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Abstract
Objective The objective of this study was to investigate the initial stability of different screw placements in 
arthroscopic anterior cruciate ligament (ACL) tibial avulsion fracture fixation.

Methods A three-dimensional knee model at 90° flexion was utilized to simulate type III ACL tibial avulsion fracture 
and arthroscopic screw fixation through different portals, namely the central transpatellar tendon portal (CTP), 
anterolateral portal (ALP), anteromedial portal (AMP), lateral parapatellar portal (LPP), medial parapatellar portal (MPP), 
lateral suprapatellar portal (LSP), medial suprapatellar portal (MSP). A shear force of 450 N was applied to the finite 
element models at 30° flexion to simulate the failure condition. The displacement of the bony fragment and the 
volume of the bone above 25,000 µ-strain (damaged bone volume) were calculated around the screw path.

Results When the screw was implanted through CTP, the displacement of the bony fragment reached the maximum 
displacement which was 1.10 mm and the maximum damaged bone volume around the screw path was 148.70 
mm3. On the other hand, the minimum displacement of the bony fragment was 0.45 mm when the screw was 
implanted through LSP and MSP. The minimum damaged bone volume was 14.54 mm3 around the screw path when 
the screw was implanted through MSP.

Conclusion Screws implanted through a higher medial portal generated less displacement of the bony fragment 
and a minimum detrimental strain around the screw path. The findings are clinically relevant as they provide 
biomechanical evidence on optimizing screw placement in arthroscopic ACL tibial avulsion fracture fixation.
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Introduction
 Anterior cruciate ligament (ACL) tibial avulsion frac-
tures are relatively rare injuries that occur mostly in 
children and adolescents aged 8–14 [1]. These inju-
ries can also occur in adults and are equivalent to 
acute ACL ruptures [2]. Avulsion fractures commonly 
involve the intercondylar depression, where the ACL 
insertion lies. The fracture has been classified into 
three types (type I, II and III) according to the sever-
ity of displacement by Meyers and McKeever [3]. Zar-
icznyj applied this classification with a type IV for 
comminuted fractures [4]. Conservative treatment 
results are ineffective for type III fractures, so surgi-
cal operation should be considered [5, 6]. Arthroscopic 
reduction and fixation with screws or sutures are the 
mainstream treatment for these fractures unless other 
lesions require open surgery [2].

 Assessment of the clinical outcome of screw and 
suture fixation remains ambiguous. According to the 
latest systematic review and meta-analysis, there are 
no significant differences in clinical outcome scores 
between the two approaches [7]. Screw fixation is rela-
tively simple and allows the surgeon to maintain com-
pression of the fracture fragments, whereas the suture 
fixation has a decreased risk of implant removal [8]. 
A single 3.5–4.0  mm screw is sufficient to maintain 
the bony fragment in place in the case of arthroscopic 
screw fixation [9–11]. Screws are usually implanted 
at a high knee flexion angle [10, 11]. The objective 
of ACL avulsion fracture treatment is to restore the 
isometry and tension of the ACL by anatomic reduc-
tion and fixation. Malunion and prolonged knee insta-
bility may be caused by the potential displacement of 
the bony fragment, even requiring revision surgery 
[9, 12–14]. Therefore, studying the initial stability of 
the fixed ACL complex after surgery is necessary. The 
screw has been reported in previous clinical or biome-
chanical studies to be implanted through a particular 
portal or the dissected knee joint [9–11, 15–17]. The 
influence of screw placement through different portals 
on the biomechanical behaviour of the fixed ACL com-
plex is little understood. However, different portals 
will change the orientation of the screw in the bone, 
which may affect the stability of the bony fragment 
under the tension of the ACL. Understanding the bio-
mechanical differences caused by the surgical portal 
could provide the foundation for optimizing surgery. 
This study aims to investigate the initial stability of 
different screw placements in arthroscopic ACL tibial 
avulsion fracture fixation.

