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Abstract

control mice?

harvested from the osteoporotic bone samples.

Background: Osteoporosis is a skeletal disease leading to an increased risk of bone fracture. Using a mouse
osteoporosis model induced by administration of a receptor activator of nuclear factor kappa-B ligand (RANKL),
salubrinal was recently reported as a potential therapeutic agent. To evaluate the role of salubrinal in cellular fates
as well as migratory and adhesive functions of osteoclast/osteoblast precursors, we examined the development of
primary bone marrow-derived cells in the presence and absence of salubrinal. We addressed a question: are
salubrinal’s actions more potent to the cells isolated from the osteoporotic mice than those isolated from the

Methods: Using the RANKL-injected and control mice, bone marrow-derived cells were harvested.
Osteoclastogenesis was induced by macrophage-colony stimulating factor and RANKL, while osteoblastogenesis
was driven by dexamethasone, ascorbic acid, and (3-glycerophosphate.

Results: The results revealed that salubrinal suppressed the numbers of colony forming-unit (CFU)-granulocyte/
macrophages and CFU-macrophages, as well as formation of mature osteoclasts in a dosage-dependent manner.
Salubrinal also suppressed migration and adhesion of pre-osteoclasts and increased the number of CFU-osteoblasts.
Salubrinal was more effective in exerting its effects in the cells isolated from the RANKL-injected mice than the
control. Consistent with cellular fates and functions, salubrinal reduced the expression of nuclear factor of activated
T cells c1 (NFATc1) as well as tartrate-resistant acid phosphatase.

Conclusions: The results support the notion that salubrinal exhibits significant inhibition of osteoclastogenesis as
well as stimulation of osteoblastogenesis in bone marrow-derived cells, and its efficacy is enhanced in the cells
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Background

Osteoporosis is a common skeletal disease of bone
loss, which leads to an increased risk of bone fractures,
morbidity, mortality, and an economic burden to society
[1-3]. In many cases it is a physiological consequence of
the aging process [3,4], and in postmenopausal women it
is induced by a decrease in the production of estrogen, a
hormone known to maintain the appropriate ratio of
bone-forming osteoblasts to bone-resorbing osteoclasts
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[5]. During the past 20 years, many therapeutic drugs
have been developed to prevent osteoporotic bone loss.
Bisphosphonates are the most widely prescribed medica-
tions to treat postmenopausal osteoporosis, but they may
be associated with an increased risk of osteonecrosis of the
jawbone and atypical femur fracture [6]. Other treatments
include administration of estrogen and estrogen analogs, as
well as parathyroid hormone. However, increased risks of
breast cancers and blood clots have been reported as side
effects of these treatments [7-9]. The aim of this study is to
evaluate a therapeutic role of a chemical agent, salubrinal,
in potential treatment of osteoporosis.

Salubrinal is a small chemical agent (480 Da,
C,1H;7CI3N,OS) known to block de-phosphorylation of
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eukaryotic translation initiation factor 2 alpha (elF2a) [10].
Salubrinal is also reported to attenuate molecular signaling
mediated by nuclear factor kappa B (NFkB) [11]. The
elevated phosphorylation level of elF2a upregulates
activating transcription factor 4 (ATF4), one of the key
transcription factors in bone formation [12]. Salubrinal is
shown to enhance healing of bone wounds and promotes
differentiation of osteoblasts [13]. Little is known, however,
about its effects on bone resorption, in particular develop-
mental regulation of bone marrow-derived cells. Bone
marrow-derived cells contain mesenchymal stem cells
(MSCs) and hematopoietic stem cells that give rise to
osteoblasts and osteoclasts, respectively [14]. The primary
focus of this study is the potential role of salubrinal in the
development of bone marrow-derived cells towards mature
osteoclasts, as well as its role in development of mesen-
chymal stem cells and osteoblasts.

