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Abstract 

Background Advances in medical imaging have made it possible to classify ankle fractures using Artificial Intel-
ligence (AI). Recent studies have demonstrated good internal validity for machine learning algorithms using the AO/
OTA 2018 classification. This study aimed to externally validate one such model for ankle fracture classification 
and ways to improve external validity.

Methods In this retrospective observation study, we trained a deep-learning neural network (7,500 ankle stud-
ies) to classify traumatic malleolar fractures according to the AO/OTA classification. Our internal validation dataset 
(IVD) contained 409 studies collected from Danderyd Hospital in Stockholm, Sweden, between 2002 and 2016. The 
external validation dataset (EVD) contained 399 studies collected from Flinders Medical Centre, Adelaide, Australia, 
between 2016 and 2020. Our primary outcome measures were the area under the receiver operating characteristic 
(AUC) and the area under the precision-recall curve (AUPR) for fracture classification of AO/OTA malleolar (44) frac-
tures. Secondary outcomes were performance on other fractures visible on ankle radiographs and inter-observer 
reliability of reviewers.

Results Compared to the weighted mean AUC (wAUC) 0.86 (95%CI 0.82–0.89) for fracture detection in the EVD, 
the network attained wAUC 0.95 (95%CI 0.94–0.97) for the IVD. The area under the precision-recall curve (AUPR) 
was 0.93 vs. 0.96. The wAUC for individual outcomes (type 44A-C, group 44A1-C3, and subgroup 44A1.1-C3.3) 
was 0.82 for the EVD and 0.93 for the IVD. The weighted mean AUPR (wAUPR) was 0.59 vs 0.63. Throughout, the per-
formance was superior to that of a random classifier for the EVD.

Conclusion Although the two datasets had considerable differences, the model transferred well to the EVD 
and the alternative clinical scenario it represents. The direct clinical implications of this study are that algorithms 
developed elsewhere need local validation and that discrepancies can be rectified using targeted training. In a wider 
sense, we believe this opens up possibilities for building advanced treatment recommendations based on exact frac-
ture types that are more objective than current clinical decisions, often influenced by who is present during rounds.
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Introduction
With artificial intelligence’s (AI) growing success in 
image analysis, AI interventions are rapidly being devel-
oped and applied in medical diagnostics [1]. Many stud-
ies have reported promising results, reaching close to 
perfect accuracy on basic pathology detection tasks, 
illustrating that accuracy in elementary pathology detec-
tion should be relatively easy to attain. The promise of AI 
interventions lies in their ability to solve complex tasks 
in different scenarios. For example, classifying fractures 
into meaningful features could give clinical guidance, 
drive treatment decision-making, or predict clinical out-
comes. However, as researchers develop models under 
controlled conditions, few have reproduced their results.

A meta-analysis by Liu et al. reported the lack of exter-
nal validation in deep learning [2]. For example, a sys-
tematic meta-analysis by Oliveira e Carmo et  al. found 
36 papers using deep learning for orthopedics. Only 
three were externally validated, i.e., tested on independ-
ent data from a different site [3–6] (See Supplement 1, 
Table  S1.) Similarly, a systematic review of orthopedic 
machine learning models predicting surgery outcomes by 
Groot et al. found that only 10/59 studies had externally 
validated their models [7]. There are currently many ini-
tiatives to improve the quality of reporting AI studies in 
medicine, for example, via checklists for consistent and 
relevant reporting and external validation [1, 8]. For a 
predictive model to be helpful, it must work and be tested 
in clinical environments other than what the model has 
been trained on – also called external validation – and 
thus be generally applicable.

There are three major classification systems for ankle 
fractures. Previously, we showed that deep-learning 
models can classify ankle fractures according to the AO 
Foundation/Orthopedic Trauma Association (AO/OTA) 
classification. The AO/OTA standard classifies fractures 
based on their visual appearance in radiographic exami-
nations, making it well-suited to AI image classifica-
tion. This classification is influenced by the very popular 
Lauge-Hansen (LH) system, which is widely used in clini-
cal practice and categorizes fractures based on the injury 
mechanism. The LH system’s reliance on such non-vis-
ual factors presents challenges for this study, where the 
injury mechanisms were missing. At the same time, the 
AO/OTA classification can be seen as an extension of the 
Danis-Weber classification.

