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The oncofetal gene survivin is re-expressed in
osteoarthritis and is required for chondrocyte
proliferation in vitro
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Abstract

Background: Regulation of cell death and cell division are key processes during chondrogenesis and in cartilage
homeostasis and pathology. The oncogene survivin is considered to be critical for the coordination of mitosis and
maintenance of cell viability during embryonic development and in cancer, and is not detectable in most adult
differentiated tissues and cells. We analyzed survivin expression in osteoarthritic cartilage and its function in
primary human chondrocytes in vitro.

Methods: Survivin expression was analyzed by immunoblotting and quantitative real-time PCR. The localization
was visualized by immunofluorescence. Survivin functions in vitro were investigated by transfection of a specific
siRNA.

Results: Survivin was expressed in human osteoarthritic cartilage, but was not detectable in macroscopically and
microscopically unaffected cartilage of osteoarthritic knee joints. In primary human chondrocyte cultures, survivin
was localized to heterogeneous subcellular compartments. Suppression of survivin resulted in inhibition of cell
cycle progression and sensitization toward apoptotic stimuli in vitro.

Conclusions: The present study indicates a role for survivin in osteoarthritic cartilage and human chondrocytes. In
vitro experiments indicated its involvement in cellular division and viability. Learning more about the functions of
survivin in chondrocyte biology might further help toward understanding and modulating the complex processes
of cartilage pathology and regeneration.
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Background
Endochondral ossification describes the formation of a
cartilaginous skeleton and its subsequent replacement
by mineralized bone. In the growth plate, complex pro-
cesses regulate the highly ordered sequences of chon-
drocyte proliferation, differentiation and apoptosis,
resulting in skeletal growth [1]. Even minor disturbances
in this delicate balance lead to abnormalities of endo-
chondral bone development, resulting in skeletal dyspla-
sia. Proliferation of immature chondrocytes is stimulated
by parathyroid hormone-related protein (PTHrP) and

other factors [2], while mitotic activity in mature chon-
drocytes is a rare event and confined to pathologic sce-
narios including osteoarthritis. The molecular regulation
of the progressive loss of proliferative capacity is still
not completely understood and remains a major chal-
lenge for future therapeutic strategies. Regenerative
approaches using autologous chondrocytes are further
complicated by the limited life span of chondrocytes in
vitro and their enhanced susceptibility to proapoptotic
stressors [3]. Under physiologic conditions, programmed
cell death in cartilage is uncommon owing to the main-
tenance of metabolic homeostasis and chondrocyte
adhesion to extracellular matrix proteins [4,5]. In
osteoarthritis, the influence of proapoptotic mechanical
and metabolic factors increases and is antagonized by
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the initiation of various molecular antiapoptotic
mechanisms [6-8]. The initiation of the various protec-
tive molecular mechanisms have been discussed in pre-
vious studies [9-11].
A protein believed to be involved in cellular division

and prevention of cell death is survivin. At 16.8 kDa,
survivin is the smallest member of the inhibitor of apop-
tosis gene family (IAP), and comprises one N-terminal
baculovirus IAP repeat (BIR) domain and a long C-
terminal-helix coiled region. The regulation of survivin
involves transcriptional, translational and post-transla-
tional modifications [12]. Since its first description, sur-
vivin was thought to be confined to embryonic
development and cancers and hardly expressed in adult
differentiated tissues. Survivin is ubiquitously expressed
in embryonic tissues, and homozygous knockout mice
for survivin show embryonic lethality as early as day 4.5
postcoitum [13]. In adult organisms, survivin is highly
re-expressed in solid tumors and malignant cells, as
shown by a large body of evidence. Furthermore, corre-
lations between survivin expression, tumor growth,
aggressiveness and overall prognosis have been demon-
strated convincingly [14-16]. Understandably, survivin
has been proposed as a perfect molecular target for
future oncologic therapies. However, recent studies
questioned the oncofetal paradigm of survivin expres-
sion and reported a role of survivin in non-malignant
tissues and normal cells [17]. A limited insight into the
role of survivin in the musculoskeletal apparatus beyond
the oncologic context has been gained through previous
studies. In rheumatoid arthritis (RA), high levels of sur-
vivin mRNA and protein have been reported in the
inflamed synovial membrane [18-21], synovial fluid
[22,23] and peripheral blood samples [24]. Of note, sur-
vivin expression has been discussed as a reliable predic-
tor of disease severity in RA [22,24].
In contrast to RA, the role of survivin in osteoarthritic

joints has not been clarified. This study describes survi-
vin expression in primary human chondrocytes in vitro
and reports selective survivin re-expression in human
osteoarthritic cartilage.

