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Abstract

Background: Anterior lumbar interbody fusion (ALIF) followed by pedicle screw fixation (PSF) is used to restore the
height of the intervertebral disc and provide stability. Recently, stand-alone interbody cage with anterior fixation
has been introduced, which eliminates the need for posterior surgery. We compared the biomechanics of the
stand-alone interbody cage to that of the interbody cage with additional PSF in ALIF.

Methods: A three-dimensional, non-linear finite element model (FEM) of the L2-5 segment was modified to
simulate ALIF in L3-4. The models were tested under the following conditions: (1) intact spine, (2) destabilized
spine, (3) with the interbody cage alone (type 1), (4) with the stand-alone cage with anterior fixation (SynFix-LR®
type 2), and (5) with type 1 in addition to PSF (type 3). Range of motion (ROM) and the stiffness of the operated
level, ROM of the adjacent segments, load sharing distribution, facet load, and vertebral body stress were quantified
with external loading.

Results: The implanted models had decreased ROM and increased stiffness compared to those of the destabilized
spine. The type 2 had differences in ROM limitation of 8%, 10%, 4%, and 6% in flexion, extension, axial rotation, and
lateral bending, respectively, compared to those of type 3. Type 2 had decreased ROM of the upper and lower
adjacent segments by 3-11% and 3-6%, respectively, compared to those of type 3. The greatest reduction in facet
load at the operated level was observed in type 3 (71%), followed by type 2 (31%) and type 1 (23%). An increase in
facet load at the adjacent level was highest in type 3, followed by type 2 and type 1. The distribution of load
sharing in type 2 (anterior:posterior, 95:5) was similar to that of the intact spine (89:11), while type 3 migrated
posterior (75:25) to the normal. Type 2 reduced about 15% of the stress on the lower vertebral endplate compared
to that in type 1. The stress of type 2 increased two-fold compared to the stress of type 3, especially in extension.

Conclusions: The stand-alone interbody cage can provide sufficient stability, reduce stress in adjacent levels, and
share the loading distribution in a manner similar to an intact spine.
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Background
Anterior lumbar interbody fusion (ALIF) using a stand-
alone interbody cage has been actively performed since
the beginning of the 1990s [1,2]. However, when exam-
ining the research that has been performed to date, the
results showed that ALIF has provided less than desir-
able stability in unstable spinal segments [3]. Presently,
it is common to clinically perform an additional poster-
jor fixation to recover the stability of spinal segments, as
well as to enhance the fusion. If sufficient stability can
be provided in a single surgery, the problems that can
arise from extensive anterior and posterior approaches
can be reduced [4]. This single surgical procedure could
reduce the postoperative pain and number of days of
hospitalization, and could lead to a quick return to one’s
daily routine. Recently, a stand-alone interbody cage
(SynFix-LR® Synthes Gmbh, Oberdorf, Switzerland) with
reinforced fixation from forward screws and a metal
plate has been introduced; however, there is insufficient
systematic biomechanical research to confirm the stabi-
lity of an interbody fusion and increased fusion. SynFix-
LR° consists of a polyetheretherketone (PEEK) body with
an additional connected metal plate and a diverging
locking metal screw; this design is meant to provide
strong support and fixation to an unstable spine so that
an additional posterior fusion would not be required.
Using finite element model (FEM) analysis, this study
analyzed the range of motion (ROM) and facet joint load
of the operated and adjacent segments, as well as changes
in the anterior and posterior load in a normal model and
in anterior lumbar interbody fixation performed using
various methods. Through this analysis, the biomechanical
effects of an ALIF for the stand-alone interbody cage were
revealed.