We have previously reached a model performance of 
weighted average area under the receiver operating char-
acteristic curve (AUC and wAUC) 0.90 (95%CI 0.82–
0.94)[9] using internal validation test data – data from 
the same site as the test data. Given that such a model 
aims to facilitate classification and decision-making in an 
emergency setting, we needed to validate its performance 

in the clinic, not in the training setting. This paper exam-
ines the external validation of an AI model for classify-
ing ankle fractures according to the AO/OTA standard. 
External validation consists of applying a model to inde-
pendent data from a site different from the one used for 
training. It aims to see how relevant and generalizable a 
model is in a clinical context. Our primary aim was to 
study the effect of transferring a model to a different set-
ting, i.e., the model’s external validity, and to study ways 
to improve the external validity of a machine learning 
model. Our secondary aim was to explore the AO/OTA 
classification more broadly.

Material and methods
The study was a retrospective external validation cohort 
study.

Ethics approval and consent to participate
Ethical approval for the collection of Flinders/exter-
nal validation dataset was obtained from the Central 
Adelaide Local Health Network Human Research Ethics 
Committee (CALHN HREC) reference number: 13991, 
Authorization date: 21 December 2020. In accordance 
with the ethical permit, no individual or informed con-
sent from participants was required. In accordance with 
the specific consent for inclusion into this study, the data 
was not considered patient data.

Ethical approval for the Danderyd/internal validation 
dataset was obtained by the Regional Ethics Commit-
tee for Stockholm, Sweden (Dnr. 2014/453-31/3, April 9, 
2014). According to the ethical approval, no individual 
or informed consent from participants was required, as 
the data did not constitute human data after anonymous 
collection.

Ethical approval to use the external dataset for this 
study was also obtained from the Swedish Ethical Review 
Authority, Sweden (Dnr. 2023-07151-01).

The need for informed consent for the use of the 
data for the study waived. The data was anonymous 
radiographs without personal identifiable informa-
tion, it would not be possible to identify individuals and 
informed consent was waived.

Data collection and pre‑processing
Training and internal validation dataset (IVD)
The training data came from a retrospective cohort of 
trauma radiographs (initial imaging performed at the 
emergency department at the time of injury) collected 
from Danderyd University Hospital (Stockholm, Sweden) 
between 2002 and 2015. This level 2 trauma center had a 
referral area of approximately 350,000 people during that 
period. The data was collected anonymously and only 
coded with a unique patient identifier, but the radiologist 



Page 3 of 13Olczak et al. BMC Musculoskeletal Disorders          (2024) 25:788  

report was included. No injury or population data (such 
as age, gender, trauma mechanism, etc.) was collected. 
We used the radiologist reports to generate initial frac-
ture/no fracture labels. These labels have been improved 
over successive studies through manual review by radi-
ologists and orthopedic consultants [9–11]. All exami-
nations visualizing the ankle were included, and only 
pediatric studies (open physis) were excluded because 
they are classified differently.

Four hundred patients (409 exams, including all avail-
able views visualizing the ankle) were previously selected 
for the internal validation dataset (IVD). Our previ-
ous study had a 2/3 bias towards fractures in the IVD to 
ensure sufficient fractures to classify and compare rarer 
fractures. We did not specify the fracture type, so tibia, 
malleolus, fibula, or foot fractures were included [9, 10]. 
As part of active training, we added 2664 fractures to the 
training dataset to align it more with the EVD distribu-
tion. We used model-based selection, i.e., the model 
screened ankle studies from the Danderyd dataset and 
selected cases where the model flagged categories of 
interest or where the probability for the predicted class 
was low, i.e., had high uncertainty. These were then man-
ually reclassified.

No patient was present in both the training and IVD 
set. See Fig. 1. For training details, see Supplement 2.

External validation dataset (EVD)
The external validation dataset (EVD) was a subset 
of 12,000 radiographic ankle examinations collected 
from Flinders University Medical Centre (Adelaide, 
Australia), a level 1 Trauma Centre, between 2016 and 
2020.

Studies were filtered using keywords in radiology 
reports to create an index database containing isolated 
fibular and lateral malleolus fractures and a non-frac-
ture database.

While only trauma radiographs were included, this 
included one-week follow-ups and weight-bearing 
images. Projections were three standard views (AP, 
mortise, and lateral). Exclusion criteria were any 
pathology other than a fibula or lateral malleolus frac-
ture, old fractures, callous or cast presence, radio-
graphs of poor quality, open physes, radiological views 
of insufficient quality, and the occurrence of plates or 
screws were also excluded.

Three hundred ninety-nine examinations were ran-
domly selected from the Flinders dataset and provided 
as an external validation dataset (EVD) for this study, 
with a 2/3 selection bias towards studies containing 
a fracture. The Flinders set was anonymized and pro-
vided without reports, injury, or population parameters 
[12] (Table 1.)

