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Abstract
Background: Despite the morphological alterations of the deep fascia subjected to leg lengthening
have been investigated in cellular and extracellular aspects, the impact of leg lengthening on
viscoelastic properties of the deep fascia remains largely unknown. This study aimed to address the
changes of viscoelastic properties of the deep fascia during leg lengthening using uniaxial tensile test.

Methods: Animal model of leg lengthening was established in New Zealand white rabbits.
Distraction was initiated at a rate of 1 mm/day and 2 mm/day in two steps, and preceded until
increases of 10% and 20% in the initial length of tibia had been achieved. The deep fascia specimens
of 30 mm × 10 mm were clamped with the Instron 1122 tensile tester at room temperature with
a constant tensile rate of 5 mm/min. After 5 load-download tensile tests had been performed, the
specimens were elongated until rupture. The load-displacement curves were automatically
generated.

Results: The normal deep fascia showed typical viscoelastic rule of collagenous tissues. Each
experimental group of the deep fascia after leg lengthening kept the properties. The curves of the
deep fascia at a rate of 1 mm/day with 20% increase in tibia length were the closest to those of
normal deep fascia. The ultimate tension strength and the strain at rupture on average of normal
deep fascia were 2.69 N (8.97 mN/mm2) and 14.11%, respectively. The increases in ultimate tension
strength and strain at rupture of the deep fascia after leg lengthening were statistically significant.

Conclusion: The deep fascia subjected to leg lengthening exhibits viscoelastic properties as
collagenous tissues without lengthening other than increased strain and strength. Notwithstanding
different lengthening schemes result in varied viscoelastic properties changes, the most comparable
viscoelastic properties to be demonstrated are under the scheme of a distraction rate of 1 mm/day
and 20% increase in tibia length.

Background
The fascia consists of the superficial fascia and the deep
fascia. The deep fascia is a dense connective tissue that lies

beneath the superficial fascia. The fascia, not least the
deep fascia, is of pointedly importance to surgeons,
Orthopaedic surgeons, physiotherapists and orthotists. As
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a matter of fact, the deep fascia is closely linked with a
multitude Orthopaedic diseases, which include congeni-
tal clubfoot [1], Dupuytren's disease [2] and scoliosis
[3,4] for Orthopaedic surgeons. Given the continuum of
connective tissue throughout the body, the mechanical
role of the fascia and the ability of fibroblasts to commu-
nicate with each other via gap junctions, the fascia is likely
to serve as a body-wide mechanosensitive signaling sys-
tem with an integrating function analogous to that of the
nervous system [5,6]. However, relatively few authors
addressed chiefly the deep fascia, particularly the biome-
chanics of the deep fascia [7-9]. This is an important omis-
sion, owing to the general significance of the deep fascia
in the body and the importance of biomechanics of the
deep fascia. Actually, biomechanics has contributed to vir-
tually each modern advance of medical science and tech-
nology [10]. In Orthopaedics, biomechanics has become
an everyday clinical tool. Basic research has included not
only in surgery [11,12], prosthesis [13,14], but in cellular
and molecular aspects and healing in relation to stress and
strain [15,16].

The biomechanical hallmarks of the deep fascia comprise
nonlinear and viscoelastic behaviors, which include
creep, stress relaxation, stress-strain hysteresis. The impact
of mechanical loading on the deep fascia varies with time
[10]. As well, uniaxial tensile test until rupture, which is
carried out by loading and disloading with a constant ten-
sile rate, is a common method to evaluate the mechanical
properties of tissues. Such stress-strain tests symbolize the
viscoelastic properties of certain tissues [8].

The concept of distraction histogenesis was introduced by
G.A. Ilizarov [17,18]. Gradual distraction on living tissues
creates stresses that can stimulate and maintain regenera-
tion and active growth of certain tissue structures, which
was named as the Law of Tension-Stress [17,18].

Despite the increasing number of studies addressing the
impact of leg lengthening on a multitude of tissues, the
response of the deep fascia has not been well docu-
mented. In the previous studies, we demonstrated the
morphological changes of the deep fascia and subse-
quently provided direct evidence of regeneration of the
deep fascia under certain regimen during leg lengthening
[19,20]. However, no studies regarding the biomechanics
of the deep fascia during leg lengthening have yet been
reported to date and our knowledge. Nevertheless, the
biomechanical properties of a certain tissue as well as
those during leg lengthening are of critical importance to
clarify the underlying mechanism of the principle of Ten-
sion-Stress. From this point of view, the purpose of this
study was to evaluate the viscoelastic properties of the
deep fascia during leg lengthening.

