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Abstract

Background: Numerous proposed surgical techniques have had minimal success in managing
greater trochanter overgrowth secondary to retarded growth of the femoral capital epiphysis. For
reconstruction of residual hip deformities, a novel type of proximal femur L-osteotomy was
performed with satisfactory results. Although the clinical outcome was good, the biomechanical
characteristics of the femur after such an osteotomy have not been clearly elucidated. Therefore,
this study presents a three dimensional finite element analysis designed to understand the
mechanical characteristics of the femur after the L-osteotomy.

Methods: A patient with left hip dysplasia was recruited as the study model for L-osteotomy. The
normal right hip was used as a reference for performing the corrective surgery. Four FEA models
were constructed using different numbers of fixation screws but the same osteotomy lengths
together with four FEA models with the same number of fixation screws but different osteotomy
lengths. The von Mises stress distributions and femoral head displacements were analyzed and
compared.

Results: The results revealed the following: |). The fixation devices (plate and screws) sustained
most of the external loading, and the peak value of von Mises stress on the fixation screws
decreased with an increasing number of screws. 2). Additional screws are more beneficial on the
proximal segment than on the distal segment for improving the stability of the postoperative femur.
3). The extent of osteotomy should be limited because local stress might be concentrated in the
femoral neck region with increasing length of the L-osteotomy.

Conclusion: Additional screw placement on the proximal segment improves stability in the
postoperative femur. The cobra-type plate with additional screw holes in the proximal area might
improve the effectiveness of L-osteotomies.
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Background

The hip joint is important for maintaining posture and
aiding locomotion. The joint is formed by the articulation
between the femoral head and the acetabulum and any
alteration in the anatomy of the bony components
induces abnormal mechanical forces on the joint [1].
Patients with congenital hip dislocation, Perthes disease
or septic arthritis often exhibit a deformed femoral neck
and limb length discrepancy. These residual deformities
compromise joint biomechanics and cause abnormal
loading of the hip joint [2], and result in clinical symp-
toms: hip instability, limping gait, shortening of the
extremity involved, limitation of range of motion in the
hip and weakening of the hip abductors [3]. A disease
process affecting the physis of the femoral head with con-
tinued growth in the greater trochanter will result in a
shortened femoral neck, coxa vara deformity and
increased anteversion [4]. The upward displacement of
the greater trochanter causes poor abductor function and
progressively worsens the Trendelenberg gait [5,6].

Various surgical techniques have been proposed but have
had limited success in managing femoral neck shortening
and the greater trochanter overgrowth secondary to
retarded growth of the femoral capital epiphysis [2,5-8].
Although various procedures exist to treat patients with
congenital hip dislocation or Perthes disease, residual
deformities including leg length discrepancy, hip joint
incongruity, proximal displacement of the greater tro-
chanter, and poor joint biomechanics often persist that
remain difficult to solve [9]. For reconstruction of these
residual hip deformities, Papavasiliou et al. [9] performed
a new proximal femoral L-osteotomy in sixteen patients
with residual hip deformity (coxa vara, coxa breva and
high riding greater trochanter). Good results were
reported in all patients after a mean of 4.3 years. The sur-
gical procedure not only provided limb equalization but
also repositioned the greater trochanter to its normal
level. Additionally, the procedure ensured elongation of
the femoral neck with subsequent restoration of gluteus
medius length. Moreover, engagement of the femoral cor-
tices anteriorly or posteriorly during the distraction
restored the proper degree of anteversion of the femoral
neck. Another advantage of the L-osteotomy is the reposi-
tioning of the femoral head deeper in the acetabulum,
which improves the contact between articular surfaces.
However, hip spica casts were used in the Papavasiliou
study to ensure postoperative stability.