Fig. 1 Study flowchart
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Annotation protocol for the EVD
The four reviewers (FIJ, EA, JD, and MG) were consult-
ant or senior consultant orthopedic trauma surgeons. 
All underwent a training session to ensure familiarity 
with the labeling platform (the Raiddex platform devel-
oped by DeepMed AB) and agreement on the AO/OTA 
2018 ankle fracture classification. Each reviewer labeled 
the EVD independently at the original image resolution. 
Labeling was distributed so that three reviewers exam-
ined each study independently. After the independent 
labeling, we held a consensus session to review the cases 
where there were discrepancies between observers, and 
a majority vote decided the final classification. The result 
was the ground truth EVD. We have previously estab-
lished the annotations for the training data and the IVD 
ground truth [9].

Model and evaluation
Image pre-processing, network architecture (modified 
ResNet-based [13] neural network model developed in 
PyTorch), parameters, training, and output evaluation 
were consistent with Olczak et  al. 2021 [1] and identi-
cal for the IVD and the EVD. The network scaled down 
exams to reduced-size images for training and assess-
ment. The network was always trained for 300 epochs, 
and we did not stop early.

The software used in our previous study was unsuit-
able for this study’s experiments. Instead, we used an 
identically trained network on the same IVD. Due to the 

random nature of model training, the exact performance 
for the initial IVD varied slightly from our previous study. 
After initial evaluation, we were dissatisfied with the 
model performance and noted a notable difference in the 
distribution of Type A fractures. As part of active learn-
ing, we: 1) expanded the training data with previously 
unlabeled ankle imaging from the training site, focusing 
on type A fracture. These were labeled by FW (medical 
student) and JO (medical doctor). We could not prese-
lect fracture type among those previously unclassified 
images. 2) we actively focused on Type A fracture predic-
tion edge cases. Fractures in the training set classified as 
Type A with the lowest probability or where type A frac-
ture was the second most likely type (but another type 
won out) were rigorously reexamined after each training 
epoch by MG (senior orthopedic consultant). By focus-
ing on the lowest probability type A fractures and almost 
type A, we hoped to reduce the uncertainty in the type 
A classes. In addition to adding more training data, we 
trained the model on different image resolutions. We 
report the results for the 400 × 400-sized images as the 
primary outcome. At higher resolutions, there was no 
performance increase.

The model classified studies by examining all avail-
able images individually and independently for each 
possible class. There were 39 outcomes for ankle (AO/
OTA 44) fractures and, as many classes for fibula (4), 
tibial (43), foot fractures, and one additional for frac-
ture – yes/no. The model selected the most probable 

Table 1 Properties of the internal validation dataset (IVD) and external validation dataset (EVD) 

Numbers are based on ground truth labelling by reviewers after the consensus session
a Distinguishing between isolated fibula and lateral malleolar fracture can be subjective. In the absence of talar dislocation, we reviewed the radiologist’s report for 
indications of direct trauma. Additionally, we assessed for specific characteristics, such as the presence of more transverse fractures, which are more common in 
isolated fibula fractures, as opposed to C-category fractures that often extend beyond 3 cm. While these criteria are not entirely objective, we aimed to apply them 
consistently across cases to minimize variability
b Denotes fractures and outcomes that were flagged as fractures during study selection but are secondary outcomes

Dataset properties IVD EVD

Cases 409 399

Projections  ≥ 4 3

Focus Ankle study Lateral malleolar fracture

Timing Initial imaging Initial imaging, one-week follow-up, weight-bearing

Implants & casts Yes No

Open physes No No

Excluded on imaging quality None Insufficient quality views
Poor quality images
Severely displaced fractures

Fracture Cases Percent (%) Cases Percent (%)
Base 253 61,9% 277 69,4%

  Malleolara 216 52,8% 274 68,7%

  Fibulab 37 9,0% 3 0,8%

Previous fracture/otherb 134 32,8% 15 3,8%

  Footb 57 13,9% 2 0,5%
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AO/OTA class (top-1 classification) for the series out-
come [9]. Class outcomes, i.e., fracture yes/no, type 
(A–C – i.e., Danis-Weber), group (A1–C3), and sub-
group (A1.1–C3.3) are determined independently of 
each other. We trained a network without pre-training, 
then used the resulting trained AI model to classify the 
IVD and EVD and compared the results to the ground 
truths. See Supplement 2 for details on the network, 
modeling parameters, and all possible outcomes for 
the network. We report our findings per the CAIR 
checklist [1] and follow the TRIPOD statement [14].

Statistical analysis
Primary outcomes
The area under the receiver operating-characteristic 
curve (AUC) and the area under the precision-recall 
curve (AUPR) for malleolar fractures (AO/OTA 2018 
bone-location 44). Top-1 classification is used for 
determining outcomes for each level, i.e., fracture/ vs. 
no fracture, type 44A-C, group 44A1-44C3, and sub-
group 44A1.1-44A3.3, i.e., 40 possible outcomes for 
ankle fractures. While some outcomes overlap, each 
was decided individually. We used frequency-weighted 
means as summary statistics [1] and calculated 95% 
confidence intervals (CI) with bootstrapping. We do 
not report outcomes with single cases, as it is impos-
sible to calculate CI for these outcomes.

