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Abstract

Background: Submaximal exercise is used in the management of muscular dystrophy. The effects of mechanical
stimulation on skeletal development are well understood, although its effects on cartilage growth have yet to be
investigated in the dystrophic condition. The objective of this study was to investigate the chondrogenic response
to voluntary exercise in dystrophin-deficient mice.

Methods: Control and dystrophin-deficient (mdx) mice were divided into sedentary and exercise-treated groups

may not be a clinical concern with dystrophinopathy.

and tested for chondral histomorphometric differences at the proximal femur.

Results: Control mice ran 7 km/week further than mdx mice on average, but this difference was not statistically
significant (P > 0.05). However, exercised control mice exhibited significantly enlarged femur head diameter,
articular cartilage thickness, articular cartilage tissue area, and area of calcified cartilage relative to sedentary
controls and exercised mdx mice (P < 0.05). No differences were found between other treatment groups.

Conclusions: Mdx mice exhibit a reduced chondrogenic response to increased mechanical stimulation relative to
controls. However, no significant reduction in articular dimensions was found, indicating loss of chondral tissue

Background

Genetic mutations affecting the expression of the dystro-
phin gene, as with Duchenne muscular dystrophy
(DMD), impair cellular ability to resist muscle contractile
forces and result in striated muscle cell death and fibrosis
of the investing connective tissue [1,2]. Although there is
no cure for muscular dystrophy, exercise has long been
prescribed as a treatment modality [3,4]. Submaximal,
low-intensity exercise has been shown to improve skele-
tal muscle performance [5], while rigorous exercise accel-
erates the dystrophic process [6-8]. Maintenance of
muscle mass through exercise has also been shown to
have musculoskeletal benefits related to gait, prolonged
ambulation, and joint contracture [3,9,10]. While dystro-
phin deficiency does not directly affect bone and cartilage
growth, the growth of these tissues is mechanically regu-
lated and therefore indirectly affected by strains from
muscle contraction [11]. Bone fractures, low bone
mineral density, pelvic obliquity, and kyphoscoliosis have
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been attributed to the effects of muscular degeneration
and joint contractures on bone growth and maintenance
in dystrophin-deficient patients [12-16]. However, the
precise effects of moderate exercise on articular cartilage
growth with dystrophinopathy-related muscle degenera-
tion have yet to be studied.

We examine the effects of voluntary exercise activity
on the proximal femurs of juvenile dystrophin-deficient
(mdx) mice. Mdx mice do not have DMD, but exhibit a
similar X-linked myopathy caused by dystrophin defi-
ciency. Mdx mice have significantly reduced skeletal
myocyte diameter, numerous necrotic myocytes, and
abundant fibrosis leading to significantly weaker muscle
force generation relative to wild-type mice and thus
serve as a useful model for testing the effects of dystro-
phin-related muscle weakness [17,18]. Voluntary, rather
than forced, exercise is used in our study because it has
been shown to help maintain muscle strength in mdx
mice and is similar to the submaximal, low-intensity
exercise prescribed by some physicians in the manage-
ment of human dystrophinopathies [19,20].
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Methods

Twenty mice of the control strain C57BL/10ScSn
(000476; Jackson Laboratory, Bar Harbor, ME) and
twenty mice of the dystrophin-deficient strain C57BL/
10ScSn-Dmd™® (mdx mice; 001801; Jackson Labora-
tory, Bar Harbor, ME) were used in the experiment. The
use of animals in this study was approved by the Institu-
tional Animal Care and Use Committee at Midwestern
University and follows NIH guidelines for animal
research. All mice were 7-week-old virgin females that
were housed individually and provided with food and
water ad libitum. Only females were used to control for
potential sex differences. After a one-week acclimatiza-
tion period, the mice were separated into four groups of
equal size: sedentary control mice, exercise-treated con-
trol mice, sedentary mdx mice, and exercise-treated
mdx mice. Exercise treatment consisted of voluntary
access to a running wheel that lasted four weeks. Indivi-
dual running distances were monitored using digital
counters attached to each wheel. Following the four-
week treatment period, the mice were sacrificed using
compressed CO, at the age of 11 weeks.

Femurs were immediately excised and placed in decal-
cifier (Surgipath, USA) for 3 days. Once decalcification
was complete, the femurs were frozen in liquid nitrogen
and cryosectioned at a thickness of 12 um in the coro-
nal plane. Sections were stained with toluidine blue to
distinguish cartilage, calcified cartilage, and bone. Tolui-
dine blue orthochromatic staining intensity of articular
cartilage was observed to assess proteoglycan content of
the tissue. Quantitative evaluation of toluidine blue stain
is not recommended because of the variability of stain-
ing intensity and metachromasia related to decalcifica-
tion, fixation, and pH of the tissue [21-24]. However,
toluidine blue orthochromasia (i.e., blue appearance) is
directly proportional to proteoglycan content of the tis-
sue and thus suitable for a generalized qualitative assess-
ment [24,25].

