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Abstract

Background: Primary stability of cartilage repair constructs is of the utmost importance in the clinical setting but
few continuous passive motion (CPM) models are available. Our study aimed to establish a novel ex vivo CPM
animal model and to evaluate the required motion cycles for testing the mechanical properties of a new cell-free
collagen type I gel plug (CaReS®-1S).

Methods: A novel ex vivo CPM device was developed. Full-thickness cartilage defects (11 mm diameter by 6 mm
deep) were created on the medial femoral condyle of porcine knee specimens. CaReS®-1S was implanted in 16
animals and each knee underwent continuous passive motion. After 0, 2000, 4000, 6000, and 8000 motions,
standardized digital pictures of the grafts were taken, focusing on the worn surfaces. The percentage of worn
surface on the total CaReS®-1S surface was evaluated with image processing software.

Results: Significant differences in the worn surface were recorded between 0 and 2000 motion cycles (p < 0.0001).
After 2000 motion cycles, there was no significant difference. No total delamination of CaReS®-1S with an empty
defect site was recorded.

Conclusion: The ex vivo CPM animal model is appropriate in investigating CaReS®-1S durability under continuous
passive motion. 2000 motion cycles appear adequate to assess the primary stability of type I collagen gels used to
repair focal chondral defects.

Background
Cartilage defects of the knee are commonly encountered
in orthopedic clinical practice [1,2]. Several well
described repair strategies have been used in the man-
agement of chondral lesions [3-6]. Debate persists about
the best repair technique for symptomatic chondral
defects of less than 2 cm² [7]. Currently, CaReS®-1S
(Arthro Kinetics, Esslingen, Germany), a cell-free col-
lagen type I gel plug was introduced to treat isolated
cartilage defects. This graft is implanted in the debrided
chondral lesion, in a single-stage procedure. The gel
triggers chondrocyte migration and proliferation into

the plug, which has been proven both in vitro and ex
vivo [8].
Most cartilage regenerative studies address the bio-

chemical and histological composition of generated car-
tilage [9,10]. However, successful cartilage repair
requires sufficient initial mechanical stability of the
grafts [11]. The implanted grafts should withstand the
forces in vivo in the early postoperative phase during
joint movement. Secure primary stability is necessary to
keep the grafts in place and to achieve sufficient joint
surface congruity, on which the long-term results
depend [12]. Partially or completely delaminated tissue
engineered constructs can cause locking in the knee and
poor clinical results [13,14].
Several authors describe the beneficial effects of con-

tinuous passive motion (CPM) on neochondrogenesis
and most postoperative protocols consider ex vivo
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non-weight bearing CPM in the first 6 weeks after sur-
gery to be beneficial [15-17].
Drobnic et al. [18] reported a human cadaveric model

of ex vivo CPM, testing four fixation techniques for
fibrinogen and thrombin coated collagen fleece. They
aimed to simulate the initial postoperative period by
applying ex vivo CPM to specimens. However, the avail-
ability of appropriate human specimens without
advanced osteoarthritis is limited. This can be a chal-
lenge for developing appropriate protocols to test the
primary stability of collagen plugs; to date, there are no
established animal models.
Moreover, little is known about the required motion

cycles for testing the mechanical properties of cartilage
repair constructs. The means to assess the early post-
operative phase after cartilage regenerative procedures is
lacking. Consequently, efforts to build a new ex vivo
CPM device to assess the mechanical properties of tis-
sue engineered scaffolds would be of great value. The
aim of the present study is to construct a simplified,
custom-made ex vivo CPM device and to investigate the
number of motion cycles required for testing the
mechanical properties of collagen plugs. We hypothe-
sized that the new device would allow us to reliably
evaluate the degree of wear to collagen plugs. We also
aimed to determine the number of cycles required to
assess wear appropriately using this model.