As computer technology advances, the prospects for more
realistic modeling of bone diseases are encouraging.
Patient-specific simulations of surgical procedures are
now feasible, particularly using computed tomography
and magnetic resonance imaging (MRI) techniques.
Given the geometric nature of residual femur deformity,
the FEA model derived from the reconstruction of 3-D CT
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images may be helpful for objectively analyzing the
stresses in structures with complex shapes, loading and
material behavior. Finite element analysis models have
been applied extensively in orthopedics and have proven
effective for predicting musculoskeletal mechanics in
unusual circumstances [10,11]. There is also ample prece-
dent for the use of FEA models to elucidate mechanical
behavior for a proximal femur osteotomy [12-15]. In
1987, Fyhrie and Carter [12] explored the role of compres-
sive volumetric stress and strain in the early pathogenesis
of femoral head necrosis. In 2002, Yang et al. [13] devel-
oped a three-dimensional finite element model using a
surface modeling technique to assess the stress distribu-
tion at various sizes of segmental osteonecrosis. Recently,
Chen et al. [14] designed a three-dimensional finite ele-
ment analytical model for comparing postoperative sta-
bility between large cancellous screw fixation and
dynamic hip screw fixation in transtrochanteric rotational
osteotomy. The Chen study concluded that dynamic hip
screw fixation provides better stability than large cancel-
lous screw fixation. The same study also reported the use
of computer simulation to investigate the degree to which
transtrochanteric rotational osteotomy moves the region
of osteonecrotic femoral head out of the weight bearing
area. The results demonstrated that posterior rotational
osteotomies were more effective for moving the necrotic
region out of the weight bearing area during a gait cycle
[15]. Since numerous reports have shown good results in
analyzing stress distribution and predicting the postoper-
ative behavior of proximal femur osteotomies, a finite ele-
ment analysis based on various fixation configurations of
the L-osteotomy should be conducted due to the promis-
ing results of our previous clinical experience.

In this study, the Papavasiliou method for hip dysplasia
was modified by using a longer plate for fixation and
achieved good clinical results (Figure 1). Radiologically,
elongation of the femoral neck and repositioning of the
greater trochanter to its normal level with normal femoral
anteversion enhanced hip joint stability. Although this
new method of L-osteotomy achieved good results, a thor-
ough understanding and study of its biomechanical prop-
erties can further improve the technique and aid
preoperative planning. The aim of this study is to under-
stand the mechanical characteristics of the postoperative
femur in subject receiving the new type of L-osteotomy
with various fixation configurations and different osteot-
omy lengths. These findings will provide preoperative
planning to surgeons in performing osteotomies and thus
increase postoperative longevity.

Methods

Generation of 3D solid model

This study was approved from the committee of National
Science Council of the Republic of China (Contract
Number: NSC92-2218-E-182A-001). A left hip dysplasia
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Radiographs of a dysplasia patient who received an L-osteotomy on Jan. 12, 1998. (A) Shortening of the femoral
neck and relative overgrowth of the greater trochanter, (B) Radiologic appearance after the L-osteotomy and the postopera-

tive results at (C) | year and (D) 2.5 years.

patient (male, 25 years, 71 Kg, 167 cm) was recruited as
the study model for the L-osteotomy. The normal right
hip was used as a reference to plan the surgery. 3-D Solid
models of both the left proximal femur with hip dysplasia
and the normal right femur were created using computed
tomography (CT) scan images and Solidworks CAD soft-
ware (SolidWorks 2004, SolidWorks Corp. Boston, MA,
USA). The CT scan images of the intact femur were
obtained at 1.25 mm intervals in the transverse planes
starting from the femoral head using a GE Hi-speed scan-
ner (General Electric, Milwaukee, WI, USA). The resolu-
tion for each of the CT scan image was 512 by 512 pixels,
the field of view was 330 mm, and the pixel size was 0.625
mm/pixel. The cross-sectional image files of the femur
were transferred to a custom-written automatic contour-
ing program (Caotool) for the detection of the contours
between the cortical bone and cancellous bone based on
a dynamic density-thresholding algorithm. The parallel-
stacked contours were then input into the Solidworks
CAD software for the reconstruction of 3-D intact femur
solid models.

For the L-osteotomy of the deformed left femur, the
length and the angle of the intersected line between the
femoral head center and the most superior point of the
greater trochanter in the normal right femur were consid-
ered to be the desired postoperative configuration (Figure
2). Based on the generated solid models, a difference in
femoral head anteversion between the deformed left