 Finite element models were developed to simulate 
the failure condition and evaluate the displacement 
of the bony fragment and the strain around the screw 
path in this study. The strain above 25,000 µ-strain 

was considered as fracture strength of the bone [18]. 
To the knowledge of the authors, this is the first study 
to explore the biomechanical stability of screw place-
ment orientation in ACL tibial avulsion fracture fixa-
tion. The hypothesis was that screw insertion through 
a higher medial portal would offer better initial stabil-
ity, resulting in less displacement of the bony fragment 
and a minimum detrimental strain surrounding the 
screw path.

Materials and methods
Establishment of the three-dimensional (3D) models
The 3D models from the previous work of the authors 
were employed in the present study as well [19]. The 
right knee of a healthy volunteer was imaged using 
computed tomography (CT) (SOMATOM Definition 
AS+; Siemens) with a thickness of 0.6  mm and resolu-
tion of 512 × 512 pixels. The 3D models of the femur and 
tibia were reconstructed from the CT images in Mimics 
(v19.0, Materialize NV, Leuven, BE). The knee models at 
30° and 90° flexion were obtained by matching their out-
lines to the corresponding fluoroscopic images during a 
lunging motion.

Surgical modelling
 Seven distinct arthroscopic portals around the patella 
were identified on the knee model at 90° flexion 
(Fig. 1a). The central transpatellar tendon portal (CTP) 
was discovered in the centre of the patellar tendon just 
under the inferior edge of the patella. The anterolat-
eral portal (ALP) and anteromedial portal (AMP) were 
aligned with the inferior edge of the patella on both 
sides of the patellar tendon. The lateral parapatel-
lar portal (LPP) and medial parapatellar portal (MPP) 
were located 5 mm from the lateral and medial edge of 
the patella. The lateral suprapatellar portal (LSP) and 
medial suprapatellar portal (MSP) were identified at 
the junction of the tangential line between the supe-
rior and medial/lateral edges of the patella.

 The tibial and femoral footprint of the ACL were 
determined by the bony landmarks as described in the 
previous article [19]. The bony fragment was located 
on the position of ACL tibial insertion. A hemispheri-
cal bony fragment with a diameter of 12  mm was 
designed to ensure the orientation of the screw as the 
sole variable. All insertion points of the screws were 
the same, located in the centre of the bony fragment. 
According to a previous study, a screw should not be 
larger than one-third of the diameter of the bone frag-
ment to prevent comminution [20]. Therefore, each 
screw was designed with a diameter of 3.5  mm and 
a length of 28  mm. The orientation of the screw was 
dictated by the position of the portal and the insertion 
point of the screw. Figure 1b shows the various screws 
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through different portals. All modelling procedures 
were performed using SolidWorks (v2018, Dassault 
Systemes, Massachusetts, USA).

Finite element models of the knee joint
 The 3D models were exported into the finite element 
analysis software Abaqus (v2018; Dassault Systèmes 
SE, Vélizy-Villacoublay, FR). The femur was assumed 
a shell and defined as a rigid body. The bony fragment 
and tibia were assumed solids and were defined as a 
homogeneous isotropic elastic material with Young’s 
modulus E = 389  MPa and Poisson’s ratio v = 0.3 [21]. 
The material of the screw was stainless steel and was 
defined as a homogeneous isotropic material with 
Young’s modulus E = 205 GPa and Poisson’s ratio 
v = 0.3 [22]. The ACL was assumed to be solid and was 
defined as a homogeneous isotropic elastic material 
with Young’s modulus E = 345 MPa and Poisson’s ratio 
v = 0.45 [23]. A free meshing technique was applied for 
the entire model (femur: four-node 3-D bilinear rigid 
quadrilateral element, element type: R3D4; bony frag-
ment and tibia: four-node linear tetrahedron element, 
element type: C3D4; screw and ACL: eight-node linear 
hexahedral element, element type: C3D8).