Histomorphometric measurements were taken on digi-
tal images captured using an Eclipse 55i microscope
(Nikon Inc.). Measurements included medial-lateral
femoral head diameter, cartilage thickness at midjoint,
area of the calcified cartilage zone, and cartilage tissue
area excluding the calcified cartilage zone. Because of
differences in body mass, statistical treatment of the
data consisted of a general linear model of covariance
(ANCOVA) with body weight as the covariate. Statistical
significance was set at P < 0.05.

Results and Discussion

Average daily running distance did not differ signifi-
cantly between control and mdx mice (P > 0.05, Fig. 1).
On average, control mice ran 1.01 km/day more than
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Figure 1 Mean daily running distance of exercised control and
exercised mdx mice. No significant difference was found between
mouse strains, although control mice ran an average of 1.01 km/day
more than exercised mdx mice. Error bars depict mean + standard
deviation.

mdx mice. One mdx mouse did not run at all and was
excluded from the analysis. Mdx mice were significantly
heavier than controls in both the sedentary and exercise
groups (Fig. 2). However, body mass did not differ sig-
nificantly between sedentary and exercised mice of the
control strain or between sedentary and exercised mdx
mice.

Representative histological sections from each treat-
ment group are shown in Fig 3. In general, the intensity
of toluidine blue orthochromatic staining was greater in
the control groups in comparison to mdx groups, indi-
cating greater proteoglycan content in control mice.
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Figure 2 Body mass in control and mdx by treatment groups
at 11 weeks of age. Mdx mice have significantly greater body
mass than treatment-matched controls. Error bars depict mean +
standard deviation.
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Figure 3 Representative photomicrographs of femoral head
articular cartilage of A) sedentary control mice, B) exercised
control mice, C) sedentary mdx mice, and D) exercised mdx
mice. Exercised control mice had the largest femur head diameter,
cartilage tissue area, and area of calcified cartilage in comparison to
all other groups when corrected for differences in body mass.
Toluidine blue, 40x.

Statistical comparisons of histomorphometric para-
meters of the proximal femur corrected for body mass
are displayed in Table 1. These data show that proximal
femoral tissue of juvenile mdx mice is less responsive to
mechanical stimulation in comparison with controls. No
significant differences between sedentary and exercised
mdx mice were found for any dependent variable
included in the study (P > 0.05). However, femur head
diameter, cartilage thickness, and cartilage tissue area
are significantly larger in exercised controls relative to
sedentary controls and exercised mdx mice (P > 0.05).
There is an abundance of data demonstrating articular
cartilage growth, bone growth, and the size of the calci-
fication zone are sensitive to moderate exercise in
healthy subjects [26-30]. In vitro studies confirm that
mechanical loading of cartilage stimulates cell division
and matrix synthesis [31,32], even in the moderate
range of 10 MPa [33,34]. In vivo, these effects translate
to elevated chondral tissue expansion under increased
mechanical stimulation [28,35,36].
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The lack of a chondrogenic response to voluntary
exercise in mdx mice is a unique finding. Reduced
mechanical loading and endocrinological changes may
serve as possible explanations. First, it is conceivable
that joint forces in mdx mice failed to provide suffi-
cient mechanical pressure to yield significant chondral
expansion. Skeletal muscle of mdx mice of similar age
to the ones used in this study have been shown to
contain extensive fibrosis and degenerative myocytes
with diminished muscle force production [17,37,38].
While absolute force production of mdx hindlimb ske-
letal muscle has been reported to be similar to
controls, muscle force normalized by muscle cross-sec-
tional area is significantly reduced in mdx mice
[38-40]. Thus, mdx mice are weaker for their given
mass [39]. Studies have also found a significant and
irreversible drop in force production during repeated
eccentric muscle contraction in mdx mice that is
attributed to dystrophic sarcolemma damage [41,42].
Such decreases in muscle force production accelerate
fatigue, thereby reducing running endurance and speed
[42,43]. For example, Hayes and Williams [44] found
that mdx mice run an average of 0.5 km/hr slower than
controls. Running speed also plays a large role in deter-
mining joint forces. Faster mouse running speeds
increase limb joint forces, even if ground reaction force
remains constant [45]. Given these reported findings, a
reduction in joint forces resulting from weaker muscle
force production and slower running speeds may
explain the diminished chondrogenic response to volun-
tary running exercise in the proximal femurs of mdx
mice. However, more data is needed to confirm the role
of mechanical factors affecting the functional adaptation
of mdx mouse limb joints.

