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Abstract
Background: Oscillatory fluid flow (OFF)-induced shear stress leads to positive bone remodeling
through pro-formative and anti-resorptive effects on bone cells. In this study, the effects of high
frequency OFF on expression of receptor activator of NF-κB ligand (RANKL) and osteoprotegerin
(OPG), two important regulators of osteoclast differentiation, were investigated.

Methods: Cells were exposed to 1 Pa peak shear stress using three loading frequencies (1, 10, and
20 Hz) widely employed in cell, animal, and clinical studies of bone remodeling. Two separate
experiments were performed where either the total number of cycles (3600 cycles) or the total
loading time (60 min) was kept constant. Real-time RT-PCR was used to quantify mRNA levels of
RANKL, OPG.

Results: 3600 cycles of OFF at 1 Hz and 10 Hz loading decreased RANKL/OPG ratio. Interestingly,
these results were due to different mechanisms where at 1 Hz the decrease was due to an increase
in OPG mRNA, whereas at 10 Hz the decrease was due to a decrease in RANKL mRNA.

Conclusion: Although high frequency OFF does not appear to further enhance the decrease in
the RANKL/OPG ratio, these results suggest a potential to differentially control the change in
either RANKL or OPG mRNA expression by applying different loading frequencies.

Background
It is widely accepted that mechanical loading is a critical
factor that regulates bone metabolism. Interestingly, the
temporal pattern of loading is known to be important in
the response of bone. Specifically, the anabolic responses
that occur when loading is applied in a dynamic fashion
do not occur with static loading.[1] Within the dynamic
loading regime, mechanical loading parameters (i.e.,
strain magnitude, loading frequency, strain waveform,
and number of loading cycles) can have an important
effect of outcome. [2-4]

Significance of loading frequency has been studied where
an optimal loading frequency within the range of 5 Hz to
30 Hz has been suggested using both animal and clinical
studies. [5-7] In vitro studies using loading frequencies of
1 Hz to 9 Hz have found that increasing pulsatile fluid
flow frequency results in increased production of nitric
oxide but not prostaglandin E2, two signaling molecules
that play important roles in bone remodeling.[8]

A potent cellular physical signal in the regulation of bone
metabolism is loading-induced fluid flow. [8-13] When
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bone is functionally loaded, fluid is forced out of regions
of high compressive strains and then returns when the
load is removed resulting in bone cells being exposed to a
dynamic oscillating fluid flow.[14] In vitro studies show
that cells are responsive to physiological levels of OFF.
[15-17] suggesting that OFF may be an appropriate phys-
ical signal to study mechanotransduction in bone
cells.[12,13,18]

Nuclear factor kappa B (NF-κB) ligand (RANKL) and oste-
oprotegerin (OPG) are two molecules expressed by pre-
osteoblastic cells that regulate osteoclast forma-
tion.[19,20] RANKL is a membrane bound protein that
stimulates the osteoclast precursors to commit to the oste-
oclastic phenotype by binding to its receptor (RANK) on
the surface of osteoclast precursors.[21] RANKL is
expressed when stimulated by various hormones and
cytokines including vitamin D.[22,23] OPG is a decoy
receptor that competes with RANK for binding of
RANKL.[24,25]

In a previous study, ST-2 murine stromal cells exposed to
OFF resulted in a dose-dependent increase in OPG and
decrease in RANKL mRNA levels.[13] Furthermore, co-
culture of RAW264.7 monocytes with ST-2 cells exposed
to OFF led to a significant decrease in the total number of
osteoclasts generated as well as in osteoclastic resorptive
activity compared to co-culture with ST-2 cells not
exposed to OFF. These results suggest that the amount of
bone resorbed is dictated by the balance between RANKL
and OPG.[26,27] However, the effects of high loading fre-
quencies on stromal/osteoblastic cells that regulate osteo-
clastic differentiation have not been examined. It is also
critical to understand the individual response of RANKL
and OPG at various loading frequencies as well as to
examine the existence of an optimal loading frequency
that may lead to maximal suppression of bone resorption.

In this study, we investigated the effects of high frequency
loading on the gene expression of RANKL and OPG using
a physiological cell-level mechanical signal. Specifically,
oscillatory fluid flow-induced shear stress was applied to
ST-2 cells using 1 Hz, 10 Hz and 20 Hz loading frequen-
cies (loading frequencies widely employed in cell, animal,
and clinical studies for anabolic responses). Individual
RANKL and OPG mRNA expression levels as well as the
ratio between RANKL and OPG mRNA level at each load-
ing frequency were quantified.

