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Background: Pulsed electromagnetic field (PEMF) is a non-invasive physical therapy used in the treatment of fracture
nonunion or delayed healing. PEMF can facilitate the osteogenic differentiation of bone marrow mesenchymal stem
cells in vitro. Amniotic epithelial cells (AECs) have been proposed as a potential source of stem cells for cell therapy.
However, whether PEMF could modulate the osteogenic differentiation of AECs is unknown. In the present study, the
effects of PEMF on the osteogenic differentiation of AECs were investigated.

Methods: AECs were isolated from amniotic membrane of human placenta by trypsin digestion and were induced by
PEMF and/or osteo-induction medium. After 21 days we used real time RT-PCR and immunocytochemistry to study the
expression of osteoblast markers. The signal transduction of osteogenesis was further investigated.

Results: The PEMF stimulation, or osteo-induction medium alone could induce osteogenic differentiation of AECs, as
shown by expression of osteoblast specific genes and proteins including alkaline phosphatase and osteocalcin.
Furthermore, a combination of PEMF and osteo-induction medium had synergy effects on osteogenic differentiation.
In our study, the gene expression of BMP-2, Runx2, 3-catenin, Nrf2, Keap1 and integrin31 were up-regulated in the
osteogenic differentiation of AECs induced by PEMF and/or osteo-induction medium.

Conclusions: Combined application of PEMF and osteo-induction medium is synergistic for the osteogenic differentiation
of AECs. It might be a novel approach in the bone regenerative medicine.

Keywords: Amniotic epithelial cells, Osteogenic differentiation, Pulsed electromagnetic field, BMP-2, Wnt/f3-catenin

Background

Amniotic epithelial cells (AECs), derived from the pla-
centa, possess several advantages over both embryonic
stem cells (ESCs) and adult stem cells. They express
ESCs markers such as SSEA-1, SSEA-4 and Oct-4, and
have the ability to differentiate into all three germ layers
in vitro [1,2]. Therefore, AECs have been proposed to be
a good candidate for cell transplantation and regenera-
tive medicine [3,4].
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AECs can be induced to differentiate into osteoblasts
in vitro by treating with osteo-induction medium, which
contains biochemical factors including dexamethasone,
B-glycerol phosphate and ascorbic acid [5]. However, ef-
ficient induction of AECs differentiation into osteoblasts
remains a challenge, and its mechanism is not fully
understood.

Pulsed electromagnetic field (PEMF), a non-invasive
physical treatment, is now used clinically to promote
bone healing for fracture nonunion or delayed fracture
healing [6,7]. PEMF has various biological functions and
can affect bone metabolism. Several studies have shown
that PEMF can facilitate the osteogenesis by its direct ef-
fects on osteoblasts [8,9]. Recently, it has been reported
that PEMF with specific parameters could modulate

© 2014 Wang et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain

Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,

unless otherwise stated.


mailto:xiaojingliu67@gmail.com
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Wang et al. BMC Musculoskeletal Disorders 2014, 15:271
http://www.biomedcentral.com/1471-2474/15/271

osteogenic differentiation of bone marrow derived mes-
enchymal stem cells (BMMSCs) in vitro [10-12]. These
findings suggest that PEMF might be able to induce
AEC:s to differentiate into osteoblasts.

In this study, we tested the hypothesis that PEMF
could modulate the osteogenic differentiation of AECs.
We hypothesized that physical force (PEMF) and bio-
chemical treatment and/or their combination might play
important roles in the process of osteogenic differenti-
ation of AECs. We explored the possible mechanisms,
especially the regulating role of BMP-2 and ROS path-
ways in the process.

Methods
AECs isolation, culture and identification
Five placenta samples through cesarean delivery were
collected aseptically with the informed consents of par-
turients. Primary cultures of human AECs were isolated
from amniotic membrane by trypsin digestion method
and cultured in standard culture medium, according to
Miki’s methods [1]. AECs were identified by the specific
epithelial cell marker cytokerin 19 using immunocyto-
chemistry. Phenotype of human AECs was analyzed by
flow cytometry.