Experimental animal models are useful to evaluate thera-
peutic efficacy of chemical agents. Available osteoporosis
models include ovariectomy (OVX) [15,16], tail suspension
[17,18], denervation [19,20], a low-calcium diet [21,22],
and administration of receptor activator of nuclear factor
kappa-B ligand (RANKL) [23-25]. Any animal model may
have its advantage and disadvantage. For instance, OVX-
induced osteoporosis, which is currently considered as the
gold standard for the evaluation of pharmaceuticals for
postmenopausal osteoporosis, not only reduces the level of
estrogen but also generates surgery-induced injury together
with an increase in osteoblast activity. Furthermore, surgical
induction of OVX requires consistency in the surgical
procedure as well as a minimum of 4 weeks. The tail
suspension model not only increases bone resorption but
also reduces osteoblast differentiation. In the denervation
model, surgery-induced injury is involved. In this study,
we evaluated in vivo effects of salubrinal using the OVX
mice and in vitro effects of salubrinal using bone marrow-
derived cells isolated from the RANKL-injected mice.

In the RANKL administration model, RANKL is sub-
cutaneously injected for as a short period as 3 days [26].
RANKL is a cytokine belonging to the tumor necrosis
factor family. In the immune system, it is involved in
dendritic cell maturation, while in the skeletal system it
is a ligand for osteoprotegerin (OPG) and functions as a
key regulator for osteoclast differentiation and activation
[27,28]. RANKL deletion in mice leads to osteopetrosis and
a decrease of osteoclasts, while RANKL overproduction is
linked to a variety of degenerative bone diseases including
osteoporosis and rheumatoid arthritis [29,30].

Focusing on the development of bone marrow-derived
cells in the presence and absence of salubrinal, we addressed
a pair of questions: Does administration of salubrinal
modulate cellular fates and functions of bone marrow-
derived cells in favor of prevention of bone loss? If so, are
salubrinal’s actions more potent to the cells isolated from
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the osteoporotic RANKL-injected mice than those isolated
from the control mice? Because of the anticipated role of
salubrinal that is potentially opposite to that of RANKL,
we hypothesized that salubrinal is more effective in
inhibiting development of osteoclasts and stimulating
development of osteoblasts in the cells isolated from the
RANKL-injected mice than those from the control mice.
To test the hypothesis, we employed assays such as
colony-forming unit - granulocyte/macrophages (CFU-GM),
colony-forming unit - macrophages (CFU-M), and for-
mation of multi-nucleated osteoclasts in an osteoclast
differentiation medium, as well as assays for migration
and adhesion of pre-osteoclasts. We also conducted assays
for examining colony-forming unit — osteoblasts (CFU-
OBL) in an osteoblast differentiation medium. To evaluate
salubrinal’s effects on expression of nuclear factor of
activated T cells c1 (NFATcl), a master transcription
factor for osteoclastogenesis, we conducted real-time PCR
and Western blot analysis.

Methods

Animals and materials preparation

C57BL/6 female mice (7 weeks of age) were used. Each
cage housed four to five mice at the Indiana University
Animal Care Facility. They were fed with mouse chow
and water ad [libitum. Experimental procedures were
approved by the Indiana University Animal Care and
Use Committee and were in compliance with the Guiding
Principles in the Care and Use of Animals endorsed by
the American Physiological Society. Cytokines were
purchased from PeproTech (Rocky Hills, NC, USA) and
other chemicals from Sigma (St. Louis, MO, USA) unless
otherwise stated. Salubrinal (R&D Systems, Minneapolis,
MN, USA) was administered at 1 mg/kg to mice, and at
0.5 to 5 uM to cultured cells for the duration of each
experiment.

Ovariectomy

The animal was anesthetized with 1.5% isoflurane at a
flow rate of 0.5 to 1.0 L/min. After removing the hair,
the skin at the operative sites was cleaned using 70%
alcohol and 10% providoneiodine solution. An incision
(~20 mm) was made at the midline dorsal skin, and the
peritoneal cavity was incised to access the ovaries. After
removing the ovaries, the wound was closed by suturing. In
4 weeks after surgery, subcutaneous injection of salubrinal
was conducted daily at a dose of 1 mg/kg body weight for
4 weeks. The control OVX mice received an equal volume
of vehicle.

RANKL administration for the bone loss model

Soluble recombinant murine RANKL (sSRANKL; PeproTech)
was injected subcutaneously using a 1 mg/kg dosage in
100 pl PBS at 24 h intervals for 3 days [26]. The same
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volume of PBS was injected into vehicle control mice. At
90 min after the final injection, the mice were euthanized.
Iliac bones, femora, and tibiae were harvested, and bone
marrow-derived cells were collected.