Methods
Sixteen porcine knees (age 9 months) were used to
assess primary stability of cell-free collagen gel plugs.
These were obtained from the local butcher, fresh fro-
zen at -25°, and thawed for 16 hours at room tempera-
ture (20°C) before testing. This project was performed
in accordance with the Helsinki Declaration and with
local legislation. CaReS®-1S was implanted in an identi-
cal manner in each specimen. Right and left knees were
not differentiated; both knees were used [19]. Some
knee specimens were dissected to evaluate the anatomy
of the porcine knee and to establish the surgical
procedure.

CaReS®-1S
CaReS®-1S is a sterile cylindrical, three-dimensional col-
lagen-based and cell-free gel plug, consisting of 4.8 mg/
mL rat tail collagen type I (CaReS® [20,21], Arthro
Kinetics, Esslingen, Germany). It has been used for carti-
lage defects in the knee and ankle in patients under 50
years of age. The plug is available in three different dia-
meters (11, 22, and 34 mm) and thicknesses (4, 6, and 8
mm). The hydrogel consistency allows adequate cover-
age and sufficient reconstruction of the articular surface.
The basic concept of CaReS®-1S is to replenish the carti-
lage defect with a matrix structure, facilitating

autologous chondrocytes to penetrate into the lesion
zone. Low antigenicity and high biocompatibility of
CaReS®-1S is achieved by the high conservation of pro-
tein sequences of collagen type I within various species.
The plugs used in this study measured 11 mm diameter
by 6 mm deep and contained 4.27 mg collagen type I.
CaReS®-1S were stored in phosphate-buffered saline
solution and preserved at 4°C until use.

Ex vivo CPM device
A custom-made, pneumatic ex vivo CPM device was
constructed, on which extension-flexion motions were
performed at a frequency of 1 Hz (Figure 1). There were
no constrained forces and during passive motion the tibia
was allowed to rotate freely. To simulate early postopera-
tive rehabilitation, an additional axial load during testing
was not performed. The extension and flexion motion
cycles was performed via the coordination of two pneu-
matic cylinders and detected by an integrated counter.

Surgical procedure
The tibia and the femur were transected approximately
10 cm proximal and distal to the knee joint, preserving
muscles, articular capsule, ligaments, and tendons.
A medial parapatellar arthrotomy was performed and
the patella was dislocated laterally. A standardized full-
thickness cartilage defect of 11 mm diameter by 6 mm
deep was created in the weight-bearing area of the med-
ial femoral condyle using a punch (Arthro Kinetics,
Esslingen, Germany).

Ex vivo CPM protocol
Experiments were performed at 20°C. A constant ex
vivo CPM protocol was established for the performance
of experiments. After the preparation of the chondral
defect, the proximal femur and distal tibia were fixed
into a cylindric metal device and fastened in the vertical
position (Figure 2). As the porcine hind leg could not
be fully extended, specimens were flexed to and from an
extension position, between 20°-120°-20°, encompassing

Figure 1 Schematic diagram of the new ex vivo CPM device in
extension (a) and flexion (b).
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one complete motion cycle. After fixation, ex vivo CPM
device test cycles through the whole range of motion
were performed to align the mechanical axis of the stifle
joint with the mechanical axis of the ex vivo CPM
device. Both tibial and femoral fixation allowed adjust-
ment of the stifle position. After adjustment, 0.3 mL of
a two-component fibrin sealant (Tissucol Duo, Baxter,
Unterschleißheim, Germany) was applied to the pre-
pared defect and the surrounding cartilage rim, prior to
CaReS®-1S placement into the lesion. The gel plug was
pressed into the defect according to standard manufac-
turer guidelines and clinical practice. The graft was con-
sidered to be sufficient when complete congruity with
the surrounding cartilage rim was achieved. 5 mL of
0.9% sodium chloride solution was injected intraarticu-
larly with a catheter to keep the articular surface moist
and intraarticular friction low. After 2000, 4000, 6000,
and 8000 motion cycles, the arthrotomy was reopened
to evaluate the graft worn surface and to moisten the
joint surface with 0.9% sodium chloride solution. Stan-
dardized digital photographs were taken for analysis
after CaReS®-1S implantation and after implantation and
every 2000 motion cycles. During the entire procedure,
test specimens were externally moistened with 0.9%
sodium chloride solution every 10 minutes.