Methods
Unless otherwise stated, all chemicals were purchased
from Sigma-Aldrich (Taufkirchen, Germany).

Collection of human tissues
Articular cartilage was collected from 20 patients with
osteoarthritis undergoing total knee replacement. The
mean patient age was 62.5 years (range, 45-75 years).
The cartilage biopsies were fixed in 4% paraformalde-
hyde for immunohistochemistry and/or prepared for cell
isolation (see below). Arthritic cartilage sections were
classified as either osteoarthritic or non/moderate

osteoarthritic cartilage specimens. For this purpose,
three bunch biopsies (1.5 mm) were collected from
three different areas of each cartilage specimen. After
Safranin O staining, the specimens were analyzed for
the degree of histological change [25]. Written informed
consent was obtained from each patient before the
arthroplasty. The collection of human tissues was
approved by the local Ethics Committee (No. 09/131).

Human primary chondrocytes and cell culture conditions
For cell culture studies, primary human chondrocytes
were isolated as previously described [26]. The isolated
chondrocytes were plated in 75-cm2 flasks with medium
comprising a 1:1 mixture of Dulbecco’s modified Eagle’s
medium and Ham’s F-12 supplemented with 10% fetal
calf serum (PAA, Cölbe, Germany), and incubated at 37°
C under 5% CO2 in humidified air. All experiments
were conducted during passage 2 and subconfluent cul-
tures were used. At passage 2, all established cultures
expressed Sox9 and collagen type II, alpha 1 (COL2A1)
mRNA as measured by real-time PCR (data not shown).

Protein extraction and immunoblot analysis
Protein extraction of cultured cells was performed as
previously described [27]. Briefly, for cell culture
extracts, adherent cells were washed and removed by
scraping, and centrifuged for 5 minutes at 750 rpm. Cell
pellets were homogenized in extraction buffer (Roche
Applied Science, Mannheim, Germany). For survivin
immunoblotting, proteins were resolved by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis using
10% gels and blotted onto Immobilon P Membranes
(Millipore, Bedford, MA). The membranes were blocked
in 5% fat-free dried milk and probed with primary anti-
bodies. After incubation with horseradish peroxidase-
conjugated secondary antibodies, the positive bands
were visualized by chemiluminescence (Pierce, Rockford,
IL). The details of all the primary and secondary antibo-
dies used are given in Table 1. As a control for antibody
specificity, we loaded reticulocyte lysates programmed
with a full-length human survivin cDNA (data not
shown).

Survivin immunofluorescence
Primary human chondrocytes cultured on glass slides or
paraffin-embedded cartilage specimens were processed as
follows. For antigen retrieval, the slides were boiled for
20 minutes (10 mM citrate buffer, pH 6.0). Nonspecific
binding sites were blocked with 5% fat-free dried milk.
The sections were incubated with primary antibodies for
12 hours at 4°C in a humidified chamber and incubated
with red fluorescent dye-labeled anti-rabbit IgG. DNA
was stained with 4,6-diamidino-2-phenylindole (DAPI).
The slides were observed and photographed using a

Lechler et al. BMC Musculoskeletal Disorders 2011, 12:150
http://www.biomedcentral.com/1471-2474/12/150

Page 2 of 8



fluorescence microscope (Zeiss, Jena, Germany). To
determine the antibody specificity and validity of the
immunofluorescence, four independent antibodies were
applied. The details of all the primary and secondary
antibodies used are given in Table 1. After equal incuba-
tion times, omission of the primary or secondary anti-
body resulted in completely negative signals at
comparable exposure times. As a positive control, paraf-
fin-embedded specimens of human high-grade chondro-
sarcoma were used.

RNA extraction and real-time PCR
Survivin mRNA expression was assayed by real-time PCR
as previously described in detail [14]. RNA extraction was
performed using an RNeasy micro kit (Qiagen, Hilden,
Germany) according to the protocol originally described
by McKenna et al. [28]. Total RNA (1 μg) was transcribed
into cDNA using a Sensiscript RT kit (Qiagen). For real-
time PCR, intron-spanning primer sequences for human
survivin were applied. The controls used were human
GAPDH (for primer details, see Table 2) and b-actin. All
primers were used at a concentration of 300 nmol/L, with
55°C as the annealing temperature. A commercial 2 SYBR
Green PCR Mix (Eurogentec, Seraing, Belgium) was used
according to the manufacturer’s instructions. PCR was
performed with 50 cycles, taking 2 μl of cDNA into the
reaction with an end volume of 25 μl. The values for survi-
vin were related to their controls using the 2-Δct calcula-
tion method.