Determination of bone mineral density (BMD) and bone
mineral content (BMC)

The BMD (g/cm?) and BMC (g) of an entire humerus and
ulna were determined using peripheral dual energy X-ray
absorptiometry (DXA; PIXImus II, Lunar Corp., Madison,
W1, USA) and its software (version 1.47).

Colony-forming unit-granulocyte-macrophages

(CFU-GM) assay

As previously described, a colony-forming unit-granulo-
cyte-macrophage (CFU-GM) assay was conducted [31-33].
Approximately 2.5x10* bone marrow-derived cells were
prepared from the vehicle control and RANKL-treated
mice and seeded onto a 35-mm gridded dish composed of
methylcellulose supplemented with 30 ng/ml murine
macrophage-colony stimulating factor (M-CSF), and 20 ng/
ml RANKL. Three dosages of salubrinal (1, 2, and 5 pM)
were administered, and cells were cultured at 37°C in a 5%
CO, incubator for 7 days.

Colony-forming unit-macrophage/mononuclear

(CFU-M) assay

Using bone marrow mononuclear cells (BMMNCs), a
colony-forming unit-macrophage/mononuclear (CFU-M)
assay was conducted, as described previously [34-37].
From the vehicle control and RANKL administration
mice, approximately 2.5x10* bone marrow-derived cells
were prepared. Cells were seeded onto a 35-mm gridded
dish, which was composed of methylcellulose supplemented
with 30 ng/ml M-CSF and 20 ng/ml RANKL. Three
dosages of salubrinal (1, 2, and 5 M) were administered,
and cells were cultured at 37°C in a 5% CO, incubator for
7 days.

Isolation of bone marrow-derived cells for osteoclast
development

Bone marrow-derived cells were collected by flushing the
iliac, femur and tibia with Iscove’s MEM (Gibco-Invitrogen,
Carlsbad, CA, USA) containing 2% fetal bovine serum
using a 23-gauge needle, as described previously [34,38].
Low-density gradient centrifugation was used to separate the
cells, which were then cultured in a-MEM supplemented
with 10% EBS, 30 ng/ml M-CSE, and 20 ng/ml murine
receptor activator of nuclear factor kappa-B ligand
(RANKL). Culture medium was replaced by a-MEM
supplemented with 10% FBS, 30 ng/ml M-CSF, and 60
ng/ml RANKL on the third day, and cells were then
grown for an additional 3 days.
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Osteoclast differentiation assay

Using bone marrow-derived cells isolated from the vehicle
control and RANKL-treated mice with administration of
salubrinal (0, 1, 2, and 5 uM) in 96-well plates, an osteoclast
differentiation assay was performed, as described previously
[34,39,40]. For one experimental condition, salubrinal
was applied on day 0 to day 6 (6 days), while in the
other experimental condition, it was applied on day 4 to
day 6 (3 days). Culture medium was exchanged once on
day 4 during the 6-day experiments. A tartrate resistant
acid phosphate (TRACP)-staining kit was used according to
the manufacturer’s instructions to fix and stain adherent
cells. TRACP-positive multinuclear cells (> 3 nuclei) were
identified as osteoclasts, and their numbers were counted
[39]. The osteoclast formation assay was performed at
least 3 times using cells isolated independently from
different cohorts of mice.

Osteoclast migration assay

Using a transwell assay, migration of osteoclasts was
evaluated as described previously with minor modifica-
tions [41]. After isolating them from vehicle control
and RANKL-treated mice, bone marrow-derived cells
(2 x 10%/ml) were cultured in M-CSF and RANKL in 6-well
plates for 4 days, and then trypsinized in Hank’s balanced
salt solution. With and without salubrinal (2 pM), the
osteoclast precursor cells (1 x 10° cells/well) were loaded
onto the upper chamber of transwells and allowed to
migrate to the bottom chamber through an 8-pm polycar-
bonate filter coated with vitronectin (Takara Bio Inc.,
Otsu, Shigma, Japan). a-MEM consisting of 1% bovine
serum albumin (BSA) and 30 ng/ml of M-CSF was in the
bottom chamber. After reacting for 6 h, the osteoclast
precursor cells in the lower chamber was stained with
crystal violet and counted.

