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Abstract 

Background  The accurate segmentation of spine muscles plays a crucial role in analyzing musculoskeletal disor-
ders and designing effective rehabilitation strategies. Various imaging techniques such as MRI have been utilized 
to acquire muscle images, but the segmentation process remains complex and challenging due to the inherent com-
plexity and variability of muscle structures. In this systematic review, we investigate and evaluate methods for auto-
matic segmentation of spinal muscles.

Methods  Data for this study were obtained from PubMed/MEDLINE databases, employing a search methodology 
that includes the terms ’Segmentation spine muscle’ within the title, abstract, and keywords to ensure a comprehen-
sive and systematic compilation of relevant studies. Systematic reviews were not included in the study.

Results  Out of 369 related studies, we focused on 12 specific studies. All studies focused on segmentation of spine 
muscle use MRI, in this systematic review subjects such as healthy volunteers, back pain patients, ASD patient were 
included. MRI imaging was performed on devices from several manufacturers, including Siemens, GE. The study 
included automatic segmentation using AI, segmentation using PDFF, and segmentation using ROI.

Conclusion  Despite advancements in spine muscle segmentation techniques, challenges still exist. The accuracy 
and precision of segmentation algorithms need to be improved to accurately delineate the different muscle struc-
tures in the spine. Robustness to variations in image quality, artifacts, and patient-specific characteristics is crucial 
for reliable segmentation results. Additionally, the availability of annotated datasets for training and validation pur-
poses is essential for the development and evaluation of new segmentation algorithms. Future research should focus 
on addressing these challenges and developing more robust and accurate spine muscle segmentation techniques 
to enhance clinical assessment and treatment planning for musculoskeletal disorders.
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Introduction
Musculoskeletal disorders, such as back pain and spi-
nal deformities, have a significant impact on individu-
als’ well-being, quality of life, and economy [1]. Spine 

muscles play a critical role in supporting the spine and 
transmitting forces within the musculoskeletal system 
[2]. Abnormalities or dysfunction in spinal muscles are 
often associated with musculoskeletal disorders. Accu-
rate segmentation of spinal muscles is important for 
understanding the mechanisms underlying these disor-
ders and for developing appropriate treatment strategies. 
While changes in muscle structure are typically a result 
of spine pathology rather than a cause, understand-
ing these changes can provide valuable insights for both 
patients and physicians.
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Medical imaging techniques, such as magnetic reso-
nance imaging (MRI) are commonly used to acquire 
muscle images and analyze musculoskeletal structures 
[3]. These techniques provide detailed information about 
the morphology and composition of the spine muscles 
[4]. However, accurately segmenting spinal muscles in 
these images can be difficult due to several factors such 
as different data, and imaging protocols.

Several challenges make the segmentation of spine 
muscles complex. First, the complexity and variability of 
muscle structures, such as size, shape, and orientation, 
make it difficult to design a one-size-fits-all segmentation 
approach. Second, image artifacts, such as noise and par-
tial volume effects, can degrade image quality and affect 
segmentation accuracy. Third, patient-specific variations, 
such as body posture and position, can introduce addi-
tional challenges in accurately delineating muscle bound-
aries. These challenges highlight the need for advanced 
and robust segmentation techniques.

Therefore, accurate segmentation of spine muscles is 
vital for understanding musculoskeletal disorders and 
designing effective rehabilitation strategies [5]. Advanced 
imaging techniques and computational algorithms have 
contributed to significant advancements in this field. 
However, challenges related to the complexity of muscle 
structures, image artifacts, and patient-specific varia-
tions still exist. The purpose of this systematic review is 
to evaluate the state of the art of spinal muscle segmenta-
tion using AI methods and identify optimal algorithms to 
identify areas for improvement to improve clinical evalu-
ation and treatment planning for musculoskeletal disor-
ders and apply them to further research.

Methods
Study eligibility criteria
The inclusion criteria for this study were as follows: (1) 
research unrelated to segmentation spine muscle, (2) 
studies written in English. The exclusion criteria were as 
follows: (1) studies that not used MRI to measure muscle, 
(2) studies not that did not meet other criteria. Figure 1 
for more details.

Search method to identify appropriate studies
In this study, we conducted a literature search follow-
ing the guidelines of Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analysis (PRISMA) in the 
PubMed/MEDLINE library [6]. We searched for papers 
published from January 1992 to August 2023 using the 
following search term; segmentation spine muscle MRI. 
These search queries were employed to retrieve relevant 
articles for our research.

Data extraction
To conduct an analysis of relevant papers suitable for our 
study, the following variables were extracted: (i) Author; 
(ii) Year; (iii) Segmentation method; (iv) Subjects; (v) 
Data; (vi) Performance; Table 1.

Ethical considerations
As this is a systematic review, ethical approval is not 
required. Confidential patient information will not be 
collected or used in this study.

