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Expression profiling in spondyloarthropathy
synovial biopsies highlights changes in expression
of inflammatory genes in conjunction with tissue
remodelling genes
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Abstract

Background: In the spondyloarthropathies, the underlying molecular and cellular pathways driving disease are
poorly understood. By undertaking a study in knee synovial biopsies from spondyloarthropathy (SpA) and
ankylosing spondylitis (AS) patients we aimed to elucidate dysregulated genes and pathways.

Methods: RNA was extracted from six SpA, two AS, three osteoarthritis (OA) and four normal control knee synovial
biopsies. Whole genome expression profiling was undertaken using the Illumina DASL system, which assays 24000
cDNA probes. Differentially expressed candidate genes were then validated using quantitative PCR and
immunohistochemistry.

Results: Four hundred and sixteen differentially expressed genes were identified that clearly delineated between
AS/SpA and control groups. Pathway analysis showed altered gene-expression in oxidoreductase activity, B-cell
associated, matrix catabolic, and metabolic pathways. Altered “myogene” profiling was also identified. The inflammatory
mediator, MMP3, was strongly upregulated (5-fold) in AS/SpA samples and the Wnt pathway inhibitors DKK3 (2.7-fold)
and Kremen1 (1.5-fold) were downregulated.

Conclusions: Altered expression profiling in SpA and AS samples demonstrates that disease pathogenesis is associated
with both systemic inflammation as well as local tissue alterations that may underlie tissue damaging modelling and
remodelling outcomes. This supports the hypothesis that initial systemic inflammation in spondyloarthropathies
transfers to and persists in the local joint environment, and might subsequently mediate changes in genes directly
involved in the destructive tissue remodelling.
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Background
The underlying processes driving disease progression in the
spondyloarthropathies (SpA) are very poorly understood.
The disease transitions from an initial inflammatory insult
through an inflammation-driven tissue destruction phase to
an osteoproliferative phase which in the worst cases results
in joint fusion. SpAs mainly present in the axial skeleton
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and the inaccessibility of these joints and subsequent lack
of sample availability together with the slow disease
progression hinders research such that the dysregulated
molecular and cellular mechanisms driving disease remain
largely unknown.
Expression profiling studies of affected tissues in SpA

offer a hypothesis free approach to elucidating underlying
pathogenic mechanisms. Previously ours and other groups
have focussed largely on peripheral blood samples, either
from whole blood [1,2] or from total [3,4] or partial [5]
PBMC fractions. These studies provide valuable infor-
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mation regarding the systemic immunological processes
involved in SpA, they are less informative regarding local
inflammatory and tissue damage processes, in particularly
the mechanisms underlying joint damage and the progres-
sion from inflammation to osteoproliferation in SpA.
Until very recently, only two small-scale tissue expression

profiling studies have been undertaken in SpA, in synovial
biopsies [6] and sacroiliac joint fluid [7], and no compre-
hensive genomic profiling study had been reported in joint
tissue in SpA.
Peripheral arthritis is present in significant numbers

of SpA patients with estimates between 14-20% of AS
patients and 18-26% of Undifferentiated SpA patients
[8]. In ankylosing spondyltitis (AS) patients with both
axial and peripheral inflammation, anti-TNF treatments,
such as adalimumab, have shown efficacy in reducing
both peripheral and axial disease [9]. This site inclusive
treatment efficacy suggests similar disease processes
are occurring in these different joint environments.
Subsequently this provides some justification for assess-
ment of molecular changes within affected knee joints,
that are a more accessible tissue site, as a viable approach
for elucidating joint specific disease processes in SpA.
In early 2013, Yeremenko et al. published a study in

which they undertook a large-scale gene expression
profiling study comparing knee synovial biopsies from
SpA, rheumatoid arthritis (RA) and gout patients. They
demonstrated that many inflammatory genes and pathways
were shared across RA and SpA. However, a “myogenic”
profile was evident in the SpA samples which delineated
them from the RA samples [10].
We have undertaken a similar approach, comparing

archived formaldehyde-fixed paraffin-embedded (FFPE)
synovial biopsies from AS, SpA, normal control and
osteoarthritis (OA) patients. We similarly identified an
enhanced myogene signature in our AS/SpA samples.
Additionally we have also identified a number of other
pathways that may contribute to tissue remodelling as
well as inflammatory pathways.