Although AUC and accuracy are often used to report 
performance in CNN models, a multi-label classifier 
— such as that used in this study — benefits from a 
metric that can more accurately capture its inherent 
class imbalance between the many groups.

For the AUPR, a random classifier will perform pro-
portionally to the number of positive outcomes for that 
class, i.e., AUPRrandom = (number of cases for the class/
total number of cases). If a dataset consists of 10% of 
class X, a random classifier should deliver an AUPR of 
0.1 for class X, and anything above that is better than 
chance [15]. Therefore, we also report when the AUPR 
outperforms a random classifier – i.e. when the lower 
95%CI bound is better than the random classification. 
We only measured the top-1 performance (i.e., no 
points for being close to the correct answer).

After enhancing training (with active learning, addi-
tional training data, and increased image resolution), 
we only tested the model (on the EVD and IVD) once 
for each resolution. This was done to eliminate the risk 
of overfitting the EVD.

We compare the classifier’s performance on both 
datasets and report according to the Clinical AI 
Research (CAIR) and TRIPOD checklists.

Secondary outcomes
Compare the classification between observers (before the 
consensus session) and performance for non-malleolar 
fracture outcomes. We use Cohen’s kappa to compare 
two reviewers and intra-class correlation (ICC) to com-
pare all reviewers. We use ICC and kappa as rough indi-
cators of the difficulty of the classification task.

Results
Compared to the IVD, the EVD had fewer displaced frac-
tures and no casts or implants. The EVD included studies 
labeled "weight-bearing," indicating that these were not 
fresh injuries at the time of examination (i.e., from the 
emergency department at the time of injury). The EVD 
had three views per study, while the IVD had four or 
more views. The IVD had 216 ankle fractures out of 409 
cases (53%), compared to 274 out of 399 ankle fractures 
(69%) in the EVD set (Table  1). The fracture incidence 
was similar, and type B fractures dominated both set-
tings. Type A fractures were three times more prevalent 
in the EVD. There were more non-malleolar fractures in 
the IVD than in the EVD (Table 2 and Table 3). The EVD 
also had less severe fractures, e.g., more B1 fractures, less 
B3, and very few fibula fractures.

Danderyd (IVD)
While the AUC was good for type A fractures in the IVD, 
AUPR was only better than chance for three outcomes 
(base case/ type “A”, subgroup A1.1 and group A3).

Type B fractures were the most numerous in the IVD. 
All had good to excellent AUC, and all had AUPR better 
than random, even rare outcomes such as B1.3, B2.3, and 
B3.3.

The network had excellent AUC and AUPR for type C 
fractures. The model performed better than random for 
the same type C outcomes in the Danderyd set (base, C1, 
C1.1, C2) as it did for the Flinders set, except C2.1.

The wAUC increased by 0.04 (from 0.89 to 0.93), and 
the wAUPR increased from 0.57 to 0.65 for the IVD. 
A random classifier would give a wAUPR of 0.23. See 
Table 2.

The model was less accurate for malleolar fracture 
detection ("base" AO/OTA 44) on the EVD than the IVD. 
The EVD dataset is less diverse, with fewer outcomes (23 
vs. 36 AO/OTA outcomes). Notable was that fracture 
detection (fracture “yes”/”no”) had AUC 0.86 (0.82–0.89) 
for the EVD vs. AUC 0.95 (0.94–0.97) for the IVD.

Flinders (EVD)
Type A fractures were the second most numerous in 
the EVD, as was in group A1. Type A fractures had 
the lowest AUC, but only A1.1 performed worse than 
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Table 2 Prediction outcomes for the internal validation set (IVD) 

Reported with the area under the receiver operating characteristic curve (AUC) and the area under the precision-recall curve (AUPR). The outcome measures for the 
most important groups. 95% confidence intervals (CI) are computed using bootstrapping. The “base case” corresponds to the Danis-Weber classes (AO/OTA 44A, 44B, 
and 44C). Outcomes with ≤ 1 instance are not reported. Radiographs at 400 × 400px resolution. ΔAUC and ΔAUPR was the difference in AUC and AUPR comparing the 
actively trained network to the pre-active training network at 256 × 256px resolution. Increasing resolution prior to active learning had no effect on performance
a Indicates that the AUPR with 95% CI exceeds random AUPR

DANDERYD – Internal validation set (IVD) (409 cases)