Methods
Establishment of leg lengthening animal model
In adult New Zealand white rabbits (License number
SCXK 2002–005, lab animal center of the Fourth Military
Medical University), the deep fascia in the leg were length-
ened by a unilateral external fixator applied with four pins
to the medial surface of the tibia [21]. The committee on
animal experimentation of Fourth Military Medical Uni-
versity approved all experiments, which met the NIH
guidelines for the care and use of laboratory animals. A
monofocal proximal diaphysis osteotomy between the
second and the third pins was performed with little inci-
sions, the periosteum and the skin closed. Seven days after
operation [22,23], axial distraction was initiated at two
different rates, i.e., 1 mm/day and 2 mm/day. Lengthen-
ing was performed twice daily and continued until 10%
and 20% increases in the initial length of the tibia had
been achieved. Twenty adult New Zealand white rabbits
were randomly divided into 4 groups, each of which
included 5 animals. The animals were grouped as
reported previously [19,20]. In brief, four leg lengthening
schemes, i.e., 1 mm/d with 10% and 20% increment in
the tibia length, 2 mm/d with 10% and 20% increment in
the tibia length, correspond to group A, B, C and D,
respectively. In a sham group of 2 animals the external fix-
ator system was applied and osteotomy was made without
lengthening.

Tests of mechanical properties of deep fascia
The deep fasciae of different groups were excised from the
gastrocnemius fasciae of legs of animals at various time
points. All the mechanical tests were performed within six
hours after the specimens were excised. During the period,
the specimens were stored at 39.2°F in order to avoid
mechanical property deterioration. Each fascia was cut
into test specimens in dimensions of 30 mm × 10 mm
(the initial length in the leg), and subsequently stored in
normal solution at 39.2°F. The long axis of specimens was
oriented parallel to the limb axis [24].

Each specimen was clamped at both ends on the Instron
1122 tensile tester (Instron 1122, Canton, MA). The air
pressure upon the clamp was 58.6 × 106N/m2, the aim of
which was to avoid local slippage between the samples
and the clamp. All the tests were carried out at room tem-
perature with a constant tensile rate of 5 mm/min. The
initial length of each specimen was 20 mm.

To determine the ultimate non-damaging loads applica-
ble on fasciae, preliminary series of load-download tests
were performed on specimens of different groups of ani-
mals on the basis of previous study on analogous tissues
[9]. Given the ultimate non-damaging loads obtained
from the preliminary series for control and experimental
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groups were different, the load for pre-conditioning for
the hysteretic tests was 200 g for control fasciae; whereas
the load was 400 g for the experimental groups.

Thirty-six fasciae specimens of experimental groups were
involved in the current study as following procedures
[8,10]. The direction of the strength was along the long
axis of specimens, which was parallel to the limb axis.
After being loaded with the pre-conditioning load, it was
returned to its initial length. Then the specimens were re-
stretched under the same load until five load-download
cycles had been completed. As a result, the hysteresis
curves were automatically generated. At the end of the
hysteresis tests, fatigue tests were carried out by the elon-
gation of the specimens until rupture [9,10].

Statistical analysis
SPSS 11 for Windows (SPSS Inc. Chicago, IL) was utilized
to perform the statistical analyses. The data of the stain at
rupture (SR) and ultimate tension strength (UTS) was
evaluated using analysis of variance followed by Student's
t-test. Differences with P values of less than 0.05 were con-
sidered significant.

Results
Figure 1, the curve of control fascia, pointed to typical vis-
coelastic rule of collagenous tissues, i.e., the displacement
increased rapidly at the initial stage of loading, during
which the relationship between load and displacement
was exponential. Then as the loading increased, the stiff-
ness of material increased, during which the relationship
was lineal. Figure 2 showed the load-displacement curves
of control and experimental groups (i.e., A, B, C and D)

produced by elongating the fasciae until rupture. Figure 1
displayed the load-displacement curve of control fascia of
the uniaxial tensile tests. Figure 2 indicated that the curve
of the fasciae subjected to the lengthening rate of 1 mm/
day with 20% increase in tibia length was closest to that
of normal fascia, even closer than at 10% increase in tibia
length. As well, the curves of lengthening rate of 1 mm/d
(A and B) were closer than those of 2 mm/d (C and D) to
that of normal fascia.

