1 <1 <1 <1 N/A

CD45 12.69 ± 8.44 5.53 ± 1.59 6.03 ± 2.34 6.16 ± 4.1 0.144, 0.249, 0.249

ES P0 P1 P2 P3 p value

P0/P1, P0/P2, P0/P3

CD73 85.75 ± 11.27 99.045 ± 0.8 99.41 ± 0.6 99.26 ± 0.29 0.068, 0.043, 0.109

CD90 78.72 ± 9.04 94.1 ± 2.37 94.98 ± 4.18 97.3 ± 2.54 0.109, 0.075, 0.109

CD105 89.06 ± 8.77 96.97 ± 2.89 96.8 ± 2.63 96.19 ± 4.84 0.068, 0.116, 0.285

CD146 56.07 ± 7.69 60.54 ± 7.59 55.35 ± 11.91 45.19 ± 15.38 0.068, 0.753, 0.465

CD14 9.55 ± 6.93 2.13 ± 2.11 <1 <1 0.068, 0.028, 0.109

CD34 <1 <1 <1 <1 N/A

CD45 12.14 ± 8.77 3.5 ± 2.04 2.46 ± 1.54 5.19 ± 3.8 0.109, 0.028, 0.273

Results are displayed as mean positive cells (%) ± SD.
Bold p-values represent results below p=0.05.
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study was also that the initial P0 CD146 expression level
on BM-MSCs was relatively high, which is in accordance
with our own findings from previous studies and with
reports by Halfon et al. 2011 [35]. In contrary, other stud-
ies have found natural CD146 expression levels of BM-
MSCs around 15% in P0 [41]. These differences may be
due to different isolation and expansion techniques, but
also due to different donor populations [43-45]. Further
research is needed to determine why such striking differ-
ences in CD146 expression of human BM-MSCs have
been reported in different studies.
Baksh et al. reported an easy feasibility of CD146 positive

and negative sorting with fluorescence sorting [41], which
is in accordance with our findings. In contrast, magnetic
sorting led to a much lower increase in CD146 expression.
In our opinion, this is an effect mainly encountered with
MSCs, which are more heterogeneous than lymphocytes,
where magnetic sorting is more effective. A limitation in
both groups was that the natural CD146 expression before
the sorting process showed a high donor-dependency,
which resulted in a high purification in donors with a low
CD146 expression, while the effect was less when CD146
expression was already high. The variations in surface
marker distribution and growth as well as differentiation
parameters are in accordance with the donor-related het-
erogeneity of MSCs described by other groups [43,44].
Interestingly, CD146 expression may also be one of the dis-
tinct properties of MSCs derived from different tissues
[46,47].
In 2010, Russell et al. reported CD146 being associated
with higher potency of bone-marrow derived MSCs,
while all other surface markers, among them CD44, CD73
and CD271 showed no correlation with proliferation and
colony-forming unit efficiency [48]. This is in accordance
with our findings, where we observed a higher prolifera-
tion of MSCs sorted by fluorescence sorting. Considering
the differentiation potential, our findings suggest that both
methods retain the osteogenic and adipogenic differenti-
ation potential of BM-MSCs when compared to control
MSCs. As for the chondrogenic differentiation, although
important donor-dependent variations in GAG/DNA con-
tent were observed, fluorescence sorting for CD146 led to
an increase of GAG/DNA content compared to control
MSCs. While there was no direct correlation between any
of the surface markers, including CD146, and chondro-
genic differentiation, the higher proliferation rates may
have contributed to the observed superior chondrogenic
differentiation in the FACS-sorted cells [49].
To rule out that the effects observed were caused by

an increase or decrease in viable cells, we analyzed the
viability by 7-AAD staining. We did not observe differ-
ences between the media; furthermore, when compared
to control MSCs, no increase in 7-AAD positive cells
was observed in both sorting groups, which reflects that
the separation did not lead to late apoptosis or necrosis.
We also report significant differences in MSC surface

marker distribution between DMEM-LG and ES medium.
We chose the two media to examine the two separation



Figure 4 Osteogenic, adipogenic and chondrogenic differentiation results. a) Alizarin red contents per protein at days 3, 7, 14 and 21 are
displayed in the right diagram, ALP contents per protein per ml and min at days 3, 7, 14 and 21 are displayed in the left diagram. No significant
differences between fluorescence or magnetic sorting and the control MSCs could be detected. b) No differences regarding adipogenic
differentiation of MSCs cultured in DMEM or ES medium and sorted for CD146 by fluorescence cytometry (DMEM-FACS and ES-FACS) or
magnetically (DMEM-MACS and ES-MACS) could be detected. Light microscopy, magnification x100. c) Mean GAG/DNA content of control MSCs,
FACS and MACS sorted cells after 21 days of chondrogenic differentiation is displayed. *p < 0.05.
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techniques in a very simple expansion medium as well as
in a more complex medium. Differences in surface marker
distribution of CD44, MAB1470, STRO-1 and HLA-DR
have been reported depending on the media conditions
applied [50]; and especially FGF-2 supplementation to the
expansion media has been associated with CD146 down-
regulation [36]. The use of FGF-2 in ES medium may
therefore have accounted for the differences in surface
marker distribution. However, our results indicate that
these differences are not limited to this marker, but apply
to important MSC markers such as CD90 as well. With
regards to their increasing use in human subjects, we
believe that it is an important finding that the choice of
media preselects the phenotype of MSCs. Although the
functional consequences of this preselection remain un-
clear, the fact that the mean CD90 expression for instance
in ES medium was 11% lower in ES than in DMEM-LG
(with an important donor-dependant variation as well)
would, according to the ISCT minimal criteria for MSCs
[26] imply that ES medium provides 11% less MSCs than
DMEM-LG in P0. However, our data also indicate that
the expression of certain markers such as CD90 and
CD73 seems to be acquired over time during in vitro cul-
ture in a number of MSCs.
Our results once again reveal the heterogeneous na-

ture of MSCs derived from bone marrow. This hetero-
geneity may water some of the assumed connections
between phenotype and function in many of the experi-
ments so far. Up to this day, it has not fully become
clear how regenerative features of MSCs in vitro can be
predicted by their phenotype, secretion profile, or other
properties. Several studies have shown that the loss of
multi-potency with continued passage is not associated
with changes in MSC phenotype [51,52]. While MSC
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phenotype can not predict the ability of in vivo bone
formation [53], other studies suggest that a certain pheno-
type can discriminate MSCs with adipogenic and chon-
drogenic potential in vitro [54]. Our study demonstrates
that differentiation results can be enhanced through the
purification of MSC subpopulations. While there is no dir-
ect connection to the expression of CD146, and the other
surface markers did not provide evidence for subpopula-
tions within this distinct population, other surface markers
may provide this information in the future.

Conclusion
Fluorescence activated sorting for CD146 is an adequate
technique to modify tissue engineering results with regards
to chondrogenic differentiation without altering osteogenic
and adipogenic differentiation. While working with differ-
ent MSC subpopulations may clarify the so far obscure
connections between phenotype and function, our findings
suggest that greater efforts to improve standardized MSC
culture techniques are necessary when it comes to taking
these cells into the patient.
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