Method
Patients
Fifteen knee synovial biopsy tissue samples consisting of
six seronegative spondyloarthropathy (SpA), two ankylosing
spondylitis (AS), three osteoarthritis (OA) and four normal
control biopsies were obtained from the Synovial Tissue
Bank at the Repatriation General Hospital in Adelaide,
South Australia (Additional file 1: Table S1). Biopsies
were taken arthroscopically under direct vision biopsying
with sampling of macroscopically abnormal appearing
synovium. All patients provided informed written consent.
Ethical approval for this study was obtained from the
Southern Adelaide Health Service/Flinders University
Human Research Ethics Committee.
RNA preparation and Microarray analysis
RNA was extracted from the biopsies embedded in
formaldehyde-fixed paraffin-embedded (FFPE) tissue blocks
using the Arcturus Paradise© Plus Reagent System (Mo-
lecular Devices, Sunnyvale, CA) as per the manufacturer’s
protocol. All the biopsy was used for the RNA extraction.
200 ng of RNA was used in the Illumina Whole-

Genome DASL® (cDNA-mediated Annealing, Selection,
Extension, and Ligation) Gene Expression Assay according
to the Illumina protocol. This technique has been spe-
cifically developed for whole-genome expression profiling
of degraded RNA samples from archived tissue biopsies.
RNA is first converted to cDNA through a reverse tran-
scription reaction with biotinylated primers. The bio-
tinylated cDNA is then annealed to assay oligonucleotide
probes specific for each of the 24000 cDNAs targeted
by the array. The hybridized oligonucleotides are then
extended and ligated in a second-strand cDNA synthesis
forming a synthetic template that is transferred to a PCR
reaction containing a fluorescently labelled primer. The
labelled PCR product strand is then isolated and the
fluorescent products were hybridised to Illumina Ref-8
Expression BeadChips and scanned. Gene expression is
then quantified by the level of fluorescent hybridization
to the BeadChip. Data was processed in GenomeStudio
(Illumina) and analysed using Lumi [11] and BRB
ArrayTools [12] as described previously [3]. Data was
transformed by variance stabilization transformation
(VST) [13] then normalized by robust spline normal-
ization (RSN) [14]. This data has been uploaded to the
NCBI GEO database and assigned accession number
GSE41038.
Of the 24,500 cDNAs on the DASL arrays, 20,700

were found to be expressed in at least one sample and
were included in the analysis. For analysis, AS and SpA
samples were grouped together and compared with a
control group consisting of OA and normal samples.
Differentially expressed genes were identified by unpaired
t-test with multivariate permutation correction. The
evaluation of which Gene Ontology (GO) classes are
differentially expressed between control and affected
bones was performed using a functional class scoring
analysis as described previously [2]. Efron-Tibshirani’s
Gene Set Analysis (GSA) was used which uses “maxmean”
statistics for assessing significance of pre-defined gene-
sets. Gene Ontology analysis was performed using BRB-
ArrayTools.

Quantitative PCR
Quantitative PCR validation (qPCR) was carried out as
described previously [3] in nine normal and OA samples
as well as in seven SpA and AS samples. Due to low
RNA yields obtained from the biopsies four of the array
samples lacked sufficient RNA for confirmation qPCR
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follow-up but an additional five control samples were
obtained for the qPCR analysis generating a partially inde-
pendent confirmation cohort (Additional file 1: Table S1).
Briefly, cDNA was generated from 1 μg of total RNA

using the Bioline cDNA synthesis Kit (Bioline, London,
UK) according to manufacturer’s instructions. Candidate
genes were assayed using the predesigned TaqMan assays
(DKK3 = Hs00247426_m1, PTGER4 = Hs00168761_m1,
MMP3 =Hs00968308_m1). For normalisation, expression
levels of the housekeeping gene, RPL32, [8] were measured
by SYBR green based qRT-PCR using specific forward
(5′-CCCCTTGTGAAGCCCAAGA-3′) and reverse (5′-
GACTGGTGCCGGATGAACTT-3′) primers. All assays
were carried out using SensiMix dT RT-PCR reagent
(Quantace, Sydney, Australia) under the following con-
ditions; 50°C for 2 min, 95°C for 10 min, and 40 cycles
of 95°C for 15 s and 60°C for 60s.
Relative expression of genes of interest were determined

using the ΔCT method or standard curve method. Com-
parisons between different patient groups were undertaken
using Mann–Whitney tests.