Osteoclast adhesion assay

Ninety-six well plates were coated with 5 pg/ml vitronectin
in a-MEM supplemented with 30 ng/ml M-CSF and were
applied with osteoclast precursors (1 x 10° cells/well) in
the presence and absence of salubrinal (2 uM), as described
previously [41]. Cells were incubated for 30 min, then
washed with PBS three times and fixed with 4% parafor-
maldehyde at room temperature for 10-15 min. After
crystal violet staining, the number of cells adherent to
a,fBs integrin was counted.

Osteoblast differentiation assay

Bone marrow-derived cells were plated at 2 x 10°/ml
in 6-well plates in osteogenic differentiation medium
(MesenCult proliferation kit) supplemented with 10 nM
dexamethasone, 50 pg/ml ascorbic acid 2-phosphate, and
10 mM p-glycerophosphate to induce osteogenic differen-
tiation, as described previously [39,41,42]. Cells were
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cultured for 2 weeks in the presence and absence of
salubrinal (0.5 uM), and medium was changed every other
day. For alkaline phosphatase (ALP) staining, cells were
fixed in citrate-buffered acetone for 30 s, incubated in the
alkaline-dye mix for 30 min, and counterstained with
Mayer's Hematoxylin for 10 min. Cells were then evaluated
microscopically and the intensity of ALP staining was
determined.

To evaluate the effects of RANKL administration on
multiple developmental stages starting from bone marrow-
derived cells to mature osteoclasts, the RANKL-driven
alterations in CFU-GM, CFU-M, osteoclast formation,
migration, and adhesion were determined as fold-changes
of the RANKL-injected mice to the vehicle control mice.
Furthermore, to quantify efficacy of salubrinal in various
developmental stages in osteoclastogenesis, the degree of
suppression was measured with reduction ratios between
the samples treated with and without 2 pM salubrinal.

Expression analysis of NFATc1 in bone marrow-derived
cells and RAW264.7 pre-osteoclast cells

For Western blot analysis, RAW264.7 mouse monocyte/
macrophage cells (ATCC, Manassas, VA, USA) were grown
in a-MEM containing 10% fetal bovine serum and antibi-
otics (50 units/ml penicillin, and 50 pg/ml streptomycin;
Life Technologies, Grand Island, NY, USA). To induce
osteoclastogenesis, 20 ng/ml of RANKL was administered.
Bone marrow-derived cells or RAW?264.7 cells were lysed
in a radioimmunoprecipitation assay (RIPA) lysis buffer,
containing protease inhibitors (Santa Cruz Biotechd, Santa
Cruz, CA, USA) and phosphatase inhibitos (Calbiochem,
Billerica, MA, USA). Isolated proteins were fractionated
using 10% SDS gels and electro-transferred to Immobilon-
P membranes (Millipore, Billerica, MA, USA). Antibodies
specific to NFATc1 (Santa Cruz), and p-actin (Sigma) were
employed. Protein levels were assayed using a SuperSignal
west femto maximum sensitivity substrate (Thermo
Scientific). The bands were scanned with Adobe Photoshop
CS2 (Adobe Systems, San Jose, CA, USA) and their inten-
sities were quantified using Image J.

In quantitative PCR, total RNA was extracted using an
RNeasy Plus mini kit (Qiagen, Germantown, MD, USA)
and reverse transcription was conducted with high capacity
cDNA reverse transcription kits (Applied Biosystems,
Carlsbad, CA, USA). Real-time PCR was performed using
Power SYBR green PCR master mix kits (Applied
Biosystems). The PCR primers were: NFATcl (5'-GGT
GCT GTC TGG CCA TAA CT-3’; and 5'-GCG GAA
AGG TGG TAT CTC AA-3'), tartrate-resistant acid
phosphatase (TRACP) (5'- TCC TGG CTC AAA AAG
CAG TT -3’; and 5'- ACA TAG CCC ACA CCG TTC
TC -3’); and GAPDH (5'-TGC ACC ACC AAC TGC
TTA G-3'; and 5'-GGA TGC AGG GAT GAT GTT C-3'),
in which GAPDH was used for internal control. Since
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TRACP is highly expressed in osteoclasts, we used its
mRNA expression level as a marker for development of
osteoclasts. The relative mRNA abundance for the
selected genes with respect to the level of GAPDH mRNA
was expressed as a ratio of S eated/Scontrob Where Sieated 1S
the mRNA level for the cells treated with salubrinal, and
Streated 1S the mRNA level for control cells.