Results
After reviewing the abstracts and screening according 
to the PRISMA guidelines, we excluded 189 studies that 
were not relevant to spine muscle segmentation. Addi-
tionally, 0 studies not written in English were excluded. 
Furthermore, 127 studies that did not use MRI as a meas-
urement equipment were excluded. We also excluded 
41 studies that did not evaluate indicators that met the 
criteria. Finally, a total of 12 studies were included in our 
research scope [7–18]. The studies included in the sys-
tematic review were conducted between 1992 and 2023 
and involved healthy volunteers, back pain patients, 
ASD patients. MRI imaging was performed on devices 
from several manufacturers, including Siemens, GE, 
and MEDSPEC. Studies included automatic segmenta-
tion using AI, segmentation using PDFF, and segmenta-
tion using ROI. Segmentation performance was higher 
AI method than other segmentation method. Most high 
DSC 0.91 was David Baur’s U-Net. (Table 2).

Discussion
This systematic review provided insight into the differ-
ent methods and outcomes of spinal muscle splitting. 
The identified segmentation techniques, including tra-
ditional image processing methods, statistical models, 
machine learning approaches, and deep learning-based 
algorithms, have shown promise in accurately segment-
ing spine muscles. Each technique has its advantages and 
limitations, and the choice of technique depends on the 
specific requirements of the segmentation task, includ-
ing accuracy, computational complexity, and adaptabil-
ity to different types of spine muscle images. Among the 
segmentation methods used in this systematic review, 
segmentation using AI showed the best performance. 
Among them, we compared how performance differs 
depending on the model and preprocessing method used. 
Tables 2 and  3.

Advances in deep learning-based algorithms, especially 
CNN architectures, have significantly improved spi-
nal muscle segmentation. David Baur developed a CNN 
to segment lumbar spinal muscles in lower back pain 
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patients from consecutive MRI slices and classify fatty 
muscle degeneration automatically. The study used 100 
lumbar spine MRIs with 3650 slices for automatic image 
segmentation. The U-Net-based network achieved high 
segmentation accuracy, particularly for overall muscle 
segmentation, with a Dice similarity coefficient (DSC) 
of 0.91. These algorithms have demonstrated outstand-
ing performance by learning complex features directly 
from muscle images without the need for hand-crafted 
features.

Kenneth A.Weber, Madeline Hess’s T1 axial Mus-
cle Segmentation uses V-Net. Kenneth A.Weber’s 

performance is (Left DSC:0.862 ± 0.017, Right DSC: 
0.871 ± 0.016) lower than Madeline Hess’s perfor-
mance (DSC:0.88). This is because the elements that 
make up v-net are different. Table  4 compares these 
differences. We also compared the performance of the 
3D CNN and 2D CNN. In E. O. Wesselink’s study, the 
objective was to compare the performance between 2D 
convolutional neural networks (CNNs) and 3D CNNs. 
While 2D CNNs are designed to extract features from 
2-dimensional images, 3D CNNs do so from 3-dimen-
sional volumetric data. In this study, data augmenta-
tion techniques were applied, and the True positive 

Fig. 1  PRISMA flow chart
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Table 1  Index of spinal muscle segmentation research results from MRI images

PDFF Proton Density Fat Fraction, DICE Similarity Coefficient, CNN Convolution Neural Network, ROI Region of Interest

Author Year Segementation 
method

Subjects Data Performance

Frank Niemeyer et al. 2022 U-Net 22 healthy volunteer 60 lumbar axial image Jaccard score:
0.862 – 0.935

David Baur et al. 2022 U-Net 100 back pain patient 3650 axial T2 image DSC: 0.91,

Benjamin Dourthe et al. 2021 CNN 12 healthy volunteer,
8 ASD patient

246 lumbar image, 
384 throatic image

ASD of DSC > 0.76,
Healthy of DSC > 0.86

E. O. Wesselink et al. 2022 CNN 76 Back pain female patient 76 patient T2 image DSC ≥ 0.885

Kenneth A.Weber et al. 2022 CNN, V-Net 39 whiplash injury patient N/S Left DSC:0.862 ± 0.017,
Right DSC: 0.871 ± 0.016

Madeline Hess et al. 2022 V-Net USCF dataset 206 randomize image DSC: 0.88

Egon Burian et al. 2019 PDFF 54 healthy volunteer N/S N/S

Kenneth A. Weber et al. 2021 CNN 84 MVC patient N/S Left and Right MFSS of DSC: 0.79 ± 0.01,
0.78 ± 0.01

Anoosha Pai S et al. 2020 ROI 6 healthy volunteer 480 image TZ, EX, TS muscle of DSC range: 0.91–0.95, 
0.91–0.95, 0.86–0.92