Immunohistochemistry
For the MMP3 immunohistochemistry, three AS, five
SpA, 9 normal and 24 RA biopsies were stained. Tissue
sections were blocked for endogenous peroxidase before
digestion with proteinase K. This was followed by incu-
bation first with a mouse anti-human MMP3 primary
antibody (Santa Cruz Biotechnology, Santa Cruz, CA)
for 2 hrs at room temperature (RT) then with a donkey
anti-mouse IgG secondary antibody (Jackson ImmunoR-
esearch Labs, West Grove, PA) for 40 mins at RT. Anti-
body staining was visualised with an ABC kit (Vector
Laboratories, Burlingame, CA) using an AEC chromagen
substrate (Dako, Cambellfield, Australia) before counter-
staining with haematoxylin and mounting with Aquatek
(Merck, Kilsyth, Australia). Staining was quantified using
NIS Elements Br 3.0 software (Nikon, Lidcombe, Australia).

Results
To maximise the power of the study we grouped the
eight AS and SpA samples together (AS-SpA) and
compared them with a control group consisting of
seven normal and OA (a non-inflammatory arthritis)
(OA-Norm) samples for the analysis. The validity of
this grouping was confirmed by unsupervised clustering
that showed no differences between AS and SpA nor
between OA and normal samples (data not shown).
However, unsupervised clustering clearly delineated
between the AS-SpA and OA-Normal groups, with only
one sample from each group misclassifying (Figure 1A,
sensitivity 88%, specificity 86%).
To identify differentially expressed genes we undertook

a class comparison of the two groups which showed
this clustering was driven by 416 differentially expressed
genes (p < 0.01) ranging from a 4.7-fold up-regulation to a
4.6-fold down-regulation (Figure 1B, Additional file 2:
Table S2).
To ascertain if there was a correlation in the tissues with

systemic inflammatory genes dysregulated in our previous
PBMC expression profiling studies [3] we compared
the genelists. Using Gene-set Enrichment Analysis (GSEA)
to calculate the degree of enrichment of the synovial
biopsy genelist in the transcriptome of the AS PBMCs,
Efron-Tibshirani’s GSA maxmean test showed the synovial
geneset was enriched in the PBMC transcriptome with
a p-value of 0.005. A number of immune/inflammation-as-
sociated genes were altered in the two datasets (highlighted
in Additional file 2: Table S2). The upregulated genes were
CD40 (a member of the TNF receptor superfamily);
CLEC12A (a member of the C-type lectin/C-type lectin-
like domain superfamily); and FCGR1A (a high-affinity
Fc-gamma receptor). Conversely, TSC22D3, which plays
a key role in the anti-inflammatory and immunosup-
pressive effects of glucocorticoids, was downregulated
in both PBMCs and synovial biopsies.
To identify changes in pathways that might mediate

disease we undertook Gene Ontology (GO) analysis. In
the synovial biopsies, a number of inflammatory pathways
showed altered expression including those involving
oxidoreductase activity (including the cyclooxygenases
which mediate prostaglandin production), B-cell activ-
ity, interferon-γ response and myeloid cell activation
(Table 1).
We also specifically focused on gene expression changes