Methods

Finite element model (FEM) of a normal lumbar spine

To develop a 3-dimensional (3D) FEM of the lumbar
spine, computerized tomography was performed in 1 mm
intervals on the lumbar spine (L2-L5) of an adult with no
lesions. The FEM consisted of the vertebral body (cancel-
lous bone and cortical bone), spinous process, interverte-
bral disc, and 7 types of ligaments (anterior longitudinal
ligament, posterior longitudinal ligament, ligamentum
flavum, capsular ligament, intertransverse ligament, inter-
spinous ligament, and supraspinous ligament). Elastic be-
havior of the annulus fibers was taken from information
provided by Smit et al. [5] who combined material values
from Goel et al. [6] and Shirazi et al. [7]. The nonlinear
behavior of the ligaments was incorporated by defining
different material properties at different strains. Each loca-
tion of the ligament was established according to the
reference and anatomy data. Based on the research by
Goel et al. [6], the gap between the facet joints was set to
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0.5 mm, and the contact direction was set perpendicular
to the articular surface. Material properties were selected
from various sources in the literature (Table 1) [5-8]. This
research used PATRAN (MSC Software Corp., LA, USA),
a pre-post processing program, and ABAQUS (version
6.5, ABAQUS Inc., Providence, RI, USA), a general pur-
pose finite element program.

Realization of the implanted model

Three types of spine fixation devices used in this study
were analyzed using the FEM (Table 2). The following
models were used (Figure 1): (1) intact spine; (2) desta-
bilized spine (anterior discectomy, removal of the anterior
longitudinal ligament, and removal of the anterior and
lateral annulus fibrosis); (3) insertion of an interbody
PEEK cage (SynCage-LR°, Mathys Medical Ltd, Bettlach,
Switzerland; type 1) on model 2; (4) insertion of a stand-
alone PEEK cage (SynFix-LR°, type 2) reinforced with an
anterior metal plate (Ti6Al7Nb) and 4 screws (Ti6Al7Nb);
and (5) SynCage-LR® plus a posterior pedicle screw
(TSRH, Medtronic Sofamor Danek, Memphis, TN;
Ti6A14V, ® =55 mm; type 3). The SynFix-LR® and
SynCage-LR® were constructed to a depth of 30 mm,
width of 38 mm, and height of 13.5 mm, taking into
consideration the size of the intervertebral disc in the 3D
lumbar FEM used in this research. In this study, a higher
friction coefficient of 0.8 was applied to the interface of
the bone and cage after the surgical procedure in the
implanted models, and it was hypothesized that bone
adhesions develop between the bone and screw, which
prevents the implant from moving [9]. Therefore, a tie
contact condition was applied with the hypothesis that the
SynFix-LR® and pedicle screws in the FEM are completely
confined to the vertebral body.

Load conditions and boundary conditions

A multi-segment spinal model from L2 to L5 was used
to compare and analyze the ROM of the operated and
adjacent segments. All nodal points of the lower end
plate of the lowest segment were confined, while the
upper end plate of the highest segment was subjected to
a pure moment of 10 Nm of flexion/extension/axial ro-
tation and a pure moment of 5 Nm of lateral bending. A
compressive force of 400 N was added to the validated
intact lumbar spinal model in the follower load path dir-
ection as suggested by Patwardhan et al. [10].

ROM and stiffness of the models

Changes in the ROM in the operated and adjacent seg-
ments (L2-3 and L4-5) with regard to exterior load were
measured before and after implanting the spinal fixation
device. The hybrid test protocol [11,12] was used to assess
ROM at the operated and adjacent levels. The hybrid
protocol has the following 2 steps: (1) application of a
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Table 1 Material properties used in finite element model of lumbar spine
Bony structures Young’s modulus Poisson’s Reference
E (MPa) ratio
Cortical bone 12,000 03 Shirazi et al. [7]
Cancellous bone 100 0.2
Posterior element 3,500 025
End plate 25 0.25 Sharma et al. [8]
Annulus ground 4.2 045
Nucleus pulposus 1.0 0499 (incompressible) Goel et al. [6]
Annulus fibers Young’s modulus Cross-sectional Reference
E (MPa) Area (mm2)
Layer 1/2 550 0.50 Combined from Shirazi et al. [7]
Layer 3/4 495 039 and Smit et al. [3]
Layer 5/6 413 0.31
Layer 7/8 358 0.24
Ligaments Young’s modulus Cross-sectional Reference
E (MPa) Area (mm2)
ALL 7.8 (<12%) 20 (>12%) 63.7 Adapted from Goel et al. [6]
PLL 10 (<11%) 20 (>11%) 20
LF 15 (<6.2%) 19 (>6.2%) 40
CL 7.5 (<25%) 33 (>25%) 30
mL 10 (<18%) 59 (>18%) 1.8
ISL 10 (<14%) 12 (>14%) 40
SsL 8 (<20%) 15 (>20%) 30