Statistical analysis

The data were expressed as mean + standard error of mean
(SEM). Student’s t-test was conducted for two-group
comparisons. For many-group comparisons, one-way
ANOVA was used, followed by a post-hoc test using
Fisher’s protected least significant difference. All com-
parisons were two-tailed, and statistical significance was
assumed at p < 0.05. The asterisks (*, **, and ***) represent
p <0.05, p <0.01, and p < 0.001, respectively.

Results

Evaluation of BMD and BMC of the OVX mice and
RANKL-injected mice

Four-week daily administration of salubrinal at a dose of 1
mg/kg to the OVX mice significantly elevated both BMD
and BMC of a whole body (Figure 1A-B). Three-day
administration of RANKL at a dose of 1 mg/kg, however,
significantly decreased BMD and BMC of the humerus
and ulna (N = 6; both p < 0.05) (Figure 1C-D). Using the
RANKL-injected mice, bones from the Iliac, femora, and
tibiae were harvested. Bone marrow-derived cells were
collected from those bones for examining the effects of
salubrinal on developments of osteoclasts and osteoblasts.

Reduction in the number of CFU-GM by salubrinal in a
dosage-dependent manner

To determine the effects of salubrinal on the prolifera-
tion of osteoclast progenitors, the CFU-GM assay was
conducted using bone marrow-derived cells isolated
from the RANKL-injected mice. Salubrinal at 1, 2, and 5
uM reduced the total number of CFU-GM in the femur
in a dosage-dependent manner (p < 0.05 for 1 pM
salubrinal; p < 0.01 for 2 uM; and p < 0.001 for 2 & 5
uM) in the RANKL-injected mice (Figure 2A). The
CFU-GM numbers were 37,177 + 1,919 (vehicle control)
and 53,213 + 3,545 (RANKL administration, p < 0.001)
(Figure 2B). The CFU-GM numbers were reduced by
administration of salubrinal at 2 uM for 7 days by 28.5%
(p < 0.001) in vehicle control and 30.8% (p < 0.001) in
the RANKL-injected mice.

Reduction in the number of CFU-M by salubrinal in a
dosage -dependent manner

To determine the effects of salubrinal on the population
of osteoclast progenitors, the CFU-M assay was performed
using bone marrow-derived cells isolated from the
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Figure 1 Determination of BMD and BMC in the OVX mice and RANKL-injected mice. A: Increase in BMD (g/cm?) of the OVX mice by
salubrinal (N = 8). B: Increase in BMC (g) of the OVX mice by salubrinal (N = 8). C: Decrease in BMD (g/cmz) of the humerus and ulna of the
RANKL-injected mice (N = 6). D: Decrease in BMC (g) of the humerus and ulna (N = 6).

RANKL-injected mice. Consistent with the CFU-M
numbers, administration of salubrinal at 1, 2, and 5 pM
reduced the total number of CFU-M in the femur in a
dosage-dependent manner (all p < 0.001 in three dosages)
(Figure 3A). The CFU-M numbers were 10,602 + 396
(vehicle control) and 18,648 + 760 (RANKL administration,
p < 0.001) (Figure 3B). Administration of salubrinal at 2
uM for 7 days, for instance, reduced the CFU-M number by
41.2% (p < 0.001) in vehicle control and 43.1% (p < 0.001)
in the RANKL-injected mice.

Suppression of osteoclast differentiation by salubrinal in a
dosage- and time-dependent manner

Compared to the bone marrow-derived cells isolated
from the vehicle control, the cells from the RANKL-
injected mice exhibited an increase in the surface area
occupied by multi-nucleated osteoclasts (24.8 + 1.0% in
vehicle control, and 36.5 + 1.3% in RANKL administra-
tion) (Figure 4A). A series of images show that the process
of osteoclast fusion was accelerated by administration of
salubrinal. To evaluate the effects of salubrinal, three
dosages of salubrinal (1, 2, and 5pM) were applied. In
the cultures salubrinal was applied on day 0 for 6 days,
administration of salubrinal resulted in a significant
decrease in the surface area covered by multi-nucleated
osteoclasts for vehicle control (all p < 0.001) and
RANKL administration (all p < 0.001) (Figure 4A). In the
cultures salubrinal was applied on day 3 for 4 days, the
reduction of the area was also observed (all p < 0.001)

(Figure 4B). A series of images indicate that the cellular
fusion was reduced by salubrinal administration in a
time-and dose-dependent manner.