that might contribute directly to the tissue remodelling
seen in affected joints in SpA. The tissue remodelling
inflammatory genes, matrix metalloproteinase 1 (MMP1,
3.5-fold, p = 0.001) and matrix metalloproteinase 3 (MMP3,
4.7-fold, p = 0.005) showed marked up-regulation in AS/
SpA biopsies (Table 2). Quantitative PCR confirmed these
changes showing an 11-fold upregulation in MMP-3 ex-
pression (Figure 1C). Robust MMP-3 protein expression
was detected by immunohistochemistry in AS biopsies
(6700 OD/mm2) with low expression in SpA (32 OD/
mm2) and RA (652 OD/mm2) samples. MMP-3 protein
expression was not detected in normal control samples
(Figure 2). MMP-3 RNA levels were also higher in the
two AS samples than in the SpA samples, though not
significantly. The prostaglandin E receptor 4 (PTGER4)
was also upregulated (1.24-fold by microarray, 1.9-fold by
qPCR, p < 0.05). Gene ontology analysis identified matrix
catabolic and metabolic pathway dysregulation (Figure 1).
Two Wnt pathway inhibitory genes were down-regu-

lated in our microarray dataset (Figure 1C, Table 2); DKK3
(2.7-fold, p = 0.003) and Kremen1 (1.5-fold, p = 0.007).
Quantitative PCR data supported the array findings
with DKK3 down-regulated 2.7-fold (p = 0.09, Figure 1C,



Figure 1 Histological and immunohistochemical findings. (A) Diffuse lymphocytic infiltration of the dermis predominantly composed of large
pleomorphic cells with irregular nuclei and prominent nucleoli (hematoxylin-eosin staining, magnification 20×). By immunoperoxidase staining,
the neoplastic cells showed marked and diffuse expression of CD3 (B) and CD30 (C).
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Table 2); DKK3 was in fact undetectable in the AS samples
with low levels of expression in the SpA samples (data
not shown).
A recent study demonstrated a strong enhancement of

a “myogene signature” in AS and SpA synovial biopsies
[10]. We also saw alterations in a number of myocyte-
associated pathways (Table 1). However when we looked
specifically at the genes differentially expressed in the
myogene signature in the Yeremenko study we did see
not strong expression changes suggesting our myogene
signature was due to a different subset of genes (data
not shown).
Discussion and conclusions
Using whole genome expression profiling in archived
synovial biopsies we have established changes in key
pathways and genes that might mediate both the inflam-
matory changes and the tissue remodelling downstream of
the inflammation in SpA and AS.
Estimates of the incidence of peripheral arthritis are

between 20-50% in AS and SpA patients [8,15,16]. It has
been proposed that the aetiopathogenesis of peripheral
and axial SpA are similar [8,17]. In both cases inflamma-
tion arises close to the enthesis with the inflammatory
infiltrate sharing many common features at the two sites
[17]. Whether enthesitis is the underlying initiating
pathology driving disease in SpA is still a subject of
considerable debate [18,19].
As might be expected in inflammatory arthritidies such as

SpA and AS, immune pathways are affected. Comparison
of this synovial tissue dataset with our previously published
PBMC dataset [3] identified a subset of inflammatory
genes and pathways that were altered in both studies.
Similar dysregulation in the interferon response and
myeloid cell pathways was seen possibly reflecting systemic
changes. Localised tissue inflammatory pathways such
as the oxidoreductase pathways however are altered in
synovial tissue but not PBMCs. Differentially regulated
pathways potentially mediate the progression from sys-
temic inflammation to localised inflammatory-driven
tissue damage.
In synovium, a number of closely-associated inflamma-