The study was conducted according to the Declaration
of Helsinki and approved by the medical ethics commit-
tee of the West China Hospital, Sichuan University.

PEMF stimulation

PEMF was generated by a commercial, clinically ap-
proved PEMF system (Model XT-2000B). During each
pulse, the applied field increased from 0 to 1mT in
1.5 ms and then decayed back to 0 in 5 ms. The 50Hz
repetitive pulsed waveform was based on other previous
investigations [13,14]. AECs from the third to fifth pas-
sages were maintained in standard culture medium as
controls or in osteo-induction medium (OM) [5]. For
PEMF treatment, the cells were exposed daily to 50Hz
1mT PEMEF stimulation for 30 minutes each time and
twice a day, with an interval of 12 hours. The treatment
lasted for 21 days. Each experiment was in three replicates.

Detection of alkaline phosphatase (ALP) activity by
histochemistry staining

The activity of ALP was detected by histochemistry
staining using a BCIP/NBT ALP kit (R&D Biotech, UK)
according to manufacturer’s instructions [15]. The per-
centage of ALP-positive cells was calculated by Image]
software (National Institutes of Health, USA).

Detection of osteocalcin (OC) protein expression by
immunocytochemistry

AECs were plated onto coverslips in 6-well plates and
treated with different stimuli. The protein expression of
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OC was measured by immunocytochemistry as de-
scribed before [16] Images were captured on a Leica
DEC 300FX Digital Camera system (Leica, UK) and an-
alyzed with the Image] software to semi-quantitatively
determine the level of cytoplasmic OC.

Assessment of calcium deposition by alizarin red staining
Calcium deposition, one of the markers of osteogenic
differentiation of stem cell, was assessed by alizarin red
S staining [17]. Images were captured on a Leica DFC
300FX Digital Camera system (Leica, UK). The amount
of calcified deposition was semi-quantitatively calculated
with Image] software.

Quantitative reverse transcription PCR (Real-time RT-PCR)
Total RNA was extracted from AECs with TRIZOL
(Invitrogen, USA), and cDNA was synthesized using a
reverse transcription (RT) kit (Toyobo, Osaka, Japan)
[16]. Quantitative PCR was carried out on BIO-RAD
CFX96™ Real-Time PCR Detection System with fluores-
cence dye EvaGreen (EvaGreen Supermix kit, Bio-Rad,
USA). Primer sequences are shown in Table 1. Data ana-
lysis was carried out by Bio-Rad software using relative
quantification. The comparative cycle-threshold method
(27°°“T) was used for quantification of gene expression
[17]. For quantification, the target sequence was normal-
ized to the B-actin mRNA levels.

Statistical analysis
The experimental data were presented as means + SD.
Group means were compared by One-way ANOVA using
the statistical software SPSS 10.0 for Windows (Chicago,
IL, USA), and P value < 0.05 was considered to be statis-
tically significant.

Results

Characterization and phenotype of isolated AECs
Amniotic epithelial cells (AECs) were successfully isolated
from human placenta and formed a confluent monolayer
of cobblestone-shaped epithelial cells after 3 days of cul-
turing in the standard culture media (Figure 1A).

In our study, flow cytometry analysis revealed that
54.2% of primary cultured AECs were positive for SSEA-
4 and 92.8% were positive for Oct-4 (Figure 1B). Fur-
thermore, the AECs could also express cytokeratin 19,
the epithelial cell marker (Figure 1C). Consistent with
previous reports [2,5], we provided further evidence that
AECs expressed not only the epithelial cell marker cyto-
keratin 19, but also the stem cell markers such as SSEA-
4 and Oct-4.