Second, it is also possible that endocrinological factors
contributed to the poor chondrogenic response to exer-
cise in the mdx mice. Proinflammatory cytokines, such as
tumor necrosis factor-alpha (TNF-a.), are released during
the breakdown and necrosis of dystrophic skeletal muscle
myocytes [46-48]. TNF-a is a strong chemotactic agent

Table 1 Comparison of histomorphometric parameters of the proximal femur between treatment groups

Control Mdx Sedentary control vs. Exercise control vs.
sedentary mdx exercised mdx
Sedentary Exercised P Sedentary Exercised P P P

Femur head 1363 + 0066 1377 £0042 003 1273 +£0.112 1320+ 0067 022 012 0.01
diameter (mm)

Cartilage 6.081 + 1560 5878 £ 0651 001 5250+ 1.118 5058 +0872 0.70 046 0.01
thickness (um)

Calcified cartilage  0.143 +£ 0.041 0206 + 0022 001 0.172 +0.038 0.180 + 0.072 049 0.29 013

area (um?)

Cartilage Area 0909 + 0.170 0949 + 0.082 001 0811 £0.131 0.775+ 0095 0.88 0.09 0.01

(mm?)

Values are mean + standard deviation; ANCOVA for dependent variables with body mass as a covariate.
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that attracts neutrophils and macrophages to damaged
tissue and can contribute to the degradation of healthy
tissue. Several studies have found elevated levels of TNE-
o in both skeletal muscle and blood plasma of dystro-
phin-deficient patients [49,50]. Circulating TNF-o. in dys-
trophin-deficient mice could potentially affect articular
cartilage where it is known to attenuate chondrocytic
synthesis of proteoglycans and collagen [51-53].
Although detecting TNF-o. was beyond the scope of this
study, if present, the inhibitory effect on chondrocyte
extracellular matrix production could explain the
reduced chondrogenic response to running activity and
the weak toluidine blue orthochromatic staining observed
in the mdx mice relative to controls (Fig. 3). However,
future studies are needed to examine proinflammatory
cytokine levels in skeletal muscle, blood serum, and syno-
vial fluid in the dystrophic condition to elucidate their
relationship with chondrocyte metabolism and articular
cartilage histomorphometric properties.

There is also the possibly that the inhibition of dystro-
phin expression in chondrocytes may affect chondrocyte
proliferation and secretion of extracellular matrix,
although this seems unlikely. To our knowledge, no
study has identified dystrophin synthesis in chondro-
cytes. Additionally, other connective tissue cells, such as
fibroblasts, do not produce detectable amounts of dys-
trophin [53,54]. Thus it remains unclear what role, if
any, dystrophin plays in cartilage tissue growth and
maintenance. Nonetheless, this possibility should be
explored in future studies.

It should be noted that chondral tissues of the mdx
mice, although not enlarged, are also not significantly
reduced in size relative to sedentary controls (Table 1).
Both reduced mechanical stimulation and increased
levels of TNF-a can retard articular tissue growth, lead-
ing to thinner articular cartilage and smaller joints
[30,55-57]. Our data suggests that chondrogenic activity
in both the sedentary and exercised mdx mice aged
11 weeks is still sufficient to maintain articular tissue size
comparable to sedentary controls. These findings are of
interest to clinicians because, 1) low intensity exercise is
sometimes used in the management of muscular dystro-
phy, and 2) muscular dystrophy patients lead a more
sedentary lifestyle. Although the mdx mouse model does
not perfectly reproduce the progression and severity of
the dystrophic process observed in humans, by 6 weeks
of age mdx mice exhibit significant muscle weakness and
thus serve as a useful model for studying dystrophin-
related muscle-skeletal tissue interactions [11]. Our find-
ings suggest that the addition of articular tissue during
postnatal growth is limited in mdx mice. However, chon-
dral tissue area was preserved in the sedentary groups,
indicating loss of chondral tissue is not a major concern
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with dystrophin deficiency. This may explain the lack of
articular cartilage involvement in dystrophinopathies.

Conclusions

The results of this study show mdx mice exhibit a
reduced chondrogenic response to increased mechanical
stimulation relative to controls. Voluntary running exer-
cise does not significantly affect femur head diameter,
cartilage thickness, cartilage tissue area, and calcified
cartilage tissue area in mdx mice as it does in controls.
However, articular dimensions analyzed in this study
were not reduced in mdx mice in comparison with con-
trols, suggesting loss of chondral tissue may not be a
clinical concern with dystrophinopathy.
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