femur and the normal right femur was observed, but was
considered negligible because it was within 1°. To sim-
plify the simulation procedure, the frontal plane was
defined as lying on the plane formed by the femoral neck
and shaft axis. The location of the femoral head center was
defined as the midpoint of the intersected line between
the two points with the largest distance of the contour of
the femoral head. Within Solidwork software, a circle with
a diameter approximate to the largest distance of the con-
tour of the femoral head was created, the created circle
was then moved to fit the two points with the largest dis-
tance of the contour of the femoral head. The location of
the center of the created circle was defined as the femoral
head center to proceed with the subsequent analysis. The
line intersecting the femoral head center and the most
superior point of the greater trochanter in the normal
right femur (Dy) and the deformed left femur (D) were
found to be 47.36 mm and 51.28 mm, respectively,
whereas the angles of the intersected line with respect to
the horizontal line were 3.80° (o) and 26.86° (o),
respectively. The translation of the femoral head center
after corrective surgery was then 20.09 mm, as calculated
(Figure 3). Based on the above parameters, a biomechan-
ical analysis was performed to evaluate joint characteris-
tics following the L-osteotomy. Finite element analysis
(FEA) was used to compare different configurations of
screw placement and to determine the mechanical charac-
teristics of the joint with an increasing osteotomy length.
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Figure 2

In L-osteotomy of the deformed left femur, the length and the angle of the intersected line between the femo-
ral head center and the most superior point of the greater trochanter in the normal right femur were consid-
ered to be the desired postoperative configuration. (A) Normal right femur, (B) Left femur with residual deformity and

(C) The final resultant configuration after L-osteotomy.

Generation of finite element model

Based on the solid model of the deformed left femur, four
FEA models with different screw placement configura-
tions (P2/D2, P2/D3, P3/D2 and P3/D3; P: fixation on
the proximal segment; D: fixation on the distal segment)
were created with the osteotomy length kept constant at
126 mm. This length was defined by the roentgenographic
measurement of the actual surgery. To investigate the
influence of the osteotomy length on postoperative

Oi=2686" B
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Figure 3

mechanical characteristics, an additional four FEA models
with the same number of fixation screws (P3/D2) but dif-
ferent osteotomy lengths (116 mm, 126 mm, 136 mm
and 146 mm) were also created (MENTAT 2003, MSC
Software Corp., Los Angeles, USA).

A ten-hole plate fitting the bone contour of the lateral sur-
face of the proximal femur was used for fragment fixation
following L-osteotomy. The plate was in a width of 65

The lengths of the intersected line between the femoral head center and the most superior point of the
greater trochanter in the normal right femur (Dg) and in the deformed left femur (D,) were 47.36 mm and
51.28 mm, whereas the angles of the intersected line with respect to the horizontal line were 3.80° (ag) and
26.86° (), respectively. The translation of the femoral head center after corrective surgery was then calculated to be

20.09 mm.
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mm and a length of 150 mm obtained from the measure-
ment of the actual plate (Synthes, Bettlach, Switzerland).
The geometry of the screw was assumed to be cylindrical
with a constant diameter of 6.2 mm and variable length
determined by the location of screw placement sufficient
for femoral bi-cortex fixation. The threads and tips of the
fixation screws were not modelled in the FEA model in
order to simplify the model set-up. A longitudinal osteot-
omy was made from the trochanteric fossa down to the
defined levels of the horizontal cut (116 mm, 126 mm,
136 mm or 146 mm) along the sagittal femoral axis (Fig-
ure 4). The distraction of the femur was then performed
based on the configuration of the normal right femur, and
the length of distraction was found to be 20.09 mm (Fig-
ure 3). Following distraction of the femur, the distal end
of the upper fragment was then positioned to contact the
inner surface of the femoral cortex of the lower fragment,
and the fixation plate was placed on the lateral cortex with
different screw fixation combinations. The three most
proximal holes of the plate were used for screw insertion
for upper fragment fixation, and the three most distal for
lower fragment fixation, which left the middle four holes
of the plate vacant without screw insertion. For all fixation
configurations after the L-osteotomy, the most proximal

(A) (B)

Figure 4
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screw on the lower fragment was positioned 3 mm below
the horizontal osteotomy and designated as D1 as
described by Papavasilio whereas the most distal screw on
the upper fragment was designated as P1. For upper or
lower fragment fixation, the additional screws were placed
on the adjacent hole proximally or distally to the inserted
screws and designated as P2 or D2, respectively. All fixa-
tion screws were inserted perpendicularly to the femoral
contour.