PEMF modulates the osteogenic differentiation of AECs
In order to examine whether PEMF could play a role in
osteogenic differentiation of AECs, we used real time
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Table 1 Primer sequences and amplicon sizes for real-time
RT-PCR

Genes

Gene Bank ID Amplicon

(bp)
F: 5" GGAACTCCTGACCCTT 86
GACC 3'

R: 5' TCCTGTTCAGCTCGTA
CTGC 3

F:5' AGGGCAGCGAGGTAG 151
TGAA 3'

R: 5' TCCTGAAAGCCGATGTG
GT 3

F:5' TCAAGCCAAACACAAA 103
CAGC 3'

R: 5" AGCCACAATCCAGTC
ATTCC 3'

F:5' TTACTTACACCCCGCC 139
AGTC 3'

R: 5' TATGGAGTGCTGCTGG
TCTG 3

F:5' CCTATGCAGGGGTGGT 95
CAAC 3'

R: 5' CGACCTGGAAAACGC
CATCA 3'

F:5' CAAGCAGGGCCAAATT 121
GIGG 3

R: 5' TGTCATCTGGAGGGC
AACCC 3'

F:5" ATTGCCTGTAAGTCCT 182
GGTCA 3'

R: 5" ACTGCTCTTTGGACA
TCATTTCG 3'

F:5" GTGGCTGTCCTCAATC 127
GTCT 3'

R: 5' GGATGGTGTTCATT
GCTGTG 3

F:5" ACTATCGGCAATGAG 77
CGGTTC 3

R: 5" ATGCCACAGGATTC
CATACCC 3'

Primer Sequence (5'-3')

ALP NM_000478

ocC NM_001199662

BMP-2

NM_001200

RUNX2

NM_001015051

B-catenin

NM_020248

Integrinp1

NM_002211

Nrf2

NM_001145413

Keap1

NM_203500

B-actin NM_001099771

RT-PCR and immunocytochemistry to study the expres-
sion of osteoblast markers, such as alkaline phosphatase
(ALP) and osteocalcin (OC) in AECs followed by (1)
standard culture media (control group), (2) administra-
tion of PEMF for AECs cultured in standard culture
media (PEMF only), (3) osteo-induction medium (OM
only), (4) combined treatments with PEMF and osteo-
induction medium for various time points (up to 21 days).

Real time RT-PCR results showed that application of
PEMF alone increased the gene expression of ALP and
OC above basal levels after 7 days of treatment. The
osteo-induction medium alone induced the gene expres-
sion of ALP and OC at day 3 post-treatment. The com-
bined induction of ALP and OC mRNA expression were
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both peaked at day 11, and the elevated level lasted up
to day 21 after the combined treatments (Figure 2).

Next, we examined the administration of PEMF and/
or OM-induced change of ALP and OC protein level in
AECs. Exposure of AECs to PEMF alone induced the ALP
activity at day 7. Culture of AECs in osteo-induction
medium increased the ALP activity, which reached the
highest level at day 11, and the increased level lasted up to
day 21 post-treatment. Moreover, combined application of
PEMF and osteo-induction medium resulted in a much
higher level of ALP activity compared with other groups
(Figure 3). The expression of OC protein was analyzed by
immunocytochemistry, which showed that AECs after
combined stimulation of PEMF and osteo-induction
medium presented a much stronger OC protein ex-
pression, than what either treatment alone (Figure 4).

The osteogenic differentiation of AECs was also vali-
dated by detection of the calcium deposits [17]. Alizarin
red S staining results showed that, application of PEMF
alone increased calcium deposits in AECs as early as day
7 after treatment. The osteo-induction medium also evoked
a marked increase of extracellular matrix calcification in
AECs. Furthermore, a combination of PEMF with osteo-
induction medium induced much more calcium deposition
in AECs than the other treatments, and the effect was
peaked at day 11 (Figure 5).

Taken together, we demonstrated that a combination
of PEMF and osteo-induction medium had much stron-
ger effects on osteogenic differentiation of AECs, than
what either treatment alone had.