Abbreviations: All anterior longitudinal ligament, PLL posterior longitudinal ligament, LF ligamentum flavum, CL capsular ligament, /TL intertansverse ligament,

ISL interspinous ligament, SSL supraspinous ligament.

pure moment to the models and determination of total
ROM and (2) application of the pure moment to the post-
operative model in a displacement control mode until its
ROM equals that of the intact models. At this time, pure
moment applied to the postoperative model was defined
as the resulting moment. The resulting moment was mea-
sured to confirm the effects of each variable element on
stiffness of the spine. Subsequently the changes in ROM
characteristics were investigated.

Load sharing distribution

To investigate the effect on the anterior-posterior load-
sharing ratio of the vertebral body, the intact spine and
each implanted model were placed under 400 N of com-
pressed loading, and the resulting values were compared
and analyzed. We measured forces at the node on the x,

Table 2 Material properties used in finite element model
of spinal fixation systems

Material Young’s modulus Poisson'’s ratio
PEEK 36 GPa 03
Ti6A17Nb 114 GPa 03
Ti6A14V 114 GPa 03

y, and z axes of the anterior and posterior elements. The
magnitude of the forces was calculated by adding each
measured nodal force and confirmed load-sharing ratio.
We did not consider the influence of the ligaments.

Results

Verification of the FEM

The lumbar FEM in this study was verified by referencing
the spinal motion analysis performed by Yamamoto et al.
[13]. The resulting values of the finite element interpret-
ation were similar to the experimental results in the lite-
rature [13-15]; therefore, the FEM used in this research
proved to be valid (Figure 2A, 2B). The calculated intra-
discal pressure value was linear, and it was confirmed to
increase proportional to the compression loading. It was
nearly identical to the experimental results reported in the
existing literature [16-18] and as a result, is highly credible.
Thus, the values resulting from the FEM are credible
(Figure 2C). The FE study about the lumbar spine adopted
nonlinear load—displacement relationship (Figure 3).

ROM and stiffness of the models
The stiffness (Nm/degree) of the operated segment was
expressed using the measured ROM of the operated
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Figure 1 Three-dimensional finite element model of (A) a normal spine model (L2-5), (B) a destabilized model, and (C) post-operated
models: type 1 (SynCage-LR®), type 2 (SynFix-LR®), and type 3 (SynCage-LR® + pedicle screws).
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segment (Figure 4). In all the implanted models, the ROM
decreased in the operated segments. The greatest reduc-
tion of ROM occurred in type 3, where the ROM was lim-
ited up to 79% compared with normal ROM. Excluding
flexion, the ROM for the operated segment in type 1 had
less than a 15% limitation in ROM, which was the smallest
change among all the implanted models. In addition, a
minimum ROM increase of 60% (maximum, 103%) was
observed in the destabilized model. Type 2 had a ROM
limitation of about 73% compared with the normal when
lateral bending was applied. Additionally, type 2 had
differences in ROM limitation of 8%, 10%, 4%, and 6% in
flexion, extension, axial rotation, and lateral bending,
respectively, compared to those in type 3. In the operated
segments, a difference in stiffness was observed in de-
creasing order for type 3, type 2, and type 1, and the
difference between the type 2 and type 3 was not large.

Adjacent segment motion

Type 1 had nearly half the amount of motion in the
adjacent segments compared to that in type 3 under all
given conditions, and had the least amount of increase
in the adjacent segments among all the implanted
models. Type 2 showed a relatively small increase in the
ROM of the adjacent segments in all given conditions
compared to those in type 3; among these, the difference
in the upper segment motion was approximately 11%
when extension was applied. Additionally, type 2 showed
a decrease in ROM of the upper and lower adjacent seg-
ments by 3-11% and 3-6%, respectively, compared to
those of type 3 (Figure 5).

Load sharing distribution and facet load

The normal shared load was 89% anteriorly and 11% pos-
teriorly. The ratios of anterior to posterior load sharing in
types 1, 2, and 3 were 94:6, 95:5, and 75:25, respectively.