Survivin knockdown by siRNA
For the transfection analysis, cells were seeded into 6-
well dishes at 1.5 × 105 cells per 3.5-cm well at 24 hours
before the knockdown was performed. For knockdown of

survivin, a short interfering RNA (siRNA) with the
sequence of sense 5’-GCGCCUGCACCCCGGAGCG-3’
and antisense 5’-CGCUCCGGGGUGCAGGCGC-3’ was
used as previously described [27]. A siRNA targeting
green fluorescence protein (GFP) with the sequence of
sense 5’-GUGUGCUGUUUGGAGGUCTT-3’ and anti-
sense 5’-GAACUCCAAACAGCACACCTT-3’ was trans-
fected as a negative control. All siRNAs were applied at
a concentration of 100 nmol/L.

Cell cycle analysis
Both adherent and detached cells were collected by tryp-
sinization and resuspended in a staining solution con-
taining 1.5 mol/L propidium iodide (PI) and 25 g/ml
RNase A. The samples were subjected to fluorescence-
activated cell sorting analysis (FACS) using a FACSCali-
bur (BD Biosciences, Heidelberg, Germany).

Caspase 3/7 activity assay
Apoptosis was studied by measuring the activity of cas-
pases 3 and 7 in a 96-well microplate format, using Cas-
pase-Glo (Promega, Madison, WI). Chondrocytes were
seeded at 1.5 × 105 cells per 3.5-cm well at 24 hours
before the survivin-specific or control siRNA was trans-
fected. For the analysis, the cells were incubated for 90
minutes in a luciferase substrate mix, and the lumines-
cence activity was measured in a luminometer (Berthold,
Bad Wildbad, Germany).

Measurement of cell proliferation by quantification of
BrdU incorporation
A commercial cell proliferation assay (Cell Proliferation
ELISA; Roche Applied Science) was used according to
the manufacturer’s recommendations. Cells were

Table 1 Details of the antibodies used

Method Detected Primary antibody (μg/ml) secondary antibody (μg/ml)

protein

IB Survivin pAB AF886 (R&D Systems) 1,0 Polyclonal immunoglobulins/HRP-conjugated (DAKO) 0,3

IB Survivin pAB 500.201 (Novus Biologicals) 1,0 Polyclonal immunoglobulins/HRP-conjugated (DAKO) 0,5

IF Survivin pAB AF886 (R&D Systems) 10,0 Red fluorescent dye-labeled immunoglobulin (Invitrogen) 10,0

IF Survivin pAB 500.201 (Novus Biologicals) 10,0 Red fluorescent dye-labeled immunoglobulin (Invitrogen) 8,0

IF Survivin mAB clone 60.11 (Novus Biologicals) 6,0 Red fluorescent dye-labeled immunoglobulin (Invitrogen) 8,0

The primary and secondary antibodies used for the immunofluorescence and immunoblotting are listed, with inclusion of the sources, purposes and
concentrations. IB: immunoblotting; IF: immunofluorescence.

Table 2 Details of the primer oligonucleotide sequences used for real-time PCR

Gene Forward primer 5’-3’ Reverse primer 5’-3’

Survivin CTTGGCCCAGTGTTTCTTCT CCTCCCAAAGTGCTGGTATT

GAPDH CCCACTCCTCCACCTTTGAC CATACCAGGAAATGAGCTTGACAA

b-actin AGTCCTGTGGCATCCACGAAA GTCATACTCCTGCTTGCTGA

SOX9 CTGAGTCATTTGCAGTGTTTTCT CATGCTTGCATTGTTTTTGTGT

COL2A1 CATTGATGGGGAGGCGTGAG CATTGATGGGGAGGCGTGAG
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cultured in a 96-well microtiter plate and exposed to
BrdU for 4 hours. After application of a fixation solu-
tion, the cells were labeled with a peroxidase-conjugated
mouse monoclonal antibody. Next, the bound antibody
was quantified with a peroxidase substrate (luminol/4-
iodophenol), and the light emission was measured using
a luminometer (Berthold).

Statistical analysis
All values are presented as means ± SEM. Student’s
paired t-test and one-way analysis of variance (ANOVA)
with a post hoc Bonferroni test were applied to reveal
the statistical significance of differences. Values of p <
0.05 were considered significant (*p < 0.05). Statistical
analyses were performed using SPSS Software for Win-
dows (Version 18; SPSS Inc., Chicago, IL).