Malleolar fractures

Cases AUC (95% CI) ΔAUC AUPR (95% CI) ΔAUPR

Fracture 216 0.95 (0.94–0.97) 0.03 0.96 (0.94–0.97)a 0.03

44A
 Base 32 0.84 (0.76–0.92) 0.04 0.46 (0.11–0.35)a 0.23

 44A1 22 0.84 (0.76–0.92) -0.03 0.37 (0.08–0.29)a 0.19

  44A1.1 6 0.88 (0.79–0.97) -0.01 0.04 (0.01–0.10) 0.00

  44A1.2 7 0.84 (0.69–1.00) -0.02 0.30 (0.01–0.21) 0.22

  44A1.3 9 0.82 (0.69–0.96) 0.03 0.18 (0.01–0.22) 0.11

 44A2 7 0.99 (0.97–1.00) 0.15 0.52 (0.01–0.47) 0.28

  44A2.1 5 0.99 (0.97–1.00) 0.09 0.41 (0.00–0.56) 0.15

  44A2.3 2 0.99 (0.99–1.00) 0.14 0.25 (0.00–0.04) 0.23

 44A3 2 0.95 (0.86–1.04) -0.02 0.08 (0.03–0.17)a 0.01

44B
 Base 137 0.96 (0.93–0.92) 0.04 0.92 (0.88–0.95)a 0.05

 44B1 67 0.95 (0.93–0.98) 0.05 0.77 (0.67–0.86)a 0.14

  44B1.1 39 0.90 (0.87–0.94) 0.07 0.37 (0.25–0.51)a 0.06

  44B1.2 26 0.94 (0.91–0.97) 0.07 0.40 (0.22–0.60)a 0.15

  44B1.3 2 0.96 (0.90–1.02) 0.04 0.06 (0.01–0.23)a 0.03

 44B2 38 0.86 (0.80–0.92) 0.01 0.40 (0.25–0.56)a 0.04

  44B2.1 20 0.91 (0.85–0.97) 0.05 0.37 (0.20–0.55)a 0.14

  44B2.2 16 0.88 (0.77–1.00) -0.01 0.35 (0.15–0.53)a 0.13

  44B2.3 2 0.87 (0.68–1.07) -0.05 0.03 (0.00–0.11)a 0.00

 44B3 32 0.92 (0.89–0.96) 0.06 0.50 (0.27–0.59)a 0.03

  44B3.1 12 0.90 (0.83–0.97) 0.04 0.18 (0.06–0.34)a 0.02

  44B3.2 13 0.92 (0.88–0.96) 0.08 0.20 (0.08–0.35)a -0.04

  44B3.3 6 0.96 (0.93–0.99) 0.02 0.16 (0.03–0.30)a 0.06

44C
 Base 47 0.93 (0.89–0.97) 0.05 0.73 (0.61–0.82)a 0.20

 44C1 24 0.90 (0.84–0.97) 0.05 0.42 (0.27–0.63)a 0.18

  44C1.1 17 0.93 (0.87–0.99) 0.03 0.39 (0.21–0.60)a 0.16

  44C1.2 5 0.86 (0.75–0.97) -0.01 0.05 (0.01–0.12) 0.01

  44C1.3 2 0.93 (0.83–1.02) 0.02 0.04 (0.01–0.14)a 0.02

 44C2 18 0.93 (0.90–0.97) -0.02 0.40 (0.16–0.58)a -0.05

  44C2.1 6 0.86 (0.74–0.99) -0.08 0.22 (0.01–0.51) 0.07

  44C2.2 3 0.99 (0.99–1.00) 0.08 0.32 (0.00–0.62) 0.28

  44C2.3 9 0.92 (0.88–0.96) 0.03 0.11 (0.04–0.21)a 0.00

 44C3 5 0.98 (0.97–1.00) 0.07 0.29 (0.02–0.67)a 0.21

  44C3.1 3 0.96 (0.90–1.03) 0.29 0.16 (0.00–0.50) 0.15

Weighted mean 
AUC 

Δ Weighted mean AUPR Δ

0.93  + 0.04 0.65  + 0.08
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a random classifier measured in AUPR. However, there 
were few outcomes against which to measure perfor-
mance. Figure  2 shows type A fractures and how the 
network classified them incorrectly.

For type B fractures, the base case performed well. 
While AUC was decent for all type B outcomes, four 
out of ten cases did not reach better AUPR than a ran-
dom classifier (i.e., B1.3, B2.2, B3, and B3.1).

Type C fractures performed well, as did all four sub-
classes of type C outcomes. See Table 3.

Figure 3 shows an example of a type A1.3 fracture in 
the EVD, incorrectly classified as a type B fracture. Fig-
ure 4 shows examples of type B1.2 fracture incorrectly 
classified as type C.