Loading and boundary conditions

The element type used for all materials in the FEA model
was 10-node, isoparametric tetrahedral element. A load-
ing condition simulating a single-legged stance with a
4.54BW (3,246 N) joint reaction force together with a
3.45BW (2,467 N) abductor muscle force was applied on
the femur [16]. The loading configuration was shown in
Figure 5. Glue contact elements with 1,700 N and 100
MPa were set for the screws/femur interfaces and the lon-
gitudinal osteotomized surface, respectively [17]. The dis-
tal ends of all models were constrained in all directions as
a boundary condition. All material properties were mod-
elled as a homogeneous linear elastic continuum exhibit-
ing isotropic properties. The Poisson ratios and moduli of

(D)

Femora showing the fixation configuration of the L-osteotomy. (A) A sagittal osteotomy was assumed from the tro-
chanteric fossa down the middle of longitudinal femoral axis until the defined length of the osteotomy. A horizontal osteotomy
was done to unite the medial cortical surface with the distal end of the longitudinal osteotomy. The plate was then fitted to the
lateral contour of the proximal femur. The most proximal screw on the lower fragment was positioned 3 mm below the hori-
zontal osteotomy and defined as D1 as described by Papavasilio. The additional fixation screws were placed with a constant
interval of 12 mm and defined as D2. All fixation screws were inserted perpendicularly to the femoral contour. Postoperative
configurations with (B) 116 mm, (C) 126 mm, (D) 136 mm and (E) 146 mm osteotomy lengths.
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elasticity used for the cortical bone, cancellous bone and
fixation devices were set as 0.3, 0.22, 0.3 and 15.1 GPa,
445 MPa, and 190 GPa, respectively [18,19]. The von
Mises stress distributions for each model were analyzed
and compared using a commercial finite element package
(MARC 2003, MSC Software Corp., Los Angeles, USA).

Convergence test and model validation

For model verification, a convergence test was used to
guarantee our numerical model reached the converged
results and no further mesh refinement was necessary.
Based on the same solid model, four different FE models
with average element lengths of 4 mm, 5 mm, 6 mm and
7 mm were created from the pre-operative femur. The con-
vergences of the FEM models in this study were justified
by the total strain energy of the structure. The total strain
energy was reviewed for convergence within the four
models. The tolerance level was set as the change of less
than 5%.

In order to validate the FE model, the experimental results
from Shih et al. [20] was used to compare with our FE
analysis. In their experiment, the surface strains at the
medial and lateral proximal femur under 2000 N vertical

2852
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Figure 5

The single-legged stance loading condition used for
the finite element analysis. The numbers represent the x,
y and z components of the applied loadings.
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loading was recorded in fresh-cadaver compressive test-
ing. To simulate this setting, an additional FE model was
created from the intact normal right femur, and the sur-
face strains at the medial and lateral proximal femur sub-
jected to the same 2000 N vertical loading were also
analyzed. The experimental and analytical results were
compared for the validation of the FEA model.

Results

Convergence test and model validation

Results of convergence test demonstrated a less than 5%
changes in the total strain energy among four models. The
element numbers for four different models with average
element lengths of 4, 5, 6, and 7 mm were 92749, 54634,
35031, and 28087, respectively. The total strain energies
for each model were 4.131, 4.055, 4.006 and 3.952 J,
respectively. The percent differences of the total strain
energy compared with that of the finest mesh (element
number: 92749) for each of the three models were
1.836%, 3.021%, 4.324% respectively. Although the
results indicated that convergence was achieved, the
geometry in the medial aspect of femoral neck for FE
model with 5 mm element length were somewhat dis-
torted. Therefore, the model with an average element size
of 4 mm was chosen as the base model for the creation of
post-operative models.

For model validation, the previous study [20] had indi-
cated that the experimental strains at the medial and lat-
eral proximal femur were -1.098 (SD 0.134) and 0.723
(SD 0.139) microstrain, respectively, under a 2,000 N
axial loading. In current study, the predicted strains at the
medial and lateral proximal femur were -1.211 and 0.742
under a 2,000 N axial loading. The two results were com-
parable which indicated that our finite element model
was reliable for further simulation and analysis.