Results
Survivin is expressed by human chondrocytes in
osteoarthritis
As a first step, we analyzed survivin expression in
human osteoarthritic cartilage by immunofluorescence.
We found no or only weak signals for survivin in
macroscopically and microscopically non-arthritic carti-
lage, whereas survivin was readily detectable in osteoar-
thritic sections (Figure 1A-F). The strongest signals

were seen in chondrocyte clusters in the deeper chon-
dral layer, i.e. chondroid nests. The pattern of staining
was predominantly nuclear or mixed cytoplasmic-
nuclear. The cartilage matrix showed no survivin
expression or autofluorescence. Next, we analyzed the
survivin mRNA levels in osteoarthritic cartilage sections
and macroscopically unaffected cartilage of the same
joint. Real-time PCR from the non/moderate arthritic
specimens showed very weak, if any, expression, whereas
survivin expression was readily detectable in macrosco-
pically arthritic cartilage (Figure 1G).

Survivin is expressed at the protein and RNA levels in
primary human chondrocytes
Survivin expression in primary human chondrocyte cul-
tures was analyzed by immunoblotting and quantitative
real-time PCR. Survivin protein was expressed in all cul-
tures established at passage 2 (n = 5) as detected by
immunoblotting (Figure 2A). Antibody specificity was
confirmed by transfection of a survivin-specific siRNA,
which led to a significant reduction in the detectable
survivin protein after 24 hours (Figure 2A). Equal load-
ing was controlled by b-actin detection and Coomassie
brilliant blue staining of the membranes (data not
shown). Survivin expression at the protein level showed
a marked decrease at 48 hours after the siRNA transfec-
tion. Knockdown of GFP did not result in alterations of
the survivin protein levels. Next, we analyzed survivin
mRNA expression by applying quantitative real-time
PCR. Survivin was detectable in all cultures analyzed
(n = 4) and knockdown of survivin resulted in a marked
reduction in detectable survivin RNA (Figure 2B).

Subcellular survivin protein localization in primary human
chondrocytes
We examined the subcellular survivin protein localiza-
tion in primary human chondrocytes at passage 2 by
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immunofluorescence staining. Survivin was localized to
heterogeneous subcellular compartments. Approximately
85% of cells revealed a predominantly cytoplasmic pat-
tern of staining, while 12% had a mixed cytoplasmic-
nuclear pattern and 3% had a purely nuclear pattern
(Figure 3A and 3B). In sporadic cells, positive mitotic
structures resembling a spindle apparatus and midbody
could be detected (Figure 3C-F). Importantly, this pat-
tern of staining was reported to be highly specific for
immunocytological staining of survivin [29].

Survivin knockdown leads to G2/M blockade, reduced
rates of proliferation and sensitization of primary human
chondrocyte cultures to proapoptotic stimuli
At 48 hours after knockdown of survivin by transfection
of a specific siRNA, the cell cycle distribution was ana-
lyzed by the FACS PI method (Figure 4A). The siRNA

transfection led to a significant reduction in the G1/0
fraction (68.4% to 56%) and marked elevation of the
perimitotic G2/M cell phase fraction (14.3% to 23.77%).
No significant alterations in the sub-G1 phase (p =
0.1478) and S phase (p = 0.2386) fractions were
observed (Figure 4A). The effects of GFP transfection
on the cell cycle distribution compared with untrans-
fected cells were not significant (all p > 0.05). Next, we
studied the effects of survivin knockdown on the prolif-
eration of primary chondrocytes (Figure 4B). BrdU
uptake was significantly (p = 0.0003) reduced at 48
hours after knockdown of survivin compared with GFP-
transfected and untreated chondrocyte cultures (100%).
The transfection of GFP led to no significant alterations
in BrdU uptake after 48 hours compared with untrans-
fected control cells (p = 0.3542). After studying the
effects of the suppression of survivin on chondrocyte
proliferation in vitro, we assayed the apoptotic activity
at 24 hours after knockdown of survivin. In unstressed
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Figure 3 Subcellular distribution of survivin protein in primary
human chondrocytes. (A-F) Immunofluorescence for survivin in
primary chondrocytes cultured on glass slides (red). Staining with
4,6-diamidino-2-phenylindole (blue) of the identical positions is also
shown. Survivin is located at the equatorial plate at metaphase in a
mitotic cell (C, D). A midbody in a dividing cell with strong positive
staining for survivin is shown (E, F).
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cultures, transfection of the survivin-specific siRNA did
not lead to significantly altered caspase 3/7 activities
(Figure 4C) (p = 0.9825). When exposed to in vitro
ischemia (1% oxygen, glucose deprivation), caspase 3/7
activity increased significantly after transfection of the
survivin-specific siRNA (Figure 4C) (p = 0.0466). Of
note, when we compared the caspase 3/7 activity
between untransfected and survivin siRNA-transfected
cultures, this effect was not significant (p = 0.0678).
ANOVA and a subsequent Bonferroni post hoc test
revealed significantly increased apoptotic rates for all
transfection conditions (untransfected + unstressed vs.
untransfected + in vitro ischemia, p < 0.0001; GFP
siRNA + unstressed vs. GFP siRNA + in vitro ischemia,
p < 0.0001; survivin siRNA + unstressed vs. survivin
siRNA + in vitro ischemia, p = 0.0002). The transfection
of GFP had no significant influences on the apoptotic
activity (all p > 0.05)