Table  3 displays the change in performance for every 
class from active learning for the EVD. Most notable is a 
drop in performance for group C2 fractures, where group 
C2 and subgroup C2.1 decreased considerably in AUPR 
(-0.40 and -0.38, respectively). The wAUC increased by 
0.06 (0.77 to 0.83), and the wAUPR increased from 0.57 
to 0.63 for the EVD. A random classifier would give a 
wAUPR of 0.32.

Secondary outcomes: Intra‑observer measurements (ICC 
and Cohen’s Kappa)
Intra-observer measurements for malleolar fracture 
have ICC 0.86 and kappa 0.85, and for the type of frac-
ture, 44A-C, ICC 0.76–0.84 and kappa 0.85–0.78. Less 

Table 3 Prediction outcomes for the external validation set (EVD) 

Reported with the area under the receiver operating characteristic curve (AUC) and the area under the precision-recall curve (AUPR). The outcome measures for the 
most important groups. 95% confidence intervals (CI) are computed using bootstrapping. The “base case” corresponds to the Danis-Weber classes (AO/OTA 44A, 44B, 
and 44C). Outcomes with ≤ 1 instance are not reported. Radiographs at 400 × 400px resolution. ΔAUC and ΔAUPR was the difference in AUC and AUPR comparing the 
actively trained network to the pre-active training network at 256 × 256px resolution. Increasing resolution prior to active learning had no effect on performance
a Indicates that the AUPR with 95% CI exceeds random AUPR

FLINDERS – External validation dataset (EVD) (399 cases)

Malleolar fractures (44)

Cases AUC (95% CI) ΔAUC AUPR (95% CI) ΔAUPR

Fracture 274 0.86 (0.82–0.89) 0.03 0.93 (0.91–0.95)a 0.00

44A
 Base 94 0.74 (0.68–0.80) 0.12 0.52 (0.40–0.61)a 0.20

 44A1 93 0.75 (0.69–0.81) 0.14 0.57 (0.47–0.66)a 0.25

  44A1.1 5 0.63 (0.33–0.94) -0.07 0.04 (0.00–0.16) 0.02

  44A1.2 28 0.78 (0.69–0.87) 0.15 0.26 (0.11–0.43)a 0.14

  44A1.3 60 0.68 (0.61–0.76) 0.08 0.30 (0.20–0.41)a 0.10

44B
 Base 142 0.90 (0.87–0.93) 0.03 0.84 (0.78–0.89)a 0.03

 44B1 116 0.84 (0.80–0.88) 0.03 0.68 (0.58–0.76)a 0.07

  44B1.1 87 0.80 (0.75–0.85) 0.05 0.47 (0.37–0.56)a 0.06

  44B1.2 27 0.80 (0.72–0.88) 0.02 0.19 (0.11–0.31)a 0.03

  44B1.3 2 0.60 (0.17–1.02) -0.30 0.01 (0.00–0.02) -0.01

 2 21 0.85 (0.75–0.94) 0.10 0.32 (0.17–0.50)a 0.19

  44B2.1 18 0.85 (0.75–0.95) 0.12 0.33 (0.12–0.55)a 0.24

  44B2.2 3 0.93 (0.88–0.99) 0.00 0.05 (0.00–0.17) -0.03

 44B3 5 0.82 (0.61–1.04) -0.06 0.19 (0.01–0.58) 0.11

  44B3.1 5 0.82 (0.63–1.02) -0.05 0.12 (0.00–0.25) 0.07

44C
 Base 38 0.89 (0.82–0.96) 0.04 0.63 (0.46–0.78)a -0.06

 44C1 28 0.90 (0.84–0.96) 0.08 0.42 (0.26–0.65)a 0.07

  44C1.1 27 0.90 (0.84–0.97) 0.07 0.44 (0.25–0.62)a 0.10

 44C2 9 0.92 (0.82–1.01) -0.04 0.19 (0.05–0.36)a -0.40

  44C2.1 9 0.90 (0.79–1.02) -0.04 0.16 (0.05–0.31)a -0.38

Weighted mean AUC Δ Weighted mean AUPR Δ
0.83 +0.06 0.64 +0.07
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Fig. 2 Incorrectly classified cases where the network failed to detect Type A, sorted from lowest probability to highest
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severe fractures, i.e., A1, B1, and C1, had higher kappa 
values than more severe cases, perhaps because they 
are more prevalent. ICC and kappa are poor for most 
other outcomes, and we consider the task challeng-
ing for humans. Several classes had no interobserver 
agreement (kappa 0), mainly because they were not 
represented in the EVD or were so few that any disa-
greement or agreement had a disproportionate influ-
ence. See Supplement 1, Table S2.