The facet load in the implanted models decreased the
most in type 3 (71%), followed by type 2 (31%) and type 1
(23%). The facet loads in the adjacent segments (L2-3)
had similar pressures in type 1 and type 2, while type 3
had higher pressures than the other types.

Peak von Mises stress in the lower vertebral body

Peak von Mises stress (PVMS) of the superior surface of
L4 which is a contact space from the flexion (10 Nm)
and extension (10 Nm) after applying a compressive
follower load (400 N) on the model are shown in
Figure 6. Types 1, 2, and 3 had a PVMS of 5.68, 5.43,
and 4.59 MPa in flexion, respectively. Additionally, types
1, 2, and 3 had a PVMS of 5.05, 4.32, and 2.22 MPa in
extension, respectively.

Discussion

Lumbar interbody fusion has an exceptionally high fu-
sion rate, and correction and restoration of the spine is
relatively simple compared to that in posterolateral
fusion [19,20]. An ALIF with a cage is widely used to
maintain the height of the intervertebral discs and to
restore the stability of the spinal segments. Generally,
posterior pedicle screw fixation is used in parallel to
heighten the stability of the operated segment and fusion
rate in ALIF [21]. However, there are several potential
issues, including biomechanical changes from the
anterior-posterior fusion, surgical risks and complica-
tions, increased cost of the surgery, and increased op-
erative time due to the fixation of an additional PSF
[1,22]. Additional posterior fixation after cage implant-
ation provided superior biomechanical stability but
increased the risk of neurological damage or damage to
the muscle and ligament surrounding the spine from
the additional posterior surgery. Therefore, questions
have been raised as to whether this anterior-posterior
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fixation achieves better clinical results [4]. In the case of
anterior fusion using stand-alone interbody cage, in
several studies it has shown stability and resistance to
flexion or lateral bending but was vulnerable to applied
extension or axial rotation [4]. To overcome these prob-
lems, there have been studies in which an anterolateral
plate is attached to the cage [23] or screws are cross-
fixed between the femoral ring allograft and cancellous
bone [24]. When the results of research using anterolat-
eral or lateral metal plates and screws after cage im-
plantation were examined, a vastly improved stability
was noted. In a study using cadavers that compared
implanting a femoral ring allograft between the verte-
bral body to cross-fixing screws attached to the femoral
ring allograft to the upper and lower vertebral body, the
experimental group with the screws holding the femoral
ring had increased stiffness under all given loads com-
pared to that in the group with only the femoral ring
allograft during extension (52.9% vs. 16.9%) and axial
rotation (40.2% vs. 18.3%) [24]. Using additional anter-
ior fixation of the anterior cage, these studies were able
to heighten the stability by supplementing the vulner-
ability regarding extension from the removal of the
anterior longitudinal ligament, which had been the most
vulnerable area of the stand-alone cage. In another
study using cadaver segments between L5 and S1, a
model using the anterior cage fixed with 3 screws and a
triangular shaped metal plate, and a model using poster-
ior fixation with pedicle screws were compared. Both

models showed similar limitations in movement and
stiffness in the operated segment. However, the anterior
plate fixation model exhibited vulnerable stability to
lateral bending compared to that exhibited by the model
with the pedicle screws; this difference in the experi-
mental results was presumed to arise from the differ-
ence in the number of fixed points [1]. In our study, the
SynFix-LR® (in which the anterior fixation provided
superior stability compared to that provided by just
using the vertebral interbody cage [SynCage-LR‘]), had
a similar stiffness in the operated segment compared to
that in the model with the pedicle screws, and a differ-
ence in limitation in ROM of less than 10%. When other
research results regarding SynFix-LR® were examined, it
was found that the SynFix-LR® had better stability in
lateral bending, extension, and axial rotation when com-
pared to those for a semicircle wedge-shaped stand-
alone cage equipped with screws facing the center of the
vertebral body (STALIF; Surgicraft Ltd, Redditch, UK).
These differences in the results are presumed to be due
to the variation in the direction of the screws (diver-
gence vs. convergence), the characteristics of the screws
(locking screw), and the cage shape [25]. Cain et al. [26]
used a cadaver to study the biomechanics of SynFix-LR®
similar to the experimental method used by the authors
in this study. When comparing the results of the experi-
mental group with the SynFix-LR® and additional PSF
after cage implant, there were no significant differences
when flexion, lateral bending, or extension were applied.
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However, SynFix-LR® was reported to exhibit a narrower
elastic zone and stronger stiffness in the axial rotation.
This is probably due to the convex cage body and strong
adhesion with the vertebral body through the anterior
fixation screws and metal plates with the 4 fixation
points. This supplemented the stability during exten-
sion, axial rotation, and lateral bending, which had been
a vulnerability of fixation procedures using stand-alone
cages and anterior plates.