Discussion
A finely orchestrated balance of chondrocyte prolifera-
tion and cell death enables endochondral ossification
and subsequent skeletal growth. In adult cartilage, pro-
liferation is limited to pathologic conditions, while con-
stitutive prevention of apoptosis is a necessity to
withstand stressors like mechanical forces, reactive oxy-
gen species and cytokine exposure [6-8]. The antiapop-
totic tumor gene survivin has been extensively studied
in cell cycle and apoptosis assays in tumor cells, with lit-
tle available data in primary cells and chondrocyte biol-
ogy so far [30]. Previous studies stressed the “oncofetal”
pattern of survivin gene expression and its absence in
adult differentiated cells and tissues [9]. In recent publi-
cations, a role for survivin in RA has been discussed and
convincing data about its importance for the progression
of this inflammatory disease have been presented
[18,24]. In the present study, we report on the expres-
sion of survivin at the protein and mRNA levels in
human osteoarthritic cartilage. Here, the so-called chon-
droid nests, comprising accumulations of “stressed”
chondrocytes, revealed a reactivation of survivin gene
transcription and translation.
Furthermore, in vitro experiments with primary

human chondrocytes suggested the possible functions of
survivin in cartilage biology. Suppression of survivin
gene expression by transfection of a specific siRNA
resulted in marked alterations of the cell cycle distribu-
tion and inhibited G2/M progression. In addition, the
proliferative activity of primary human chondrocytes
decreased after specific knockdown of survivin, as mea-
sured by BrdU uptake. Importantly, we noted a discre-
pancy between the decrease in BrdU uptake at 48 hours
and the lack of significant alterations in the S phase
fraction at 48 hours after transfection of the survivin-

specific siRNA. This might be explained by the unequal
sensitivity and specificity of the applied assays [31].
Nevertheless, the marked increase in the G2/M cell
phase fraction and the concurrent decrease in BrdU
uptake underline the roles of survivin in cell cycle regu-
lation and proliferation. A possible explanation of these
effects could be a key function for the gene in the chro-
mosomal passenger complex and a subsequent failure of
mitotic cell division [32-34]. Interestingly, a recent study
indicated that histone H3 phosphorylation is directly
recognized by survivin before the activation of Aurora B
takes place [35]. The second well-characterized function
of survivin is the prevention of programmed cell death
[36]. In our study, no significant alterations in the apop-
totic activity in unstressed chondrocyte cultures were
detected after knockdown of survivin. In contrast, after
stressing the cells by in vitro ischemia, the knockdown
of survivin resulted in elevated apoptotic rates. Interest-
ingly, Gagarina et al. [30] reported on the upregulation
of survivin and other IAP members by cartilage oligo-
meric matrix protein and subsequent cellular protection
in primary chondrocytes. Of note, the authors of the
study stressed the inducibility of the IAP family mem-
bers, while the constitutive expression and function
were not elucidated.
Considering the plethora of reports on inflammatory

cytokines leading to an induction of survivin gene expres-
sion, no single relevant factor has been identified. Future
studies need to dissect the interactions between proinflam-
matory mediators, mechanical influences and the resulting
effects on survivin expression in human cartilage [37-39].
The interference with inflammatory pathways might mod-
ulate survivin function and gene expression [40]. Further-
more, new therapeutic attempts to directly suppress the
apoptotic activity in osteoarthritis, could make use of the
antiapoptotic capacity of survivin [41].

Conclusions
In summary, we have demonstrated for the first time
that the antiapoptotic protein survivin is re-expressed in
osteoarthritic human cartilage and primary human
chondrocytes, and our functional analyses indicated that
survivin exerts both classic functions, i.e. cell cycle regu-
lation and survival control. Learning more about survi-
vin expression in chondrocytes might be an important
step toward understanding cartilage biology and pathol-
ogy, and could be of help in the development of future
regenerative strategies.
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