For the normal deep fascia without lengthening, the SR
and UTS on average were 14.11% and 2.69 N (8.97 mN/
mm2), respectively. After leg lengthening, the increases in
UTS and SR of the deep fascia were statistically significant
(P < 0.05). The comparison of SR and UTS of each group
was demonstrated as Figure 3 and Figure 4, respectively.
These figures indicated that SR and UTS increased statisti-
cally with the same order from maximum to minimum as
group B, A, D, C and control.

Discussion
Hitherto, this is the first study addressing the biomechan-
ical properties of the deep fascia in response to leg length-
ening. The biomechanical properties of the deep fascia
were studied with hysteresis and fatigue tests and conse-
quently load-displacement curves were generated and
analyzed.

Relationship between biomechanical properties and 
morphological changes of deep fascia
The results of both the hysteresis and fatigue tests indicate
the constancy of viscoelastic properties of collagenous tis-

The load-displacement curves of control fascia obtained from the hysteresis testsFigure 1
The load-displacement curves of control fascia 
obtained from the hysteresis tests.

The load-displacement curves of control and experimental groups produced by fatigue testsFigure 2
The load-displacement curves of control and experi-
mental groups produced by fatigue tests.
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sues as well as the alterations in load-displacement curves
of the deep fascia after leg lengthening in comparison
with that of the normal fascia. In addition, the curve of the
deep fascia under the regimen of the distraction rate of 1
mm/day with 20% increase in tibia length was the closest
to the normal one, even closer than the regimen of distrac-
tion rate of 1 mm/day with 10% increase in tibia length.
As well, the curves of lengthening rate of 1 mm/d (A and
B) were closer than those of 2 mm/d (C and D) to that of
normal fascia. These biomechanical findings are
undoubtedly linked to their corresponding structural or
morphological changes [10]. A few studies regarding the
morphological changes of deep fascia with various regi-
mens of leg lengthening have been reported. Ilizarov [17]
studied the morphological changes of various tissues of a

canine model subjected to various distraction rates (0.5
mm, 1.0 mm, 2.0 mm) and distraction frequencies (one
step per day, four steps per day, 60 steps per day). The fas-
cia in its natural state had a wavy appearance when stud-
ied with the light microscope. Distractions at a rate of 1
mm once a day and in four steps, the collagen fibers had
lost their wavy appearance and were oriented along the
vector of distraction. While a distraction rate of 2 mm per
day often resulted in undesirable dramatic changes within
elongating fasciae. Recently, Stecco and colleagues [24]
studied the organization of the deep fascia of the pectoral
region and of the thigh in human from the view of surgi-
cal function. However, it is noteworthy that the deep fas-
cia of various species and regions might have diverse
morphological and functional hallmarks. Besides, we
studied the morphological changes via light microscopy
and electroscopy detection and the extracellular matrix
alterations via histochemical methods of the deep fascia
in the same distraction regimens as this biomechanical
study [19,20]. Accordingly, normal deep fascia consisted
of three layers under microscopy in the cross sections, i.e.,
two dense connective tissues outside and one loose con-
nective tissue; whereas it comprised fibrocytes and colla-
genous fibrils in ultrastructure level [19]. As well, the
appropriate regimen of distraction at the rate of 1 mm/d
with 20% lengthening of tibia leads to the regenerative
changes and the most comparable collagen composition
in the deep fascia, more comparable than with 10%
increase in tibia length. These morphological results con-
curred with and supported the findings of the present
study, i.e., the deep fascia under the regimen of the rate of
1 mm/day in combination with 20% increment led to
regeneration changes and consequently had a closest bio-
chemical composition in comparison with normal deep
fascia. Therefore they exhibited the closest biomechanical
properties when compared to normal deep fascia.