PEMF might modulate the osteogenic differentiation of
AECs via BMP-2/Runx2 or Wnt/p-catenin signaling

To investigate the possible role of BMP-2/Runx2 or
Wnt/B-catenin signaling in osteoblast differentiation of
AECs, we assessed the expression change of BMP-2,
Runx2 and p-catenin mRNA in AECs with different
treatments. Exposure of PEMF alone induced the ex-
pression of BMP-2, Runx2 and [-catenin above basal
levels after 7 days of treatment. Osteo-induction medium
alone promoted the expression of BMP-2, Runx2 and
B-catenin, followed by a gradual decrease after treat-
ment. Moreover, combined application of PEMF with
osteo-induction medium led to a significant up-regulation
in the expression of BMP-2, Runx2 and [-catenin com-
pared with other treatments (Figure 6A-C).

Nrf2 and Keap1 might be involved in the PEMF-induced
osteogenic differentiation of AECs

Reactive oxygen species (ROS) could play vital role in
the self-renewal and differentiation of stem cells [18,19].
To test whether Nrf2 and Keapl, the master regulators
of ROS generation, might be implicated in the osteo-
genic differentiation of AECs, we examined the gene
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Figure 1 Characterization and phenotype of isolated Amniotic epithelial cells (AECs). (A) Primary culture of human AECs. AECs were
successfully isolated from human term placenta and formed a confluent monolayer of cobblestone-shaped epithelial cells after 3 days of culture in the standard
culture media (magnification of 200x). (B) Surface antigen SSEA-4 and the pluripotency marker Oct-4 in primary cultured AECs. Flow cytometry revealed the
presence of SSEA-4 (54.2%) and Oct-4 (92.8%) in primary cultured AECs. The open peaks show the isotype-matched antibody control. (C) Specific marker of
epithelial cells identified by immunocytochemistry. Primary cultured AECs could express cytokeratin 19, the epithelial cell marker (magnification of 200x).
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Figure 2 Combined treatment of PEMF and osteo-induction medium increased ALP (A) and OC (B) mRNA expression. Experiments were
performed three times with the similar results (n =3 in each group). * indicates P < 0.05 vs Control, #indicates P < 005 vs PEMF and & indicates P < 0.05
vs OM. Abbreviations: Control, standard culture media; PEMF, PEMF exposure; OM, osteo-induction medium; PEMF + OM, combined treatments with PEMF
and osteo-induction medium; ALP, alkaline phosphatase; OC, osteocalcin.
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Figure 3 ALP activity was increased during the osteogenic differentiation of AECs. (A) The ALP activity was detected by BCIP/NBT staining
(magnification of 400x). (B) The percent of ALP-positive cells (containing blue, insoluble, granular dye deposit) was calculated by ImageJ software
Experiments were performed three times with the similar results (n =3 in each group). * indicates P < 0.05 vs Control, * indicates P < 0.05 vs PEMF
and & indicates P < 0.05 vs OM.

expression of Nrf2 and Keapl. PEMF treatment alone
significantly induced the expression of Nrf2 at day 7.
Combined use of PEMF and osteo-induction medium
evoked a significant up-regulation of Nrf2 mRNA ex-
pression compared with other treatments (Figure 2F).
Furthermore, the gene expression profile of Keapl was
similar to that of Nrf2 during the osteogenic induction
of AECs (Figure 6D,E).

IntegrinB1 may be the PEMF sensitive receptor in the
process of osteogenic differentiation of AECs

Integrinfl is a well-known mechanoreceptor in mediat-
ing the transduction of mechanical strain in most cells
[20]. We therefore investigated whether integrinff1 might
also act as the PEMF-sensitive receptor in the osteogenic
induction of AECs. Real-time RT-PCR results showed
that, PEMF alone induced the significant up-regulation of

gene expression of integrinf1 in AECs at day 7. Moreover,
treatments with PEMF and osteo-induction medium to-
gether evoked a significant up-regulation of integrinf1
mRNA expression in comparison to the other treatments
(Figure 6F). These results suggest that, integrinp1 appears
to be one of the PEMF or biochemical sensitive receptor
mediated in the osteogenic differentiation of AECs.