To further evaluate potential effects of the period of
salubrinal administration on osteoclast formation, we
compared the results of two sets of experiments in
which salubrinal at 2 pM was administered from days 0
to 6, and days 4 to 6. The result revealed that salubrinal
administration at day O presented larger reduction in
osteoclast formation than that at day 4 in the vehicle
control and RANKL-injected groups (both p < 0.001)
(Figure 4C).

Suppression of migration and adhesion of pre-osteoclasts
by salubrinal

Pre-osteoclast cells isolated from the RANKL-injected
mice were more migratory (304.1 + 12.2 cells) than those
from the vehicle control (190.4 + 5.9 cells, p < 0.001),
and the RANKL-driven increase was 37.4% (Figure 5A).
However, salubrinal suppressed the amount of migration
by 33.0% in vehicle control (p < 0.001) and by 53.2%
in RANKL administration (p < 0.001). In the M-CSF
mediated adhesion assay to of33, the cells isolated from the
RANKL-injected mice presented an increase in adhesion
by 59.8% (142.5 + 3.9 cells) over those from the vehicle
control (57.3 + 1.8 cells, p < 0.001) (Figure 5B). Administra-
tion of salubrinal presented significant reduction in cell
adhesion by 32.4% in vehicle control (p < 0.001) and by
53.7% in RANKL administration (p < 0.001).
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Figure 2 Effects of salubrinal on colony-forming unit-
granulocyte-macrophage (CFU-GM). Approximately 2.5x10* bone
marrow-derived cells were prepared and seeded onto a 35-mm
gridded dish supplemented with 30 ng/ml murine M-CSF and 20 ng/ml
RANKL. Three dosages of salubrinal (1, 2, and 5 uM) were administered,
and cells were cultured for 7 days. A: Salubrinal-induced reduction in
CFU-GM numbers in the RANKL-injected mice using three dosage of
salubrinal. The images exhibit the 4 different CFU-GM cultures, in which
the circles indicate the colonies. B: Comparison of CFU-GM numbers in
the vehicle control and RANKL-injected mice with and without

in vitro administration of salubrinal. The representative
microphotographs are shown, displaying 4 CFU-GM cultures

with colonies in circle. Bar = 500 um.

Promotion of osteoblast differentiation by salubrinal

In the CFU-OBL assay, a significant increase in the number
of ALP positive cells was detected by administration of
salubrinal. Without salubrinal, the percentage of ALP-
positive cells was 18.3 + 2.3% in vehicle control and
204 £ 2.0% in RANKL administration (p < 0.001) (Figure 6).
Administration of salubrinal at 0.5 pM increased the
percentage of ALP-positive cells to 23.5 + 1.1% in vehicle
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Figure 3 Effects of salubrinal on colony-forming unit-macrophage/
monocyte (CFU-M). Approximately 2.5x10* bone marrow mononuclear
cells were prepared and seeded onto a 35-mm gridded dish
supplemented with 30 ng/ml M-CSF and 20 ng/ml RANKL. Three
dosages of salubrinal (1, 2, and 5 uM) were administered and cells were
cultured for 7 days. A: Salubrinal-induced reduction in CFU-M numbers
in the RANKL-injected mice using three dosage of salubrinal. The images
exhibit the 4 different CFU-M cultures, in which the circles indicate the
colonies. B: Comparison of CFU-M numbers in the vehicle control and
RANKL-injected mice with and without in vitro administration of
salubrinal. The representative microphotographs are shown, displaying 4
CFU-M cultures with colonies in circle. Bar = 500 um.

control (p < 0.05) and 28.8 + 2.3% in RANKL administra-
tion (p < 0.01) (Figure 6).