tory pathways involved in oxidoreductase activity were



Table 1 Gene ontology analysis of differentially expressed genes

Gene ontology term GO category Efron-Tibshirani’s GSA test p-value

Collagen/extracellular matrix association

Collagen binding GO:0005518 < 0.005

Collagen metabolic process GO:0032963 0.05

Collagen catabolic process GO:0030574 0.035

Integrin complex GO:0008305 < 0.005

Substrate-bound cell migration GO:0006929 < 0.005

Negative regulation of cytoskeleton organization GO:0051494 0.025

Nitric oxide/monooxygenase activity

Regulation of monooxygenase activity GO:0032768 < 0.005

Regulation of oxidoreductase activity GO:0051341 < 0.005

Regulation of nitric-oxide synthase activity GO:0050999 0.005

Nitric oxide biosynthetic process GO:0006809 0.015

Positive regulation of monooxygenase activity GO:0032770 0.005

Nitric oxide metabolic process GO:0046209 0.01

Regulation of nitric oxide biosynthetic process GO:0045428 0.005

Regulation of calcidiol 1-monooxygenase activity GO:0060558 0.005

Immune associated functions

B cell receptor signaling pathway GO:0050853 0.015

Regulation of leukocyte mediated immunity GO:0002703 0.02

Response to interferon-gamma GO:0034341 0.005

Positive regulation of B cell activation GO:0050871 0.04

Humoral immune response mediated by circulating immunoglobulin GO:0002455 0.02

Myeloid cell activation during immune response GO:0002275 0.01

Regulation of lymphocyte mediated immunity GO:0002706 0.035

Muscle/myocyte/myofibroblast biology

Dystroglycan binding GO:0002162 0.015

Myosin complex GO:0016459 0.01

Muscle filament sliding GO:0030049 0.02

Actin-myosin filament sliding GO:0033275 0.02

Myosin II complex GO:0016460 0.025

Actomyosin structure organization GO:0031032 0.04

Regulation of myoblast differentiation GO:0045661 0.03

Muscle myosin complex GO:0005859 0.02

Myoblast differentiation GO:0045445 0.02

Regulation of myotube differentiation GO:0010830 0.015

Myotube differentiation GO:0014902 0.005

Gene ontology (GO) analysis was undertaken using BRB Array Tools. Significantly altered genesets were identified using Efron-Tibshirani’s Gene Set Analysis (GSA)
test which tests which genesets contain more differentially expressed genes than would be expected by chance. The threshold of determining significant gene
sets was 0.005.
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identified, which includes the monooxygenase pathways
involved in nitric oxide production, and the cyclooxygen-
ase pathways producing COX-1 and COX-2 produce pros-
tanoids such as prostaglandins. COX-2 expression has
previously been demonstrated in SpA-affected joints
[20]. Cyclo-oxygenase inhibition using non-steroidal
anti-inflammatory drugs is a mainstay of therapy in AS,
and there is even suggestive evidence that such treat-
ment may retard the progression of ankylosis in the
disease [21-23]. Prostaglandin E receptor 4 (PTGER4)
was also upregulated, which has been shown to be
associated with AS in genomewide association studies



Table 2 Expression levels of candidate genes on the microarray and in the qPCR confirmation study

Array data Norm-OA (9) AS-SpA (6) AS-SpA/Norm-OA p-value

MMP3 480.66 2260.32 4.7 0.005255

MMP1 199.47 701.47 3.51 0.001053

DKK3 517.49 190.98 −2.71 0.003263

KREMEN1 988.68 674.73 −1.46 6.50E-03

PTGER4 317.58 393.08 1.24 4.70E-02

qPCR Norm-OA (9) SD AS-SpA (7) SD AS-SpA/Norm-OA p-value

MMP3 0.00026 0.00058 0.00295 0.00412 11.35 0.07

DKK3 0.101 0.073 0.037 0.061 −2.7 0.086

PTGER4 66.6 62.9 126.7 50.1 1.9 0.042

Figure 2 Immunohistochemistry showing MMP3 protein levels in synovial biopsies. MMP3 was undetectable in normal biopsies (A) with
very low levels seen in RA (C) with similarly low levels in SpA (D) samples and high expression of MMP3 in AS samples (B). Quantitation of the
stain is shown in (E).
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[24]. This is of particular interest, as PTGER4 through
its ligand PGE2 is a good molecular candidate to link
physical stress at entheses with bone formation [25],
and in driving inflammation through stimulation of IL-
23 production by dendritic cells [26].
Further alterations at the tissue level were seen in path-

ways affecting collagen metabolism and catabolism, cell-
motility and extracellular matrix interactions reflecting the
inflammatory joint destruction and tissue remodelling
seen in SpA. These were not altered in our studies on
whole blood and PBMCs [2,3].
MMP-3 was one of the most strongly upregulated