Discussion

In the present study, the combined effects of physical
treatment (PEMF) and biochemical stimuli (osteo-induc-
tion medium) on the osteogenic differentiation of AECs
were investigated. The major findings of this study are:
(1) Combined application of PEMF and osteo-induction
medium to AECs has stronger effects on osteogenic differ-
entiation, than either treatment alone; (2) Activation of
signaling pathways, such as BMP-2 and Wnt/B-catenin,
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Figure 4 OC protein expression was induced to rise during the osteogenic differentiation of AECs. (A) The expression of OC protein was
analyzed by immunocytochemistry (magnification of 400x). (B) The integrated optical density (I0D) of OC was measured by ImageJ software.
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might be important in mediating the PEMF and/or osteo-
induction medium-induced osteogenic differentiation of
AECs; (3) Nrf2/Keapl, master regulators of ROS, might be
implicated in the PEMF and/or osteo-induction medium-
induced osteogenic differentiation of AECs; (4) The expres-
sion of integrinl mRNA was up-regulated in the process
of osteogenic differentiation of AECs induced by PEMF
and/or osteo-induction medium. Our data indicate that
PEMF could play an important role in the modulation of
osteogenic differentiation of AECs. These observations also
establish possible links of integrinl and Nrf2/Keapl in
mediating PEMF and/or osteo-induction medium-induced
osteogenic differentiation of AECs.

PEMEF could interfere with cellular growth, prolifera-
tion and differentiation, as recently demonstrated in os-
teoblasts [9]. PEMF is also capable of regulating Ca**
homeostasis and promoting fracture healing [21]. There
have been several studies to demonstrate the inductive
effect of PEMF in the osteoblast differentiation of MSCs
[11,12,14,22,23]. Tsai et al. reported that PEMF could in-
duce early onset of osteogenic differentiation of MSCs
on the basis of ALP activity and stimulate the gene

expression of ALP and Runx-2 at day 7 but lower at day
10 in the process of osteogenic induction [22]. The simi-
lar results were reported by Sun et al. who found that
exposure to PEMF significantly increased ALP gene ex-
pression during the early stages of osteogenesis and en-
hanced mineralization near the midpoint of osteogenesis
[12]. Additionally, Song et al. revealed that PEMF could
up-regulate the gene expression of Runx-2, bone sialo-
protein (BSP) and osteopontin (OPN); enhance the alka-
line phosphatase activity and calcium deposition in a
time-dependent manner. Furthermore, MEK/ERK signal-
ing pathway might be mediated in this process of osteo-
genic differences of MSCs [11].

The present study showed that PEMF stimulation
alone could induce the expression of osteoblast markers
ALP and OC at both gene and protein levels at specific
time point(day 7). The osteo-induction medium was also
able to induce the osteogenesis of AECs as reported in
the previous literature [5]. Moreover, combined applica-
tion of PEMF and osteo-induction medium led to sig-
nificant up-regulation of ALP and OC expression and
promoted the obvious extracellular matrix calcification.
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Our findings demonstrated the synergistic effects of
physical (PEMF) and biochemical stimuli (OM) on the
osteogenic induction of AECs. The effect of PEMF on
the osteoblast differentiation of AECs may depend on
the specific parameters of PEMF, such as waveform, dur-
ation, frequency and magnetic flux, as well as different
cell types [22,24]. This may be the reason why the effects
of PEMF alone on the stimulation of osteogenic differen-
tiation of AECs were found most obvious at day 7.
Therefore, further studies are necessary to determine the
optical parameters of PEMF in the osteogenic differenti-
ation of AECs.