Nico Sollmann et al. 2020 PDFF 76 healthy volunteer N/S Erector spinae muscles L3–L5 (p < 0.001)

Áine Ni Mhuiris et al. 2016 T1-W 10 adult N/S Intra,inter-rater reliability (ICC = 0.88; CI: 
0.87–0.90), (ICC = 0.82; CI: 0.80– 0.84)

Michael Dieckmeyer et al. 2021 PDFF 26 healthy adult N/S Between Kurtosis and Extension Strength 
Correlation (p = 0.001)

Table 2  Index of spinal muscle AI segmentation research results from MRI images

DSC DICE Similarity Coefficient, ASD Atrial Septal Defect, MVC Multi-Level Cervial

Author Model Subjects Classification classes Data Performance

Frank Niemeyer U-Net 22 healthy volunteer N = 8 (left, right)
Psoas major,
Quadratus lumborum,
Erector spinae,
Multifudus

60 lumbar axial image Jaccard scoer:
0.862 – 0.935

David Baur U-Net 100 back pain patient N = 2
Muscle tissue,
Fat tissue

3650 axial T2 image DSC: 0.91,

Benjamin Dourthe CNN 12 healthy volunteer,
8 ASD patient

N = 7 (left, right)
Vertebral body,
Multifudus,
Erector spinae,
Psoas major

246 lumbar image, 
384 throatic image

ASD of DSC > 0.76,
Healthy of DSC > 0.86

E. O. Wesselink CNN 76 Back pain female patient N = 6 (left, right)
Multifudus,
Erector spinae,
Psoas major

76 patient T2 image DSC ≥ 0.885

Kenneth A.Weber CNN, V-Net 39 whiplash injury patient N = 2 (left, right)
Deep cervical spine extensor

N/S Left DSC:0.862 ± 0.017,
Right DSC: 0.871 ± 0.016

Madeline Hess V-Net USCF dataset N = 3
Vertebral body,
Intervertebral disc,
Paraspinous

206 randomize image DSC: 0.88

Kenneth A. Weber CNN 84 MVC patient N = 14 (left, right)
Multifudus and Semispinalis Cervicis,
Longus Colli and Longus Capitis,
Semispinalis Capitis,
Splenius Capitis,
Levator Scapula,
Strenocleidomastoid,
Trapezius

N/S Left and Right MFSS 
of DSC: 0.79 ± 0.01,
0.78 ± 0.01
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rate (TPR) for right-sided muscles specifically the mul-
tifidus, erector spinae, and psoas major was compared 
between the two models. As indicated in Fig. 2, the 2D 

model demonstrated superior performance in iden-
tifying muscles when compared to the ground truth, 
outperforming the 3D model. The performance of the 

Table 3  Hyperparameter of spinal muscle segmentation studies

ReLU Rectified Linear Unit, DSC Dice Score

Author Model Learning rate Optimizer Activation function Drop out Etc Performance

Frank Niemeyer U-Net 0.001 Adam Leaky ReLU 0.03 Mini batch: 16 Jaccard scoer:
0.862 – 0.935

David Baur U-Net N/S N/S N/S N/S Model training 25–30 
epoch

DSC: 0.91,

Benjamin Dourthe CNN 0.0001 Adam N/S N/S Each model 500 epochs ASD of DSC > 0.76,
Healthy of DSC > 0.86

E. O. Wesselink CNN 0.001 Adam Leaky ReLU N/S Loss funtion = DiceEloss,
Weight decay = 0.0001

DSC ≥ 0.885

Kenneth A.Weber CNN, V-Net 0.001 Adam PReLU N/S Loss funtion = Dice,
Batch size = 30

Left DSC:0.862 ± 0.017,
Right DSC: 0.871 ± 0.016

Madeline Hess V-Net 0.0001 Adam N/S 0.2 Loss function = Weighted,
Dice sigmoid,
Batch size = 32

DSC: 0.88

Kenneth A. Weber CNN 0.001 Adam ReLU N/S Batch size = 3,
Decay = 0.00001

Left and Right MFSS 
of DSC: 0.79 ± 0.01,
0.78 ± 0.01

Table 4  Comparison of V-Net configurations used for spine muscle segmentation

Author Kernels Padding Learning rate Optimizer Loss function Batch size Drop out Input size

Kenneth A.Weber 5 × 5 128 × 128 0.001 Adam Dice 30 N/S N/S

Madeline Hess N/S N/S 0.0001 Adam Weighted Dice sigmoid 32 0.2 256 × 256

Fig. 2  Comparison of True Positive Rate for Right-sided Muscles: 2D vs 3D with Data Augmentation
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segmentation model varies depending on the pres-
ence and severity of spine pathology [19]. In Benjamin 
Dourthe’s study, the Dice Similarity Coefficient (DSC) 
values for three specific Regions of Interest (ROI) were 
compared between healthy individuals and those with 
Adult Spinal Deformity (ASD). The ROIs included the 
vertebral body, psoas major, and multifidus erector spi-
nae. The study uses data from five different sets to make 
an in-depth comparison of how well these anatomi-
cal regions are identified in both groups. Based on the 
analysis, the lumbar region in healthy individuals per-
formed better in terms of ROI identification compared 
to those with ASD. Figure 3.