L-osteotomy with different numbers of fixation screws but
the same osteotomy length (126 mm)

Figure 6 shows the von Mises stress for femora instru-
mented with four different screw configurations and an L-
osteotomy length of 126 mm. No obvious difference in
von Mises stress was found on the femora instrumented
with different numbers of fixation screws. However, as
Figure 7 shows, the peak value of von Mises stress for the
fixation screws increased with fewer screws, and the high-
est value of von Mises stress was found on the most distal
screw (D2) when four screws were used (P2/D2). Figure 8
shows the vertical displacement of the femoral head for
four different screw placement configurations. The results
indicated that with more screws used for fixation, there
was less femoral head displacement (increased stability).
Comparing the conditions using different screw place-
ment combinations (P2/D3, P3/D2), additional screws
on the proximal segment achieved more stability of the
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Figure 6

Medial (top) and anterior (bottom) view of von Mises
stress for the reconstructed femora with four differ-
ent configurations of screw placement but at con-
stant 126 mm longitudinal length of osteotomy. (A)
P2/D2, (B) P2/D3, (C) P3/D2 and (D) P3/D3. (P: Proximal fix-
ation; D: Distal fixation). No obvious difference in von Mises
stress was found on the reconstructed femora with different
screw fixation combinations.

reconstructed femora than additional screws on the distal
segment.

L-osteotomy with the same number of fixation screws (P3/
D2) but a different osteotomy length

For an L-osteotomy performed with five-screw fixation
(P3/D2), Figure 9 shows the von Mises stress of femora
instrumented with four different osteotomy length. The
von Mises stress around the femoral neck regions progres-
sively increased as the osteotomy length increased from
116 mm to 146 mm.

Discussion

Congenital hip dysplasia, Perthes disease and septic
arthritis at an early age result in an abnormal gait with
limb length shortening, often progressing to advanced

http://www.biomedcentral.com/1471-2474/10/112
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Peak value of Von Mises stress on screws for femora
instrumented with four different configurations of
screw placement at 126 mm longitudinal length of
osteotomy. The peak value of von Mises stress of the fixa-
tion screws increased with decreasing numbers of screws,
and the highest value of von Mises stress was found on the
most distal screw (D2) when the femur was instrumented
with four screws (P2/D2).

osteoarthritis requiring total hip replacement later in life.
Many surgical procedures exist for treating these patients,
but residual deformities are often present. The L-osteot-
omy method described by Papavasiliou et al. addresses all
these deformities by ensuring elongation of the femoral
neck, biomechanical improvement of the joint, congruity
of the femoral head and equalization of the leg length dis-
crepancy [9]. However, this surgery is a demanding tech-
nique, and proper planning for this osteotomy requires a
clear understanding of postoperative mechanical per-
formance.

In the present study, the integral femur was sectioned into
two separate fragments after the L-osteotomy. The upper
fragment contained the entire femoral head and medial
proximal femoral shaft, and the lower fragment contained
the greater trochanter and the remaining distal femoral
shaft. These two separated fragments were fixed into one
integral structure by the instrumentation of the fixation
devices (plate and screws). It was reasonable to postulate
that the fixation devices would sustain most of the exter-
nal loading applied on the entire femur. As Figure 7
shows, when the L-osteotomy was performed with the
same osteotomy length (126 mm), the von Mises stress of
the fixation screws decreased with an increasing number
of screws because the external load was shared by the
additional fixation screws.

Additionally, the femoral head displacement decreased as
the number of fixation screws increased (Figure 8). The
experimental results further indicated that proximal
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Vertical displacement of femoral head for femora
instrumented with four different configurations of
screw placement. The result indicated that additional
screws decreased femoral head displacement (increased sta-
bility). A comparison of conditions using different screw
placement combinations (P2/D3, P3/D2) revealed that addi-
tional screws on the proximal segment achieved more stabil-
ity of the reconstructed femora than additional screws on
the distal segment.

placement of the fixation screws would be more effective
than distal placement for improving stability of the post-
operative femur in circumstances when the number of fix-
ation screws is limited. As Figure 9 shows, in an L-
osteotomy performed with the same number of fixation
screws (P3/D2) but different osteotomy length, the
moment acting on the entire structure increased with
increasing length, and led to a higher stress concentration
on the femoral neck region.

Although an improvement of the integral stability of the
postoperative femur was expected by performing an L-
osteotomy with more fixation screws, proximal placement
of the screw (P3/D2) stabilized the femur more effectively
than distal placement of the screw (P2/D3). A Cobra-type
plate accommodating more proximal screws would be a
good alternative for fixation of the L-Osteotomy.

