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Abstract

were used for comparison.

Background: Altered sensory information arising from damaged knee joint structures has been hypothesized as a
contributing factor to persistent muscle dysfunction following injury.

Methods: Composite femoral nerve sensory signal was measured in 24 rabbits randomly allocated (8 per group) to
receive surgical anterior cruciate ligament (ACL) transection with or without autograft reconstruction or nothing
(control). Two-weeks after the intervention composite afferent signals were recorded from the femoral nerve.
Side-to-side ratios (surgical side vs contralateral healthy side) for peak femoral nerve afferent composite signal

Results: Femoral nerve afferent signal ratios were significantly higher in the ACL-R (2.21 +£0.74) group when
compared to the ACL-T (1.28+0.61, P=0.02) group and Control group (1.31+0.78, P=0.03).

Conclusion: The magnitude of sensory information recorded on the femoral nerve is increased following ACL
injury and reconstruction surgery, but not after an isolated ACL injury in rabbits.
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Background

Sensory information from mechanoreceptors in peri-
articular tissues play a crucial role in proprioception,
motor control and dynamic joint stability [1]. Altered
sensory information arising from damaged knee joint
structures has been hypothesized as a contributing factor
to persistent dysfunction following injury such as altered
proprioception, force production and coordination [2,3].
In the knee joint, afferent information arises from nerves
that innervate muscles crossing that joint. Innervation to
the knee joint capsule has been characterized in animal
and human anatomic experiments and includes projec-
tions from the obturator, saphenous and femoral nerves
[4]. Therefore, sensory information from pain, pressure
and stretch receptors such as free nerve endings, pacin-
ian corpuscles and ruffini endings would be conveyed
along these nerve projections resulting in a composite
afferent signal conveyed to the central nervous system.
The sensory effects of knee joint injury have been re-
ported in humans indirectly as the underlying cause of
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arthrogenic muscle inhibition (AMI) [3,5]. In theory, al-
tered sensory information arising from mechanorecep-
tors within damaged knee joint structures results in an
ongoing reflexive response causing a reduction in spinal
reflex excitability [6]. Therefore, characterization of a com-
posite afferent signal following knee joint injury or surgery
would help develop a better understanding the sensory
response to joint injury and possibly explain potential
underlying causes of AMI.

Recent investigations have shown the femoral nerve
composite sensory signal changes following MCL disrup-
tion in rats [7,8]. However, Rabbits have also been used
in models of knee injury, muscle weakness and osteo-
arthritis. The large mammalian nervous system and knee
joint anatomy of rabbits provide an adequate model for
studying the effects of intra-articular knee ligament injury
or reconstructive surgery. Rabbit models of knee injury,
osteoarthritis and muscle dysfunction have been described
[2,9-14]. For example, quadriceps muscle weakness [11]
and atrophy [10] were observed in rabbits with transected
anterior cruciate ligaments (ACL) suggesting the role of
posttraumatic quadriceps dysfunction in the onset and
progression of osteoarthritis. Further, muscle weakness
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induced by botox injections caused increased cartilage de-
generation in rabbits [13]. However, a model to study
composite afferent signals arising from the femoral nerve
in the presence of ACL injury or reconstruction has not
been developed.

Therefore the purpose of this study was to compare
femoral nerve afferent signal using a whole nerve re-
cording technique in rabbits 2-weeks following knee
joint trauma. We hypothesized that the damage caused
by injury and surgery would cause an increase in afferent
activity from sensory endings located in tissues within
and surrounding the knee joint thereby increasing com-
posite signal measured from the femoral nerve in rabbits
with knee joint injury and reconstruction surgery com-
pared to controls due to increase afferent activity from
sensory endings.

Methods

This study was reviewed and approved by the Institu-
tional Animal Care and Use Committee at the University
of Virginia. Twenty-four adult, male New Zealand White
rabbits were randomized into one of 3 intervention groups.
Eight of the rabbits received unilateral ACL transection, 8
of the rabbits received an ACL reconstruction and the
remaining 8 were control rabbits who received no inter-
vention. The side receiving the surgical intervention was
randomly allocated.