Frank Niemeyer et  al. [20] highlights the differences 
in segmentation performance between individuals with 
lumbar spine pathology, such as adult spinal deformity 
(ASD), and those without. Based on the provided data 
and the referenced study, there are several factors that 
could contribute to the observed differences in segmenta-
tion performance. One of the primary reasons for the dif-
ference in segmentation performance could be attributed 
to the higher heterogeneity of lumbar spine pathology 
in ASD patients. In healthy individuals, the anatomical 
structures are more consistent and predictable, allowing 
segmentation algorithms to perform better. However, in 
ASD patients, the anatomical structures are more var-
ied due to the deformities and associated pathological 
changes. This variability makes it challenging for segmen-
tation models to accurately identify regions of interest 
(ROI), leading to decreased performance. The difference 
in segmentation performance between healthy individu-
als and those with ASD can be primarily attributed to 

the higher heterogeneity and complexity of pathological 
anatomy in ASD patients.

The performance differences in spinal muscle segmen-
tation algorithms can be attributed to several factors. 
such as model architectures, dataset sizes, and batch size. 
Different neural network architectures, U-Net, CNN, and 
V-Net, have unique structural characteristics that influ-
ence their performance. For instance, U-Net is designed 
for biomedical image segmentation and excels at cap-
turing fine details and contextual information, whereas 
CNNs are more general-purpose and can vary signifi-
cantly in their complexity and depth. The performance 
differences in spinal muscle segmentation algorithms 
can be attributed to a combination of hyperparameters, 
model architectures, and dataset characteristics. While 
the choice of hyperparameters such as learning rate, opti-
mizer, activation function, and regularization techniques 
(dropout) significantly impact model performance, 
the dataset size and the specific loss functions used are 
equally crucial. To optimize segmentation performance, 
it is essential to carefully tune these parameters and con-
sider the specific requirements of the task at hand. Future 
research could focus on systematically evaluating these 
factors across different models to establish more stand-
ardized guidelines for optimal performance in spinal 
muscle segmentation.

Limitation
Spine muscle segmentation is crucial due to its pivotal 
role in the analysis of musculoskeletal disorders and the 
design of effective rehabilitation strategies. The reviewed 
studies showcased various segmentation techniques, 

Fig. 3  Comparison of DSC Values for Healthy and ASD Lumbar Across Multiple Sets
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with deep learning-based algorithms demonstrating 
superior performance. However, challenges related to 
accuracy, robustness, and dataset availability persist. 
CT imaging can also perform automatic segmentation 
of spinal muscles well. For example, among studies on 
automatic segmentation of spinal muscles in CT images, 
there is a study using Bayesian U-Net to investigate the 
relationship between the accuracy of muscle segmen-
tation around the spine in torso CT images [21], and a 
method of 3D segmentation of skeletal muscles, includ-
ing paraspinal muscles, by region in the L3 slice of body 
CT images using simultaneous learning using 2D U-Net 
[22], or multi-scale iterative random forest classifica-
tion was used. A fully automated segmentation study 
of paraspinal muscles in 3D trunk CT images [23]. etc. 
There is this. These studies should consider incorporat-
ing both MRI and CT modalities in paravertebral muscle 
segmentation. CT imaging can be particularly useful for 
evaluating patient groups where MRI imaging is not fea-
sible, such as those with pacemakers. Also, because the 
comparative segmentation methods of the included stud-
ies are all different, it cannot be concluded that the best 
algorithm among the studies is the artificial intelligence-
based segmentation. In the future, a method to integrate 
all studies and conduct quantitative evaluation will need 
to be developed. Addressing these challenges will lead 
to more accurate segmentation techniques and enhance 
clinical assessment and treatment planning for musculo-
skeletal disorders.

Conclusion
Spinal muscle segmentation is a variety of techniques, 
ranging from traditional methods to deep learning algo-
rithms such as David Baur’s U-Net, have shown promise 
in accurately segmenting spinal muscles. Deep learn-
ing, in particular, excels at this task by learning complex 
features directly from images. Spinal muscle segmenta-
tion plays an important role in musculoskeletal disease 
analysis and rehabilitation planning. Deep learning has 
shown excellent performance, but issues related to accu-
racy, robustness, and dataset availability still remain. 
Addressing these challenges will further improve clinical 
evaluation and treatment strategies for musculoskeletal 
disorders.
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