Degeneration of adjacent segments after fusion is a
potential long-term complication. Limitation in motion
occurs in the lumbar fusion region as a compensatory
mechanism, and excessive movement occurs in the seg-
ments above and below the fusion region. Results from
many studies showed that PSF increased the degener-
ation of the adjacent segments [27,28]. In posterior lum-
bar fusion, when the pedicle screws were removed after
fusion, the movement of the adjacent segments for
flexion, extension, axial rotation, and lateral bending in-
creased relatively less than when the pedicle screws were

retained, and the stress of the intervertebral disc of the
adjacent segments also decreased more than 50%. When
the pedicle screws were retained, a marked increase in
the movement of the segments above the operated area
was observed when flexion was applied [28]. This study
confirmed that there were changes in the anterior-
posterior load-sharing of the lumbar vertebrae after
fusion [29,30]. When PSF was performed, the load was
focused more posteriorly compared with a normal lum-
bar segment, and to compensate, the burden on the facet
joints of the adjacent areas increased. On the other
hand, the stand-alone cage model had a similar load
sharing distribution to a normal lumbar segment, and
had relatively less motion in the adjacent segments com-
pared to that for the PSF. This was considered result
from the stand-alone cage with the reinforced anterior
fixation moving the load that had been applied to the
posterior of the spine to the anterior, which relieved the
heavy load that had been applied to the facet joints of
the adjacent segments.
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The SynFix-LR® showed an approximate decrease of
15% in applied stress to the lower endplate compared to
that using only the SynCage-LR® while in flexion. How-
ever, when extension was applied, the additional PSF
model received half the PVMS of the stand-alone cage.
When pedicle screws were used, the stress on the ver-
tebral body moved anteriorly, while when only the
SynCage-LR® was used, the stress was focused on the
posterior part of the vertebral body. Through anterior
fixation, the stand-alone cage can reduce the stress
focused on the posterior of the vertebral body, as well as
disperse the stress from surrounding vertebral body at
the same time.

SynCage-LR® SynFix-LR® fg:;f:?::;::@w

Extension ‘ .
PVMS 5 OSM 4.32MPa 2.22MPa

Flexion ‘ ‘
PVMS 68Ma 5.43MPa 4.59MPa

Figure 6 Contour plots of peak von Mises stress (PVMS) of the
lower vertebral body (L4) when tested with flexion load of

10 Nm (A) and extension load of 10 Nm (B) after applying a
compressive follower load (400 N).

The limitation of this study is that the material prop-
erties of this simulation, such as the non-linear behavior
of the spinal ligaments, the viscoelasticity of the disc,
and the grade of degenerative disc, were simplified and
idealized based on the properties of a cadaver specimen.
This is due to the differences in the geometry and ma-
terial properties, where the intervertebral discs within
the human body are extremely flexible structures; how-
ever, the finite element simulated the intervertebral disc
as a solid element. Thus, the non-linear characteristics
were difficult to reenact. In addition, the state of the
bone, which is an important factor to consider in fusion
procedures, was not considered. Finite element research
is similar to studies that are conducted in vitro, and as
such, muscle contraction around the spine could not be
considered.

Conclusion

In conclusion, the stand-alone cage with reinforced an-
terior fixation provided sufficient stability and stiffness
necessary to carry out lumbar fusion and at the same
time, reduced the excessive motion of the adjacent seg-
ments and the stress on the adjacent segment joints by
exhibiting similar load sharing characteristics to a nor-
mal lumbar. Therefore, the stand-alone cage can supple-
ment with the shortcomings of the anterior lumbar
interbody cage with no fixation device and have the ad-
vantage of parallel use with PSF.
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