Finite element analysis is a complementary tool for evalu-
ating the feasibility, efficacy and overall biomechanical
characteristics of different surgical techniques. Although
clinical trials could summarize general results regarding
different osteotomy methods, many fundamental issues
still remain controversial and poorly understood. Fre-
quently, scientific inquiries are simulated by the introduc-
tion of new surgical techniques. However, systematic
investigations are needed to test the treatment principles.
Finite element analysis is a noninvasive fracture monitor-
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Figure 9

Medial (top) and anterior (bottom) view of von Mises
stress for femora instrumented with four different
longitudinal lengths of osteotomy but the same
number of screws (P3/D2). (A) 116 mm, (B) 126 mm, (C)
136 mm and (D) 146 mm. The von Mises stress around the
femoral neck regions progressively increased as the longitu-
dinal length of osteotomy increased from |16 mm to 146
mm.

ing technique which can monitor the stress and biome-
chanical responses of different treatments without clinical
influence.

The validation of our model was done with use of the nor-
mal right femur, but not the left femur with hip dysplasia.
This is because it's almost not possible to access the
human cadaveric femur with residual deformities to per-
form an experiment with L-osteotomy. The validation of
FE model in current study is thus conducted using FE
model created from the intact normal right femur of the
same patient, and the results were compared with those
from previous experimental research [20]. In the finite ele-
ment model, the screw threads and tips are not modeled
because FE models with screw threads and tips will result
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in a large increase of element number and computation
time. The simplified FE models without taking threads
and tips into consideration may have an impact on the
analytic results for local area close to the screw/bone inter-
face. However, we believe these may not cause a global
effect on the resultant FE analysis.

Several possible factors affecting the FEA results of the cur-
rent study must be noted. First, only a single patient with
residual deformity was recruited in the present study.
Therefore, the results from the FEA might not be regarded
as general rules that can be applied to preoperative plan-
ning of an L-osteotomy. Importantly, although the results
indicated that increased numbers of fixation screws
together with a shorter osteotomy length are beneficial for
the postoperative performance of the hip joint, preopera-
tive planning should still be individualized based on the
extent of the residual deformity of the femur. Second, the
FE model was validated based on the intact condition
without osteotomy, which may have an impact on the
analytic results for the post-operative FE models with oste-
otomy. However, the boundary conditions including
material properties, element types and element length are
identical for FE models with or without osteotomy, and
we believe that our results provide useful information to
orthopedic surgeons performing reconstruction of resid-
ual hip deformities with proximal femur L-osteotomy.
Third, the only loading condition considered was the sin-
gle legged gait stance. Therefore, further investigations of
the effects of other loading conditions might be necessary
in the future. Fourth, the bone plate interfaces were
assumed to be fully bonded without considering loosen-
ing of the fixation device. Therefore, these FEA results
might only be interpreted under a well-fixed condition
without implant loosening. Still, attentions need to be
paid toward the actual application of this technique.
Based on the limitations of this numerical investigation,
the model simplifications, such as the material properties,
screw geometry and load conditions might influence the
accuracy of the mechanical responses and stress distribu-
tions obtained in this study. The results from this finite
element simulation were based on an objective to provide
a way to eliminate the problems encountered with L-oste-
otomy technique as a clinical treatment substitution.

In Papavasiliou's report, the L-osteotomy not only pro-
vided limb equalization but also repositioned the greater
trochanter to its normal level [8]. However, good clinical
outcomes should not only rely on proper patient selection
but also on a good preoperative planning and precise exe-
cution of the plan during surgery. In current study, the
importance of fixation stability of L-osteotomy was clearly
demonstrated by FE analysis. In addition, the significance
of fixation screws number and osteotomy length contrib-
uting to the stress distribution after L-osteotomy is also

http://www.biomedcentral.com/1471-2474/10/112

highlighted. Since L-osteotomy is a technically demand-
ing procedure and associated with high complication
risks, it is suggested that the indication for L-osteotomy
should be very strict and that surgical principles should be
abided carefully to avoid catastrophic complications.

Conclusion
This study produced the following findings:

1. The fixation devices (plate and screws) sustained most
of the external loading, and the peak value of von Mises
stress on the fixation screws decreased with an increasing
number of screws.

2. Placement of the screw on the proximal segment rather
than on the distal segment enhanced the stability of the
postoperative femur.

3. The extent of osteotomy should be limited because a
high local stress concentration might occur in the femoral
neck region as the L-osteotomy length increases.
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