Graft Evaluation
The surface damage was defined as intact, marginally
detached, partially detached, or completely displaced.
Marginally detached only involved the junction between
CaReS®-1S and adjacent cartilage, and appeared as a fis-
sure. In partial detachment, the graft only covered a
part of the defect. If the cartilage defect was completely
empty, this was defined as displacement of the graft.
Digital photographs obtained after 0, 2000, 4000, 6000,
and 8000 motion cycles were transferred using image

processing software (QUIPS, Leica, Wetzlar, Germany).
The worn surface area and the total area of the defect
were measured in pixels; the percentage of worn surface
was calculated from the ratio of both measurements
(Figure 3). The areas of interest were traced by an inde-
pendent observer who was not involved in performing
the experiments.

Statistical analysis
The repeated measured data at 2000, 4000, 6000, and
8000 motion cycles were assessed by analysis of variance
(ANOVA). The increase in the worn surface within the
first 2000 motion cycles and differences between 2000,
4000, 6000, and 8000 motion cycles were analyzed
through the application of general linear hypothesis test-
ing. P-value adjustment was performed by the method
of Shaffer [22]. Additionally, for all contrasts, the corre-
sponding 95% family-wise confidence intervals (CI) were
calculated. Two-sided adjusted p-values less than 0.05
were considered statistically significant. All statistical
analysis was performed with R software (Foundation for
Statistical Computing, Vienna, Austria).

Results
The ex vivo CPM device worked for 8000 motion cycles.
The most time-consuming procedure was the mechanical
axis of the stifle joint alignment with the mechanical axis
of the testing device. Within the first 2000 motion cycles,
the mean worn surface significantly increased by 20.2%
(p < 0.0001, C.I. 10.2% - 30.2%). After 2000 cycles, no sig-
nificant changes in the worn surface were observed
(Table 1). Representative photos at 0, 2000, 4000, 6000,
and 8000 motion cycles are shown in Figure 4. The eva-
luation during ex vivo CPM showed that none of the
CaReS®-1S grafts delaminated totally with an empty
defect site.

Figure 2 Experimental setup with the ex vivo CPM device and fixed porcine knee specimen in front (a) and side (b) views.
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Discussion
Information on ex vivo CPM devices and the number of
motion cycles needed to investigate cartilage repair con-
structs is lacking. The aim of our study was to construct
a novel ex vivo CPM device and to create a small animal
model to evaluate the required number of continuous
passive motions for testing CaReS®-1S. Our hypothesis
that this device would allow reproducible evaluation of
wear to collagen plugs was proven to be correct. We
also successfully determined number of cycles required
to assess wear appropriately.
There are several limitations to our study. While por-

cine anatomy closely approximates human anatomy
[23], immanent differences between species are evident.
Mechanical in vitro studies only simulate the physiologi-
cal function and motion of the joint, since there is no
force applied by the muscles. The presented ex vivo
CPM device may only partially simulate its clinical
application. In our study, analysis of the worn surface of
the graft was performed by imaging processing software
as a semiquantitative analysis. More objective quantita-
tive measurements and absolute values may be prefer-
able. However, analysis of cartilage repair constructs
with the ex vivo CPM is difficult, raising the question of
reliability. Other studies used qualitative scales [18,24],
posing the problem of subjective bias. It is very likely
that a potential malalignment of the joint within the
testing device may have affected the results. In our
setup, the tibia was allowed to rotate freely. It was also
allowed to move freely in the frontal plane. Malalign-
ment in the testing device resulted in impingement of
the specimen with the frame. Simulation in human
cadaver knees would be the optimal standard for testing.
However, human specimens are expensive, sometimes

difficult to obtain, and come from elderly people. There-
fore, osteoarthritic changes are a common finding in
these specimens, which may interfere with the evalua-
tion of a procedure in an otherwise healthy joint of a
young patient. The porcine model comes with the
advantage of unlimited availability at a low cost.
There are currently only two experimental ex vivo