Methods
Cell Culture and Oscillatory Fluid Flow
ST-2 (Riken, Japan) murine bone marrow stromal cells
were cultured on tissue culture dishes in alpha-MEM (Inv-
itrogen, Carlsbad, CA) with 10% FBS (HyClone, UT) and
1% penicillin/streptomycin (Invitrogen, CA). Cells were

placed in a humidified incubator at 37 C and 5% CO2.
Once the cells reached 80% confluence, they were subcul-
tured on glass slides (76 × 48 × 1 mm) at a density of
approximately 2 × 105 cells/cm2. 10 nM 1α,25-dihydroxy-
vitamin D3 (Fluka, Switzerland) was added to induce
expression of RANKL. Cells were grown for an additional
48 hours at which time they had reached approximately
90% confluence.

The slides were then placed in custom-built sterile parallel
plate flow chambers under sterile conditions. Oscillatory
fluid flow was driven by a Hamilton glass syringe con-
nected in series with rigid walled tubing and a parallel
plate flow chamber as previously described.[18] The
syringe was mounted in and driven by a feedback-control-
led linear electromagnetic actuator that can deliver a pre-
cise flow rate (EnduraTec, MN). The flow rate was
monitored using an ultrasonic flow meter (Transonic Sys-
tems Inc., NY). The flow rate was selected to yield a peak
shear stress of ± 1 Pa using a sinusoidal waveform. Flow
media for all OFF experiments consisted of alpha-MEM
with 10% FBS and 1% penicillin/streptomycin. The paral-
lel plate flow chambers were placed in the humidified
incubator for the entire duration of loading. Control cells
were also subcultured on glass slides, exposed to 1α,25-
dihydroxyvitamin D3, and placed in the parallel plate flow
chamber for the same time period as the treated cells but
were not exposed to fluid flow.

Constant Loading Cycle
Cells were exposed to a total of 3600 cycles of OFF using
frequencies of 1, 10, or 20 Hz. This resulted in loading
durations of 60 min (1 Hz), 6 min (10 Hz), and 3 min (20
Hz). Each group consisted of 4 samples.

Constant Loading Time
Cells were exposed to a total of 60 min OFF using various
frequencies. Therefore, cells were exposed to either 3600
cycles (1 Hz), 36000 cycles (10 Hz), or 72000 cycles (20
Hz) of OFF. Each group consisted of 4 samples.

RNA Isolation and Real-Time RT-PCR
Immediately after the end of the OFF experiment, cells
were lysed and total RNA isolated using Tri-Reagent
(Sigma, MO). The 260/280 absorbance ratio was meas-
ured for verification of the purity of RNA. Analysis by
quantitative real-time RT-PCR (Perkin Elmer Prism 7900,
Applied Biosystems, Foster City, CA) was conducted to
determine the relative steady state mRNA levels of RANKL
and OPG (Mm00441908_m1 and Mm00435452_m1,
Taqman Gene Expression Assays, Applied Biosystems,
Foster City, CA). Additionally, rRNA for the housekeeping
gene 18S (4310893E, Taqman Gene Expression Assays,
Applied Biosystems, Foster City, CA) was analyzed for
each sample. Each RNA sample was analyzed in triplicate.
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Statistics
RANKL and OPG gene expression levels were normalized
against 18S rRNA assayed in the same sample tube. Statis-
tical changes in gene expression were analyzed using Stu-
dent's t-test with a significant difference assumed at p <
0.05. Error bars represent standard error of the mean.

Results
Constant Loading Cycle
Immediately after application of 3600 cycles of OFF, the
RANKL/OPG ratio significantly decreased in 1 Hz (60
min) and 10 Hz (6 min) loading groups compared to no
flow controls (p < 0.05) (Figure 1). The RANKL/OPG ratio
decreased by approximately 60% using a loading fre-
quency of 1 Hz and approximately 30% using a loading
frequency of 10 Hz. Interestingly though, the decreases in
RANKL/OPG ratio at these two loading frequencies (i.e., 1
Hz and 10 Hz) compared to no flow controls resulted
occurred in different ways. For 1 Hz loading, RANKL
mRNA expression displayed no change compared to no
flow controls whereas OPG mRNA expression signifi-
cantly increased by over 2-fold leading to an overall signif-
icant decrease in RANKL/OPG ratio. On the other hand,
for 10 Hz loading, RANKL mRNA expression significantly
decreased by 35% whereas OPG mRNA expression
showed no change compared to no flow controls. This
decrease in RANKL resulted in an overall significant
decrease in RANKL/OPG ratio.