We report performance for secondary outcomes, like 
non-malleolar fractures, along with more in-depth data and 

complete experiment readouts in Supplement 3 (400 × 400 
pixels) and Supplement 4 (256 × 256 pixels.). Supplement 4 
reports the initial EVD performance before retraining and 
active learning.

Discussion
This study aimed to externally validate a complex multi-
label AO/OTA 2018 ankle fracture detection model. 
Few models are externally validated, and we found 
none as multifaceted as the AO/OTA in our study. In 
this study, we wanted to establish a baseline against 

Fig. 3 Activation heatmaps where a type 44A1.3 fracture is incorrectly 
classified as a type B fracture. The activations show what the model 
reacts to classify fractures. Study from the external validation data

Fig. 4 Activation heatmap of a type 44B1.2 fracture, incorrectly 
classified as type C fracture. The activations show what the model 
reacts to classify fractures. Study from the external validation data
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which to compare future models. We found a gap in 
our model performance under external validation and 
reported a way of actively improving performance. 
We found that the model performed very well on an 
external validation set. Our model classified fractures 
much better than chance for all outcomes and indicates 
authentic learning utility for classifying ankle fractures 
in an external setting.

This study used the AO/OTA 2018 ankle classifica-
tion system. A widely used alternative, alone or in con-
junction, is the Lauge-Hansen (LH) system. The LH 
classification system aims to predict fracture patterns 
and ligamentous injuries based on injury mechanisms. 
Many studies have shown that LH is only partially valid 
or reproducible. Lindsjö, as far back as 1985, raised the 
question of poor reproducibility of LH between different 
populations based on previous studies [16]. Later studies 
repeated these findings of poor reproducibility [17–21]. 
An MRI study by Gardner et al. 2006 found that LH had 
limitations in predicting ligamentous injuries and soft-
tissue damage [19]. These findings were replicated by 
Kwon et al. in 2010 and 2012 using actual injury footage 
[22–24]. Boszczyk et al. 2018, came to the same conclu-
sion based on radiographs and patient-reported injury 
mechanisms [21]. Patton et al. 2022 came to similar con-
clusions based on CT and complete patient workups [25]. 
Both Michelson et al. and Haraguchi and Arminger failed 
to reproduce Lauge-Hansens’s results in physical experi-
ments. They concluded that the LH system could not be 
used to predict injury mechanisms or injury patterns [26, 
27]. The AO/OTA standard launched the Danis-Weber 
system. Danis-Weber is based on the location of the lat-
eral malleolus fracture about the syndesmosis. AO/OTA 
then extends the Danis-Weber classification to consider 
the medial and posterior malleolus injuries and grades 
fractures based on physical appearance [9, 28]. The main 
critique of the AO/OTA ankle system is that it is complex 
and that isolated medial malleolus fractures are treated 
as distal tibial fractures [20, 29].

Our goal was to develop AI models for rapid, easy, and 
accurate fracture classification and clinical decision-
making. LH is not well suited to predicting injury mecha-
nisms from radiographs in its current form, whereas AO/
OTA is imaging-based. In the clinical context, AO/OTA 
(complete or simplified Danis-Weber) and LH are often 
used in conjunction to guide treatment decisions. The 
classifications are similar, and conversions between the 
two systems have been suggested, but no fully agreed-
upon complete conversion exists [24, 30–34].

Model training
The training of AI models often comes down to hid-
den factors and confounders that are only sometimes 

related to actual pathology detection. For example, in a 
multicenter study, Badgeley et al. found that logistic and 
healthcare system parameters were often responsible for 
prediction. Without them, performance fell to that of a 
random classifier [35]. Subjecting the model to another 
dataset exposes it to a different data distribution – called 
a dataset shift [36] – and is crucial for evaluating models. 
It should be integral to the model training and develop-
ment stage. If the model only performs well on the data 
it was trained on or from one hospital, we can quantify 
this. It reduces the risk of presenting overfitted models 
as research progresses. In this study, the Flinders data 
has a different distribution and priori probabilities than 
the training data. For example, there were three times 
as many type A fractures. The Flinders data (e.g., EVD) 
had three images per study compared to four or more 
for Danderyd. The presence of follow-up images, e.g., 
weight-bearing one week after the trauma – was not a 
part of the network training. A non-displaced "weight-
bearing" exam would signal a less severe injury to a 
human reviewer, whereas the network did not recognize 
this signal. We expected the IVD performance to be 
somewhat better. For both datasets, AUC and AUPR are 
better than random for all outcomes. Few AI models are 
validated, making it difficult to assess how general and 
transferable these models are to other settings and what 
performance we can expect in our study. For the three 
studies, Oliveira e Carmo et  al. found performance was 
not affected dramatically for the validation set [3] (see 
Supplement 1, Table S1a.) However, those studies evalu-
ated models with just two or three outcomes. The AO/
OTA classification, as used in our research, had 40 out-
comes for ankle fractures – not all mutually exclusive.