genes. Members of the MMP family of stromelysins
have been well documented to play roles in inflammation-
mediated tissue destruction. Elevated serum levels of
MMP-3 have been indicated in AS as a systemic bio-
marker of disease progression and activity [27], and
correlate well with BASDAI [28] and response to TNF-
blockade treatment [29,30]. In a study on SpA patients
with peripheral joint involvement, high serum MMP-3
correlated closely with increased synovial fibroblast
MMP-3 production supporting a local joint source for
the serum levels. MMP3 levels have been suggested to
be the best predictor of peripheral arthritis treatment
response [31]. In fact high MMP3 production was pro-
posed as a diagnostic biomarker for peripheral involvement
rather than global inflammation in SpA. High serum
MMP3 levels (presumably originating from the synovitis)
differentiated those patients suffering from axial and
peripheral SpA from those with only axial SpA [31].
Even though synovial inflammation in RA is usually
more destructive than that in SpA, MMP3 levels are still
higher in SpA suggesting a different tissue remodelling
role for MMP3 in SpA.
The Wnt pathway has been identified as playing an

important role in mediating bone formation and release
of inhibition of this pathway has been suggested to
contribute to osteoproliferation both in AS [32] and in
mouse models of SpA [33]. Downregulation of Wnt
inhibitors, such as DKK3 and Kremen1, as suggested by
the current data, could therefore generate permissive
signals for the excess bone formation seen in AS.
Osteoproliferation/bone formation in the synovial joints of
SpA patients has not been described however, though
bone formation in the affected entheses of SpA patients
has been demonstrated [18,19].
In a similar study to this one, Yerenmenko et al.

undertook a large scale whole genome expression pro-
filing study comparing SpA with RA and gout synovial
biopsies rather than OA and normal samples [10]. The
key finding from this study was the identification of a
296-gene “myogene” expression profile that was highly
enriched for genes associated with muscle/myocyte/
myofibroblast biology. Interestingly, they did not report
strong upregulation of inflammatory genes possibly due
to the comparison being between two inflammatory
arthritidies, although MMP1 was upregulated in the SpA
samples. They also reported altered expression of genes
in the Wnt pathway.
Similarly we also saw changes in “myogene” associated

pathways, further supporting their proposal for fibrotic
changes in the synovium of SpA patients. The specific
gene changes underlying these pathways were not the
same in the two studies but this may reflect the different
patient cohorts and tissue processing (FFPE vs. fresh
frozen). Analysis of our previous expression profiling
studies in PBMCs and whole blood showed the absence
of a myogene signature in these datasets suggesting it is
a disease-site specific phenomenon [2,3]. Interestingly,
gene ontology analysis comparing expression profiling
of spines and knees in proteoglycan induced spondylitis
(PGISp) mice showed a greater number of muscle-associ-
ated pathways upregulated in the knee joints suggesting
this may be a unique feature of peripheral disease [33].
The significance of the myogene profile though remains to
be elucidated however.
Two samples (1 OS-Normal and 1 AS-SpA) misclassified

during the clustering analysis. There were no technical
issues identified that might underline this so we can
assume the reasons were biological. The misclassification
of the sample probably reflects the compounded biological
variation in SpA patients due to a combination of genetic
factors and disease heterogeneity reflecting onset, severity
and symptoms.
Although we identified some key pathways and genes

of interest in this study it must e regarded as an explora-
tory study at this time. Despite some of the findings
agreeing with previous studies [10], further independent
validation studies are required to confirm the signifi-
cance of our initial findings.
By adopting a whole genome profiling approach this

study has identified gene signatures differentiating SpA
from non-SpA samples and highlighting pathways that
might play key pathophysiological roles in AS. Further,
the candidate gene changes we have highlighted possible
disease pathways that might control the progression
through the inflammation and tissue destructive/osteo-
proliferative phases of spondyloarthropathy and provide
guidance for focusing research efforts to elucidate disease
mechanisms.
Additional files

Additional file 1: Table S1. Clinical data for patients and controls.

Additional file 2: Table S2. Class comparison of the Norm-OA and
AS-SpA groups identified 416 differentially expressed genes (p < 0.01)
ranging from a 4.7-fold up-regulation to a 4.6-fold down-regulation.
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