In contrast to our results at 1 Hz and 10 Hz loading fre-
quencies, application of 3600 cycles of OFF using a load-
ing frequency of 20 Hz (3 min loading) did not result in a
significant difference compared to no flow control groups
(p > 0.05) (Figure 1). At this loading frequency, both
RANKL and OPG mRNA levels remained unchanged com-
pared to no flow controls.

Constant Loading Time
Application of OFF for a total of 60 min resulted in a sig-
nificant decrease in RANKL/OPG ratio compared to corre-
sponding no flow controls at 1 Hz (3600 cycles) loading
frequency only (p < 0.05) (Figure. 2). At higher loading
frequencies of 10 Hz (36000 cycles) and 20 Hz (72000
cycles), which resulted in significantly more loading
cycles, RANKL/OPG ratio showed a trend of decrease
compared to no flow controls but neither group resulted
in significant differences (p > 0.05). Sixty-minute loading
at these higher frequencies did not result in significant dif-
ferences in RANKL and OPG mRNA expression compared
to no flow control groups.

Discussion
In this study, we investigated the effects of various loading
frequencies previously reported to produce an anabolic
effect on bone remodeling in animal and clinical studies.

An established in vitro cell loading system was used to
deliver 1 Hz, 10 Hz, and 20 Hz loading frequen-
cies.[12,13,18,28] Specifically, oscillatory fluid flow
(OFF), a cell-level physical signal that occurs with cyclic
tissue loading, was applied while assaying changes in the
expression of RANKL and OPG mRNA, two important reg-
ulators in bone resorption, in murine stromal cells.

Similar to a previous dose-response study, 3600 cycles
(i.e., 1 Hr) of OFF using a loading frequency of 1 Hz
resulted in a significant decrease in RANKL/OPG
ratio.[13] Once again, this decrease was due to a signifi-
cant 2-fold increase in OPG. On the other hand, 3600
cycles of 1 Hz OFF did not have an effect on RANKL
mRNA expression, similar to the previous study. When
3600 cycles of OFF was applied at 10 Hz frequency, the
RANKL/OPG ratio was also significantly decreased
(approximately 30% decrease) although the level of
decrease was not as dramatic as the 1 Hz loading (approx-
imately 60% decrease). In contrast to the results of 1 Hz
loading, this decrease in RANKL/OPG ratio was due to not
an increase in OPG mRNA level but a significant decrease
in RANKL mRNA level. When 3600 cycles of OFF was
applied at 20 Hz frequency, RANKL and OPG mRNA
expressions did not change and subsequently the RANKL/
OPG ratio remained unchanged. These results are consist-
ent with in vivo studies that show the most efficient bone
formation occurring at 5-10 Hz frequencies.[6] The fact
that 10 Hz loading decreases RANKL/OPG ratio via a dif-
ferent mechanism compared to 1 Hz frequency loading
suggests that there may be an optimal loading frequency
in the range of 1 Hz and 10 Hz where the synergistic effect
between the decrease in RANKL and increase in OPG is
maximal.[6]