CPM models for testing cartilage implants. A recent
study on human cadaver knees investigated the quality
of PEOT/PBT scaffold fixation (transosseous fixation,
fibrin glue, biodegradable pins, and continuous cartilage
sutures) by ex vivo CPM in a vertical position [24]. The
mechanical behavior was evaluated after 60 and 150
motion cycles with a 35N load, focusing on outline
attachment, scaffold integrity, and area coverage. After
210 motion cycles, an endpoint fixation test was per-
formed. Drobnic et al. [18] compared in a similar model
four different fixation techniques (self-adhesion, fibrin
glue, bone sutures, periosteal cover) of a collagen scaf-
fold in the human cadaveric knee, horizontally oriented
with and without loading. In both studies, the numbers
of cycles remained small and did not correspond with
the clinical situation after surgical management of carti-
lage defects; whereas ex vivo CPM is often applied sev-
eral hours a day. It is most likely that in the early
postoperative phase the knee undergoes considerably
more than 150 motion cycles. At our institution and in
previous experience [25] patients usually use the ex vivo
CPM machine for 6 to 8 hours daily after implantation
of tissue engineered constructs. The rate is one cycle
per minute but varies based on patient comfort and per-
formance. This fact should be taken into consideration
when performing mechanical testing. A study design
with fewer motion cycles makes the transformation

Figure 3 Worn surface analysis of CaReS®-1S. (a) initial image; calculation of percentage of worn surface from the ratio of (c) and (d).

Table 1 Analysis of surface wear in dependence of motion cycles (p < 0.05)

Motion Cycles Mean difference of worn surface (%) 95% Confidence Interval P-Value

0 to 2000 20.2 10.2 - 30.2 0.0001

2000 to 4000 1.9 -1.5 - 5.3 0.20

2000 to 6000 2.9 -0.6 - 6.3 0.12

2000 to 8000 2.3 -1.1 - 5.7 0.20
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from in vitro to in vivo testing difficult. Consequently,
long-term durability studies are necessary. However, it is
possible to determine if such constructs were too fragile
to be practical. Thus, shorter-term motion cycles studies
have their place. In the present study, testing of CaReS®-
1S was performed with 8000 motion cycles under ex
vivo CPM. The question of how many motion cycles
were necessary to evaluate wear to collagen plugs has
not been answered satisfactorily as of yet. In our study,
significant changes in the worn surface of the graft were
only detected between 0 and 2000 motion cycles (p =
0.0001). Therefore, a protocol with 2000 motion cycles
appears to be a sufficient number to investigate type I
collagen gels used to repair focal chondral defects.
Delamination of tissue engineered constructs occurs

mainly in the first six postoperative months [26]. A pos-
sible explanation for this may include weak mechanical
fixation and adherence. Since it is known that friction
forces and shear forces may cause delamination of carti-
lage implants [27], most authors allow only partial
weight-bearing after cartilage regeneration techniques
[28,29]. While Drobnic et al. [18] and Bekkers et al. [24]
used additional load ex vivo CPM protocols, intraarticu-
lar pressure measurements were not performed. It
remains unclear how much load was applied on the spe-
cimens intraarticularly. Although no additional load was
applied in our study, we assume that the vertical orien-
tation, the corresponding tibial cartilage, and the
intraarticular liquid generates friction forces and shear
forces on the gel that correspond with the clinical set-
ting. Nevertheless, performing the experiments with an
additional load might have been preferable.
Evaluation of tissue engineered constructs in the

early postoperative rehabilitation phase is difficult. The
ex vivo CPM device used in the present study is sim-
plified and can be helpful to investigate the durability

of collagen gel constructs. Our findings may support
research in new materials in a porcine knee model.
Nevertheless, the ex vivo CPM device cannot be used
in assessing biomechanical properties (viscoelasticity,
permeability, tensile strength, and electromechanical
properties).

Conclusion
The novel custom-made ex vivo CPM device allows
the investigation of CaReS®-1S under a high number
of motion cycles. Significant differences in the worn
surface were detected between 0 and 2000 motion
cycles, but not beyond 2000 cycles. This device and
study model may be of great value in further
investigations.
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