As we were dissatisfied with the performance of the 
EVD, we tried multiple strategies to improve perfor-
mance. We increased image resolution, which did not 
affect EVD performance. We tried to drop views to make 
the training data resemble the EVD data (three stand-
ard views in EVD vs four or more in the training data). 
Neither had any performance effect, and we speculated 
that type A fracture signs had a too-discrete training sig-
nal for the network. Only after active training (i.e., addi-
tional training data focusing on the problematic type A 
classes) could we improve performance by increasing res-
olution. Yet, we did not see any rise in performance past 
400 × 400px. However, it can be desirable to reverse this 
generalization process on the externally validated model 
in a clinical application, i.e., honing it in the local setting. 
This would be done by actively retraining the externally 
valid model on data from the clinic where it is being used.

To our knowledge, this is the first study that externally 
validates such a complex fracture classification model 
and raises the question of what we can expect. Our 
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model performed well compared to other multinomial 
classifiers, even on EVD data [11, 37–43] (Supplement 1, 
Table S1b.) While we must take care when applying the 
algorithm to a new environment, it appears to work sat-
isfactorily. Lim et al. (2014) found that many of the most 
common orthopedic procedures had poor evidence-
based medicine support and were unnecessary [44]. We 
believe that tools such as this algorithm and evolutions 
could be part of the solution towards a more stringent 
and evidence-based treatment, for example, by reducing 
ambiguity in treatment decisions, identifying failure pat-
terns, or automating data reporting to registries.

Limitations and strengths
In alignment with our previous studies [9, 10], we initially 
tested our trained model on 256 × 256 radiographs but 
had difficulties capturing type A fractures. We attributed 
this to them being rarer in the training data. Type C inju-
ries were also uncommon, but the network performed 
better. Our experience was that the radiological footprint 
of type A fractures was less clear as these injuries tended 
to be less severe. The model captured Type A fractures 
after increasing the radiograph resolution and actively 
training for them. We found no benefit in going beyond 
400 × 400 radiographs for our data.

As not all outcomes were sufficiently prevalent in the 
test data, we could not quantify all outcomes with rea-
sonable confidence intervals. This was evident in cases 
where upper AUC confidence interval bounds exceeded 
1.00 (i.e., 100% accuracy). Similarly, outcomes with few 
test cases (5 or less) AUPR could not be shown to outper-
form random guessing.

We did not have the population distribution for either 
dataset. The original training data was anonymized upon 
collection and did not come with population param-
eters. It consisted of all available trauma radiographs at 
Danderyd at that time. We have only excluded pediat-
ric ankles. This makes it representative of the area from 
where it was collected. The Flinders data concentrated 
on lateral malleolus injuries and excluded casts and dis-
placed fractures but included weight-bearing images and 
exams that were not concurrent with the injury. There-
fore, it was impossible to determine how representative 
the EVD was of training data regarding population.

CT and MRI scans and operative findings are essen-
tial to the AO/OTA classification. CT scans are consid-
ered the gold standard in visualization. Neither dataset 
had access to CT scans, MRI scans, or patient journals. 
The lack of additional modalities or patient records made 
ligamentous injuries more challenging to classify and can 
affect the ground truth. However, this accurately simu-
lated the daily clinical practice in many clinical situations 
where the initial assessment is performed on a radiograph.

The validation sets were limited in size for a model 
with so many possible outcomes. Several outcomes 
were scarce in the EVD and IVD, making the variability 
extremely large.

We have only validated our model on this site. If we 
were to look at a different hospital, we would get different 
results. Of course, this is true with all external validation.

The software used in our previous study was unsuitable 
for this study’s experiments. Due to the random nature of 
model training, the exact performance for the IVD and 
EVD will vary slightly. However, comparing the previous 
model with the updated software where active learning 
was performed would be erroneous. Instead, we replicate 
the initial experiment.

Conclusions, interpretation & generalizability
To our knowledge, this is the first paper that externally 
validates a multi-label radiographic ankle fracture classi-
fier of this complexity. Despite considerable differences in 
the data makeup, we illustrate active learning strategies 
to improve external validity. Our model could success-
fully be used for complex ankle fracture classification at 
a different hospital, which is not to say that it will work 
equally well at all hospitals. We concur with the literature 
that the clinical relevance of published AI models must 
be proved through external validation. As clinical AI goes 
beyond simply stating the obvious "fracture or no frac-
ture," this becomes even more true.
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