Furthermore, our study showed that the SR and UTS
between experimental groups were statistically different.
The order of these values was B, A, D, C and control
groups from maximum to minimum. The increment in
strain and strength of the experimental groups might be
attributed to the reorientation of collagen fibers along the
vector of leg lengthening within the fascia [18]. In addi-
tion, the regeneration of fibroblasts and newly formed
collagen fibers within the deep fascia might be a plausible
explanation for the greater values under the lengthening
rate of 1 mm/d (group A and B) than 2 mm/d (group C
and D). However, we cannot find out a direct linkage
between morphological changes with variations in strain
and strength on the basis of the available evidence. Addi-
tional profound studies are needed to quantitatively con-
nect the morphological and biomechanical changes and
verify our findings.

The comparison of strain at rupture of each groupFigure 3
The comparison of strain at rupture of each group. 
The differences between control and each experimental 
group were statistically significant (P < 0.05).

The comparison of ultimate tension strength (UTS) of each groupFigure 4
The comparison of ultimate tension strength (UTS) 
of each group. The differences between control and each 
experimental group were statistically significant (P < 0.05).
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Despite the progression on changes of the deep fascia dur-
ing limb lengthening, the question of how mechanical
stress turns into molecular or cellular signals remains
open. It is believed that fibroblasts within the fascia are
integral to mechanotransduction. They communicate
with each other via gap junctions and respond to tissue
stretch by shape changes mediated via the cytoskeleton
[6,25]. As well, brief stretch decreases TGF-β1-mediated
fibrillogenesis, which may be pertinent to the deployment
of manual therapy techniques for reducing the risk of scar-
ring/fibrosis after an injury [26]. Taking these studies into
account, the alterations in the metabolic settings of
fibroblasts, as the mainstay of mechanotransduction,
within the deep fascia subjected to leg lengthening might
contribute to the biomechanical changes. Therefore fur-
ther studies are needed to clarify the accurate molecular
mechanism of signal transduction during leg lengthening.

In our study, the SR of normal deep fascia was 14.11%,
which coincides with the results of others. Yahia et al [8]
studied the viscoelastic properties of human lumbodorsal
fascia and noted that the SR varied from 12% to 15%.
Other studies noted that the SR of the fascia lata of human
was about 15% [9,27].

Testing conditions of uniaxial tensile tests
The biomechanical properties of tissues are influenced by
a variety of testing conditions, including the tensile rate
[10], temperature [28,29], pH [30], ionic content [31] and
sample geometry [32].

In our study, the testing conditions comprised a tensile
rate of 5 mm/min and the room temperature of 55.76°F.
The biomechanical properties of tendinous structures
have traditionally been studied using isolated specimens
via in vitro testing condition. Moreover, in vivo biome-
chanical detection can be extremely difficult and incon-
venient even though it represents the function of tissues
more accurately. Therefore the present study adapted the
traditional in vitro testing condition.

Whereas the deep fascia is thin and smooth, it is essential
to avoid slippage during uniaxial tensile tests. Various
noncontact and in vivo tensile measurement methods
have been reported [7,33,34]. Some authors studied the
tensile properties of human soft tissues via in vivo and
noninvasive protocols, i.e., ultrasound [33,34]. Zernicke
and colleagues [7] established a noncontact optical
method based upon following the motion of multiple
landmarks located on the tissue surface to determine the
discretized surface strains. However, these methods were
mainly appropriate to nonhomogeneity of the tendon
and fascia strains during high rate tests. In our study, the
tensile rate was 5 mm/min and the clamp with air pres-
sure was used to avoid slippage. As a consequence, the

contact clamping method of the current study may have
limitations associated with specimens' displacement and
clamping and uncertainties as to whether in vitro material
represents intact tissues function. However, the majority
of tissue ruptures occurred near the middle-third part
within the fascia. The phenomenon verifies the contact
clamping method as a reliable alternative to study the bio-
mechanics of soft tissue as the deep fascia. This might be
due partly to the relatively low tensile rate we utilized.

Taken together, the biomechanical properties of the deep
fascia are influenced by the stress during leg lengthening.
Both lengthening rate and frequency contribute to the
changes. Further study is needed to investigate the trans-
duction mechanism of mechanical stress factors and the
signaling pathway mediating the response to mechanical
force in the deep fascia.

Conclusion
The deep fascia subjected to leg lengthening exhibits vis-
coelastic properties as collagenous tissues without length-
ening other than increased strain and strength. Despite
different lengthening schemes result in varied viscoelastic
properties changes, the most comparable viscoelastic
properties to be demonstrated are under the scheme of a
distraction rate of 1 mm/day and 20% increase in tibia
length.
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