Surgical intervention
Animals receiving ACL transection (ACL-T) were fully
induced with inhaled isoflurane. A knee joint arthrotomy
was performed and the anterior cruciate ligament was
identified and carefully transected. Care was taken to
avoid damage to cartilage or other intra- or peri- articu-
lar structures. The joint capsule and skin were closed
with absorbable sutures. For the animals in the ACL re-
construction (ACL-R) group the medial third of the pa-
tellar tendon was removed and prepared as an ACL
autograft. The graft was passed through small diameter
tunnels drilled through the tibia and femur and fixed to
the tibial and femoral periosteum with suture. Control
animals received no surgical intervention and remained
on the procedure table for a period of time similar to
that of the surgical procedures. The animals receiving
unilateral knee surgery (ACL transection with or without
reconstruction) were given buprenorphine and a fentanyl
patch for pain control and kept in recovery cages on
heating pads under warm light post operatively. Animals
were housed in a cage for repeat observation on the first
day and then daily for signs of pain. Rabbits were all
housed for 2 weeks with daily monitoring at which point
the terminal measurements were recorded.

After 2 weeks we performed whole nerve recordings
on the femoral nerve in each animal bilaterally. This
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technique was performed in a similar manner to previous
published research in rats that utilizing a direct nerve re-
cording technique to characterize changes in composite
afferent nerve signal arising from stimulated gustatory re-
ceptors [15]. Animals were first prepared by shaving hair
around the thighs and groin. Rabbits were fully induced
with inhaled isoflurane. We wrapped the lower extremity
distal to the knee joint with self-adhesive elastic tape to
minimize afferent input from tissues distal to the knee. An
anterior incision on the proximal thigh was used to care-
fully dissect the down to the femoral nerve. The femoral
nerve was identified, isolated from surrounding vascular
structures and transected to remove efferent signal from
nerve recordings. The distal portion of the nerve was de-
sheathed using a sharp probe and attached to a platinum
recording electrode. A second electrode was placed in
nearby muscle tissue to serve as a ground. Signals were
passed through a high impedance headstage, amplified
and digitized (ADInstruments, Colorado Springs, CO).
We recorded neural activity from the femoral nerve dur-
ing passive knee extension trials. During each passive knee
extension trial the knee was extended manually at a con-
stant rate from a flexed position until fully extended.

Afferent signal recorded from the femoral nerve was fil-
tered and integrated and displayed on a computer screen in
real time. We continuously monitored visual and auditory
signal to assure a consistent baseline level of afferent activ-
ity as we manually held the limb to initiate passive move-
ment. Then, the limb was slowly and passively extended to
end range and held for 5-10 seconds. The peak signal mea-
sured in the extended position was used for analyses.

Data analysis

Signal was integrated and filtered (50 Hz low pass). The
average from 5 trials was calculated then, a ratio be-
tween the affected and unaffected side was calculated
and used for statistical analysis between surgery groups.
The affected side was the numerator and the unaffected
side the denominator therefore, ratios higher than 1.0
indicated higher femoral nerve afference on the affected
side. For the control group, affected and unaffected sides
were selected at random.

Statistical methods

A 1X3 ANOVA was used to compare femoral nerve affer-
ent ratios among the 3 treatment groups. Tukey’s LSD test
was used for post hoc analysis if appropriate. Tests were
considered statistically significant if the p-value was 0.05
or less. SPSS version 17.0 (SPSS, Inc., Chicago, IL) was
used for all statistical analyses.

Results
The ratio of peak, integrated femoral nerve afference be-
tween the involved and uninvolved sides was significantly
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different among treatment groups (F5 19 =3.97, P = 0.036).
Specifically, the femoral nerve afference ratio was sig-
nificantly higher in the ACL-R (2.21 + 0.74) group when
compared to the ACL-T (1.28 + 0.61, P = 0.020) group and
Control group (1.31 +0.78, P =0.029). There was no sta-
tistically significant difference between the ACL-T group
and control group (P =0.94, Figure 1). Peak nerve re-
cording values are reported bilaterally with side-side ratios
in Table 1.