Among the intracellular signals involved in PEMF ac-
tions, the activation of bone morphogenetic proteins
(BMPs) plays important roles. Runx2, as a downstream
regulator of BMP-2 signaling, is necessary for osteoblast
differentiation [25]. Wnt/p-catenin signaling is also of
crucial importance for MSCs osteogensis [26]. Our re-
sults showed that the gene expression of BMP-2, Runx2
and B-catenin were all up-regulated in the osteogenic
differentiation of AECs induced by PEMF alone at the
specific time point (day 7). Osteo-induction medium

alone or combined with PEMF exposure could induce
BMP-2, Runx2 and [-catenin gene expression especially
at the early stage of osteogenic induction (day 3). Add-
itionally, similar gene expression profiles of BMP2,
Runx2 and P-catenin were observed. These results may
be due to the fact that both BMP-2/Runx2 and Wnt/p-
catenin signaling could play important role in activating
the osteogenic induction of AECs at the early-stage,
while down-regulation of these signals are required for
the late-stage of osteogenesis and matrix mineralization
[26,27]. Therefore, the present observations showed that
PEMF and/or osteo-induction medium-induced the osteo-
genic differentiation of AECs may be via activation of both
BMP-2 and Wnt/p-catenin signaling.

Another pathway implicated in the PEMF action is the
generation of reactive oxygen species (ROS) [28,29]. Re-
cent study showed that Nrf2/Keapl, master regulator of
ROS generation, would be required for intestinal stem
cells (ISCs) proliferation [19]. In our study, the induction
expression of Nrf2 and Keapl were observed in the
treatment of PEMF and/or osteo-induction medium, and
the gene expression of Nrf2 and Keapl exhibited similar
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profiles during the osteogenesis of AECs. As key regula-
tors of ROS generation, Nrf2/Keapl might be of poten-
tial importance during osteogenic differentiation of
AECs induced by PEMF and/or the osteo-induction
medium.

The mechanism involving how the cells sense and
transduce physical stimulation such as PEMF into bio-
chemical signals has remained elusive. Integrins function
as one of the mechanoreceptors, which are capable of
switching mechanical strain to biochemical signals [20,30].

This process is comprised of binding to the extracellular
matrix (ECM) ligands and activating the specific signaling
pathways which would be involved in the mechanical-
induced differentiation of cells [31]. Kasten et al. reported
that certain biological functions of MSCs would be per-
formed under the circumstance of integrin-mediated
mechanical forces [32]. Franceschi et al. found that the ap-
plication of mechanical force to osteoblasts could activate
the MAPK signaling through integrin a2 and 1 [33].
However, little is known about the role of integrins in the
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differentiation of AECs. The current study showed that,
integrinP1 gene expression was up-regulated in the PEMF
and/or osteo-induction medium-induced osteogenic dif-
ferentiation of AECs. We propose that integrinf1 might
act as a receptor, which can be inducible in response to
the physical stimulation, especially to the PEMF.

Our preliminary study demonstrates the role of BMP-2,
Wnt/B-catenin, Nrf2/Keapl and integrinfl in the osteo-
genic differentiation of AECs, only from the perspective of
gene expression. Even though these molecules/pathways
may be critical in mediating PEMF/osteo-induction
medium enabled osteogenic differentiation, it is difficult
to reveal the exact mechanisms without further testing,
such as pathway-specific approaches. Therefore, additional
experiments are needed to explore the mechanisms on
how these signalings, ROS and integrinf1 play role in
regulating the PEMF-induced osteogenic differentiation of
AECs.

Conclusions

The present study demonstrates that combined use of
physical (PEMF) and biochemical stimuli (osteo-induc-
tion medium) is synergistic for the osteogenic differenti-
ation of AECs, which might be a novel approach in bone
regenerative medicine. BMP-2/Runx2, Wnt/p-catenin,
ROS and integrin signalings might be involved in the
osteogenic differentiation of AECs induced by PEMF
and/or osteo-induction medium.
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