Downregulation of NFATc1 by salubrinal in bone
marrow-derived cells and RAW264.7 pre-osteoclast cells
Bone marrow-derived cells were incubated with RANKL
in the presence and absence of salubrinal. Incubation
with 20 ng/ml RANKL markedly increased the level of
NFATc1, a master transcription factor for development
of osteoclasts, and administration of 1 pM salubrinal
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from the vehicle control and RANKL-treated mice, an osteoclast differentiation assay was performed. The culture medium was exchanged
once on day 4 during the 6-day experiments. TRACP-positive multinuclear cells (> 3 nuclei) were identified as osteoclasts. The areas
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covered by multi-nucleated osteoclasts in response to in vitro administration of salubrinal from day 0 to day 6 (6 days). B: Area covered
by multi-nucleated osteoclasts in response to in vitro administration of salubrinal from day 4 to day 6 (3 days). C: Fold change in
response to 2 uM salubrinal.
J

reduced the RANKL-driven increase in NFATc1 by 24%
(Figure 7A). To further evaluate the effects of salubrinal,
we employed RAW264.7 pre-osteoclast cells. Administra-
tion of 20 ng/ml RANKL elevated the level of NFATc1, and
in response to 1-20 pM salubrinal the RANKL-induced
elevation of NFATcl was reduced in a dose dependent
fashion (Figure 7B). Furthermore, the mRNA levels of
NFATc1 and TRACP were increased by RANKL, and their
elevation was suppressed by administration of salubrinal
(Figure 7C).

Discussion

The present study presents the beneficial effect of in vivo
administration of salubrinal on BMD and BMC of the
OVX mice, and in vitro effects on the culture of bone
marrow-derived cells isolated from the RANKL-injected
and control mice. In the osteoclast assays of CFU-GM,
CFU-M, and formation of multi-nucleation, salubrinal
significantly reduced the numbers of osteoclastic colonies
and cells isolated from both the vehicle control and
RANKL-injected mice. In the two sets of maturation
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Figure 5 Effects of salubrinal on migration and adhesion of
pre-osteoclasts. Bone marrow-derived cells (2 x 10°/ml) were
cultured in M-CSF and RANKL in 6-well plates for 4 days to obtain
pre-osteoclasts used for the migration and adhesion assays. A: Number
of migratory cells. Osteoclast precursor cells (1 x 10° cells/well) were
loaded onto the upper chamber of transwells in the presence and
absence of 2 uM salubrinal. The bottom chamber was filled with
a-MEM consisting of 1% BSA and 30 ng/ml of M-CSF, and cells were
allowed to migrate to the bottom chamber through an 8-um
polycarbonate filter coated with vitronectin. After reacting for 6 h, the
cells in the lower chamber was stained with crystal violet and counted.
The images display 2 pairs of osteoclast cultures. Bar = 200 um. B:
Number of adherent cells. Ninety-six well plates were coated with 5
pg/ml vitronectin and filled with a-MEM supplemented with 30 ng/ml
M-CSF. Approximately 1 x 10> osteoclast precursor cells were cultured
per well in the presence and absence of 2 uM salubrinal for 30 min.
Cells were stained with crystal violet and the number of cells adherent

to a,f33 integrin was counted. Bar = 200 um.
A

assays, in which salubrinal was applied from day O to 6
and from day 4 to 6, it suppressed both the early and late
stages of osteoclastogenesis. This suppressive effect was
larger in the cells isolated from the RANKL-injected mice
than the vehicle control mice. In addition to attenuating
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Figure 6 Enhanced osteoblast development by salubrinal in the
CFU-OBL assay. Bone marrow-derived cells were plated at 2 x 10%/ml
in 6-well plates in osteogenic differentiation medium supplemented
with 10 nM dexamethasone, 50 pg/ml ascorbic acid 2-phosphate, and
10 mM B-glycerophosphate. Cells were cultured for 2 weeks in the
presence and absence of 0.5 uM salubrinal, and medium was changed
every other day. For alkaline phosphatase (ALP) staining, cells were
fixed in citrate-buffered acetone for 30 s, incubated in the alkaline-dye
mix for 30 min, and counterstained with Mayer's Hematoxylin for 10
min. Cells were then evaluated microscopically and the intensity of
ALP staining was determined. The images display 2 pairs of

osteoblast cultures.

osteoclastogenesis, salubrinal was able to reduce adhesion
and migration of osteoclasts. Furthermore, it increased the
number of CFU-OBL colonies suggesting that it not only
inhibits development of osteoclasts but also promotes
development of osteoblasts. Quantitative PCR and Western
blot analysis revealed that the mRNA and protein levels of
NFATc1 were elevated by RANKL, and this elevation was
suppressed by administration of salubrinal in a dose
dependent fashion.