Discussion

The primary finding in this study is that composite sen-
sory information measured on the femoral nerve was
higher in animals with knee joint injury compared to
controls. The differences in side-side ratios were only
present in animals in the ACL-R group. The surgical
groups were intended to model a scenario of ACL injury
with instability versus ACL injury with stability restored
through autograft patellar tendon reconstruction. The
findings of higher side-side ratios in the ACL-R group
suggest that the additional damage created in the knee
joint due to the reconstruction procedures resulted in
changed sensory information detected in the femoral
nerve. Reconstructed knees underwent partial removal of
the patellar tendon, potential damage to the joint struc-
tures due to tunnel drilling, graft passage and fixation and
a more extensive arthrotomy and longer surgical time
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Table 1 Peak nerve recordings from the femoral nerve for
the affected and unaffected sides in each group*

Control ACL-D ACL-R
Affected side (mV) 14.1+99 147+62 255+104
Unaffected side (mV) 106+ 4.8 120+25 115+19
Side-side ratio 13+£.8 13+6 22+.7

*The affected side was the side that had an ACL transection with or without
reconstruction or a randomly selected limb in the control animals.

compared to the ACL transection group. Therefore, these
findings suggest that the extent of damage caused by
the surgical intervention may explain the observed group
differences.

In clinical research, poorer outcomes have been re-
ported in patients with more severe knee joint injuries.
For example, higher magnitude quadriceps arthrogenic
muscle inhibition has been reported in patients with more
severe or extensive joint structure damage [6,16,17]. In
addition, patients with recurrent knee injuries such as a
failed graft following ACL reconstruction surgery have ex-
hibited poorer self-reported outcomes [18]. Finally, greater
impairments in knee joint proprioception was reported
in patients with ACL deficient knees reporting instability
[19]. Therefore, it is possible that the side-side differences
in nerve signal observed in the ACL reconstruction group
was due to the addition knee joint damage due to the re-
construction procedures.
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Figure 1 Average side-side ratios for peak afference measured during passive knee joint extension in rabbits. Measurements were
recorded 2 weeks after ACL transection (ACL-T), ACL Reconstruction (ACL-R) and in animals with healthy knee joints (control). Error bars
represent +/— 1 standard deviation. The asterils (*) indicates a significant difference compared to the other groups.
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In the current study, we observed higher magnitude
composite afferent signal in knees that underwent ACL
reconstruction compared to control animals. The signal
measured from the femoral nerve may include several
sources of afferent information. For example, articular
structures within and around the knee joint contain
nerve receptors such as free nerve endings, pacinian cor-
puscles and ruffini endings [20,21]. These receptors are
innervated by articular branches from the femoral, sa-
phenous, obturator, tibial, common peroneal, and recur-
rent peroneal nerves [22]. In feline models, it has been
reported that the anterior and posterior knee joint capsule
is densely innervated with Ruffini endings [23] which are
slowly adapting mechanorecptors that respond to capsular
stretching [24]. The innervation of the knee joint is dis-
persed among the various nerve branches. Knee joint
innervation has been previously divided into anterior
(articular branches from the femoral, common peroneal
and saphenous nerve) and posterior (articular branches
from the tibial and obturator nerves) [4]. The exact articu-
lar distribution is unknown in rabbits, but in other mam-
malian systems, components of the anterior group of
nerve fibers, including the femoral and saphenous nerve
articular branches, terminate on structures around the an-
terior, medial and lateral aspects of the joint capsule and
anterior cruciate ligament [4]. Posterior group afferents
terminate on posterior structures and the posterior cruci-
ate ligament. Interestingly, branches from the saphenous
nerve and the obturator nerve have been reported to form
a nerve plexus innervating the posterior capsular struc-
tures. In the current study, we certainly did not capture
all of the sensory information because we did not record
from obturator, tibial or common peroneal nerves. The
composite information recorded in the current study likely
included information from the femoral nerve and its sen-
sory branch, the saphenous nerve. Therefore femoral nerve
signal measured in the current study is most likely attrib-
uted to afferent signal arising from articular structures in-
nervated by the femoral and saphenous nerves.