Other mechanical stimuli have also been examined in
terms of their anti-resorptive effects. [29-33] For example,
Rubin et al. have shown that substrate deformation using
0.16 Hz loading leads to a drop in RANKL/OPG ratio due
to a change in RANKL expression but not OPG.[30] On
the other hand, Kusumi et al. showed an increase in OPG
synthesis and a decrease in RANKL mRNA expression in
osteoblasts exposed to 0.2 Hz to 0.3 Hz cyclic tensile
strain.[29] However, the frequency ranges adopted in
these previous studies are well below the frequency ranges
of the activities of daily living and those generally used in
animal and clinical bone remodeling studies.[6,34,35]
Thus, it is not clear whether the differences observed in
this study are the result of a different simulation frequency
or a different mechanical stimulus. It would be interesting
to examine the individual RANKL and OPG outcomes
using a higher frequency substrate deformation to deter-
mine if the differential effects observed in this study (i.e.,
cells exposed to fluid-induced shear stress) is also
observed in cells exposed to mechanical strain.
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RANKL, OPG, and RANKL/OPG mRNA levels in ST-2 murine stromal cells after 3600 cycles of OFFFigure 1
RANKL, OPG, and RANKL/OPG mRNA levels in ST-2 murine stromal cells after 3600 cycles of OFF. Loading 
frequencies of 1, 10, or 20 Hz were used. This resulted in loading durations of 60 min (1 Hz), 6 min (10 Hz), and 3 min (20 Hz). 
N = 4 for each group.
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RANKL, OPG, and RANKL/OPG mRNA levels in ST-2 murine stromal cells after 60 min OFFFigure 2
RANKL, OPG, and RANKL/OPG mRNA levels in ST-2 murine stromal cells after 60 min OFF. Loading frequen-
cies of 1, 10, or 20 Hz were used. This resulted in loading cycles of 3600 cycles (1 Hz), 36000 cycles (10 Hz), or 72000 cycles 
(20 Hz) of OFF. N = 4 for each group.
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Results from this study suggest the possible use of multi-
ple loading frequencies in mechanically stimulating bone
formation. For example, short bouts of high frequency
loading (e.g., 10 Hz) may be incorporated into low fre-
quency (e.g., 1 Hz) loading regimens for treatment of
osteoporosis. Furthermore, different loading frequencies
may be applied depending on the patients' conditions in
order to differently control expression of RANKL and OPG
gene expression.

Although 6 min (3600 cycles) of 10 Hz loading decreased
the RANKL/OPG ratio by approximately 30%, when load-
ing was continued for 1 Hr, the drop in ratio was recov-
ered and resulted in a non-significant change compared to
no flow controls. Similarly, applying 20 Hz frequency
loading for 1 Hr did not lead to changes in RANKL, OPG
and RANKL/OPG ratio. These results indicate that RANKL
downregulation and OPG upregulation due to loading-
induced shear stress are recovered to baseline after longer
loading durations. Hence, unnecessarily prolonged load-
ing appears to be ineffective and it is important to deter-
mine a loading duration that produces the greatest anti-
resorptive effects. This optimal loading duration is also
suggested in cellular and animal studies which show that
a single continuous long-duration loading is less effective
compared to multiple short bout loading of equal total
loading duration.[12,36] It is possible that although high
frequency stimulations result in more frequent loading
events, it appears that by not allowing the cells to recover,
the potential anti-resorptive effects of these may be lost. It
is also possible that strain history is integrated into the cel-
lular memory so that the reference state for bone cell
response is constantly changing as described in vivo.[37]
As a result, prolonged loading without adjusting the load-
ing pattern might result in cells reaching a new reference
state for remodeling such that the changes in RANKL and
OPG expression return to baseline level with high fre-
quency 1 Hr loading.

There may be concerns that only mRNA levels were quan-
tified and not cellular or physiological endpoints such as
changes in protein levels, osteoclastogenesis, or osteoclast
activity. There may also be concerns that alterations in
RANKL/OPG ratio with varying flow frequencies may not
necessarily regulate osteoclastogenesis in vivo. However,
our previous studies on RANKL and OPG show that that
these changes in mRNA are directly correlated to protein
changes, osteoclast numbers, and osteoclastic pit forma-
tions.[13,38] Also, cells of osteoblast lineage are known to
be vital in osteoclastogenesis and osteoclastic bone
resorption. For example, cell-to-cell contact between oste-
oblastic/stromal cells and osteoclastic precursors are nec-
essary in the fusion stage of osteoclast formation.[39] In
addition, osteocyte ablation mice exhibit increased osteo-
clastic bone resorption and cortical porosity, decreased

bone strength and trabecular bone volume, and defective
mechanosensing ability demonstrating that importance
of RANKL and OPG in the study of bone remodeling.[40]

Conclusion
In summary, our results indicate that high frequency OFF
of up to 10 Hz may accelerate the decrease in RANKL/
OPG but through a different mechanism compared to low
frequency 1 Hz loading. Although high frequency OFF
beyond 10 Hz does not appear to further enhance the
extent of decrease in the RANKL/OPG ratio, applying dif-
ferent loading frequencies appears to have the potential to
differentially control the change in either RANKL or OPG
mRNA expression.
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