In evaluating the effects of salubrinal on fates of HSCs
and MSCs in bone marrow-derived cells, we employed
the recently developed RANKL administration model of
osteoporosis. An advantage of this RANKL administration
model includes a short period (3 days in this study) for
induction of osteoclastogenesis, and activation of multiple
steps in the development of osteoclasts. In the RANK/
RANKL/OPG signaling pathway, RANKL regulates not
only development of osteoclasts but also their activation
and survival [43]. RANKL is expressed in bone, bone
marrow, and lymphoid tissues including spleen that
houses osteoclast precursor cells as macrophages [44].
The RANKL administration model provided a platform to
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Figure 7 Suppression of RANKL-induced expression of NFATc1
and TRACP by salubrinal in RAW264.7 cells. A: Salubrinal-driven
suppression of NFATcT expression in RANKL-stimulated bone
marrow-derived cells. B: Dose dependent suppression of NFATc1 in
response to 1 — 20 uM salubrinal. B-actin was used as a loading
control. C: Relative mRNA levels of NFATcT and TRACP in response
to 1 - 20 uM salubrinal. The mRNA levels are normalized by the
mRNA level of the sample without salubrinal in the absence of
RANKL stimulation.

evaluate efficacy of salubrinal as a potential therapeutic
agent for preventing osteoclastogenesis and bone resorp-
tion. Besides bone resorption, however, RANKL is involved
in multiple functions in the immune system such as prolif-
eration of T cells and inhibition of apoptosis of dendritic
cells [45]. It is reported that overproduction of RANKL
induces inflammatory bone disorders [46,47]. Thus, the
results from any animal model including the RANKL
administration model should be confirmed by other
animal models and eventually clinical trial.

The regulatory mechanism of salubrinal’s action on
osteoclastogenesis is not well understood. Salubrinal is
known as an inhibitor of serine/threonine-protein phos-
phatase PP1 and it elevates the phosphorylation level of
elF2a (elF2a-p) [48]. The level of elF2a-p is upregulated in
response to various stresses including viral infection, nutri-
ent deprivation, radiation, and stress to the endoplasmic
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reticulum [49]. To cope with these cellular insults and
reduce apoptosis, the elevated elF2a-p in general lowers
ribosome’s efficiency of protein synthesis except for a
group of proteins such as ATF4. Applications of salubrinal
have been reported to reduce stress induced apoptosis [50].
We have previously shown that partial silencing of elF2a by
RNA interference reduces salubrinal-driven downregulation
of NFATc1 in RAW?264.7 cells [51], and the results in this
study indicate that mRNA and protein expression of
NFATcl is downregulated by salubrinal. NFATcl is a
member of the NFAT transcription factor family and a
master transcription factor for osteoclast development. It
is reported that NFATcl-deficient embryonic stem cells
are unable to differentiate into osteoclasts [52]. He et al.
has recently shown that NFATc1 expression is regulated at
a translational stage in bone marrow macrophage cells,
and a phosphorylation mutant plasmid for elF2a restored
RANKL-induced NFATc1 expression [53]. MafB (V-maf
musculoaponeurotic fibrosarcoma oncogene homolog B),
IRF8 (interferon regulatory factor 8), and Bcl6 (V cell
lymphoma) have been mentioned as inhibitors of NFATc1
[54-56]. Further analysis is necessary for identification of
the mechanism of salubrinal’s action on NFATc1, which is
possibly regulated by eIlF2a alone or any other mediators.

Conclusions

It is premature to draw any conclusion on development of
a potential therapeutic agent for treatment of osteoporosis,
but salubrinal possesses several unique features. First, it is
a small synthetic chemical agent, which can be taken as an
oral pill. Second, it has a dual role of stimulation of bone
formation and attenuation of bone resorption. Third, its
effects are stronger in the cells isolated from the osteoporotic
RANKL-injected mice than those from the control mice.
Fourth, it presents dose dependent efficacy in preventing
osteoclastogenesis throughout a developmental stage
including proliferation, multi-nucleation, and maturation,
as well as migration and adhesion. The results herein
support the possibility of preventing bone loss through
salubrinal-driven regulation of bone marrow-derived cells.
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