In the current study, we observed higher magnitude
composite signal from the femoral nerve in the recon-
structed group only. This finding highlights the fact that
the anterior cruciate ligament may play an important
role in conveying sensory information [4]. Mechanorecep-
tors such as pacinian corpuscles, golgi tendon organs, and
ruffini endings are heavily clustered at the proximal and
distal poles of the anterior cruciate ligament [22,25-27]
giving rise to afferent proprioceptive information. During
an ACL reconstruction, it is likely that terminal branches
of sensory nerves are severed as a natural consequence of
the surgical procedure so its not clear what sources play a
role in conveying sensory information following ACL in-
jury and reconstruction. In the post-amputee literature ec-
topic afferent, nociceptive signaling has been hypothesized
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to arise from nerve sprouting from severed nerves [28].
In the current study there may be potential relation-
ship between the loss of tissue and afferent input. For
example, reconstruction techniques where the ACL rem-
nants are preserved [29-31] have been described as hav-
ing good outcomes [32]; attributed to improved improved
vascularization and re-innervation due to the ACL remnant
[33,34]. The presence of a remnant in the ACL-T group is
one differentiating factor that may partially explain why
this group did not have increased composite afferent sig-
nal. The role of tissue preservation and sensory input is an
area for future research.

Joint damage often leads to arthrogenic muscle inhib-
ition in the quadriceps musculature [35]. Arthrogenic
muscle inhibition is a unique phenomenon because it
exists despite no injury or pathology to the efferent
nerve or target muscle. In theory, arthrogenic muscle in-
hibition is a reflexive response to aberrant sensory infor-
mation arising from damaged joint structures resulting
in a failure to voluntarily activate motor units. The re-
sponse of Ruffini endings to capsular stretching due to
laxity or joint effusion has been implicated in reflexive
muscular inhibition that is commonly seen in patients
with extensive knee injuries [3,5]. In humans, this mani-
fests as persistent muscle weakness, altered gait patterns
and joint degeneration [36]. While this may be a protect-
ive response in the acutely injured knee, the long term
outcome in persistently inhibited musculature can result
in dysfunction. Therefore, if arthrogenic muscle inhib-
ition is persistent following joint injury, recovery may
be impeded. In clinical populations, the quadriceps [16]
muscle is commonly affected by arthrogenic muscle inhib-
ition which often leads to impaired movement during
walking gait [37]. Increased afferent information is cur-
rently hypothesized to contribute to post-traumatic muscle
inhibition. The findings from the current study may be
the basis of future investigations into the potential re-
lationships among increased afferent information and
quadriceps muscle dysfunction and osteoarthritis in the
post-traumatic knee.

There are some limitations to the study due to the pos-
siblity that other factors associated with knee joint injury,
such as inflammation and associated chemical mediators,
sensitize afferent nociceptive neurons, which may also
contribute to altered sensory information in the post-
traumatic knee [38]. However, we feel that the potential
influence of chronic inflammation was minimal because
upon examining the medical records, none of the rabbits
were showing any outward signs of inflammation at the
time of follow up evaluations nor any changes in behavior
that would indicate the animals were in pain. All were ac-
tive and healthy at the time of terminal measurements
therefore our conclusions are made based on measure-
ments recorded when rabbits were in good health and
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recovered from their knee joint surgery. Another limita-
tion is the lack of comparison to baseline measurement.
Unfortunately, due to the terminal nature of the measure-
ment technique, baseline measurements were not able to
be recorded prior to surgery.

Conclusion

We observed higher side-to-side ratios of peak, composite
afferent signal measured directly from the femoral nerve
during passive knee extension in rabbits, 2 weeks follow-
ing ACL reconstruction. This difference suggests higher
magnitude sensory information from damaged knee joint
structures. This increase in sensory afference may play a
role in reflex quadriceps muscle inhibition that is com-
monly observed in the post traumatic knee.
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