Bonded contact between the ACL and the femur and 
between the ACL and the top face of the bony fragment 
were defined. For both models, the screw-bone contact 
interfaces and the bony fragment-tibia contact interfaces 
were modelled as sliding interactions with a friction coef-
ficient of 0.3 [24]. The screw tightening preload of 300 N 
was used to tighten the screw. The compression effect of 
the screw on the bony fragment was accurately simulated 

by defining a bonded contact between the screw head 
and the top face of the bony fragment. The mid-lower 
part of the tibia was fixed. Studies have reported that the 
fixed ACL complex was loaded in the range of 30–450 N 
for the rehabilitation process, depending on the activity 
[25–27]. A posterior shear force of 450  N was applied 
to the femur at 30° of knee flexion to simulate an ante-
rior tibial displacement (Fig.  2a). The displacement of 
the bony fragment and the strain around the screw path 
were subsequently calculated. The volume of strain above 
25,000 µ-strain on the bone was recorded (Fig. 2b, c).

Validation of finite element models
A finite element model of arthroscopic screw fixation 
through AMP was first established and analysed. To per-
form mesh sensitivity analysis, stepwise upsizing on the 
mesh size was applied [28]. The convergence tolerance 
was set as a variation of stress within 5% from the pre-
vious model with higher mesh density. The finally used 
mesh size of the screw, the bony fragment and the ACL 
were 0.5  mm, 0.5  mm and 1.0  mm, respectively. The 
mesh size of the tibia was 1.5 mm, and mesh refinement 
was performed on the 0.5  mm contact with the bony 
fragment and screw (Table 1). The initial displacement of 
the bony fragment was compared to the literature results 
[15–17] (Table 2).

 To validate the results obtained through finite ele-
ment analysis, a tensile testing simulation was per-
formed according to the previous mechanical study 
[29]. The tibia-ACL-femur model was applied to a ten-
sile load along the axis of the ACL at 30° of knee flex-
ion (Fig.  3). The tensile load was beginning at 450  N 

Fig. 1 (a) Identification of the arthroscopic portals of the knee joint (CTP central transpatellar tendon portal; ALP anterolateral portal; AMP anteromedial 
portal; LPP lateral parapatellar portal; MPP medial parapatellar portal; LSP lateral suprapatellar portal; MSP medial suprapatellar portal; orange parallelogram 
patellar tendon). (b) The various screws were implanted through different portals
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and incrementally increased by 20 N up to 530 N. The 
load-elongation curve was constructed, and the angu-
lar coefficient of the linear equation was compared to 
the experimental result (Fig. 4). The results of compar-
ison showed that a variance of 4.92% exists between 
the finite element analysis and mechanical test within 
the discrepancy threshold of 20% [30]. Therefore, 
the finite element model can be used in subsequent 

research, as it exhibits similar structural properties to 
mechanical testing.

Results
In both medial (MLP, MPP and MSP) and lateral portals 
(ALP, LPP and LSP), the displacement of the bony frag-
ment gradually decreased when portals were located 
higher. The maximum displacement of the bony fragment 
was 1.10  mm when the screw was implanted through 
CTP. On the other hand, the minimum displacement 
of the bony fragment was 0.45 mm when the screw was 
implanted through LSP and MSP. The average displace-
ment of the bony fragment was 0.68 mm and 0.65 mm, 
for the lateral and medial portals, respectively (Fig. 5a).

In both medial and lateral portals, the damaged bone 
volume decreased when portals were located higher. The 
maximum volume of strain above 25,000 µ-strain on the 
bone was 148.70 mm3 when the screw was implanted 
through CTP. Correspondingly, the minimum volume of 
strain above 25,000 µ-strain on the bone was 14.54 mm3 
when the screw was implanted through MSP. For the lat-
eral and medial portals, the average volume of the dam-
aged bone was 56.95 mm3 and 44.96 mm3, respectively 
(Fig. 5b). The distribution of the damaged bone for each 
model is shown in Fig. 6.

Table 1 Numbers of nodes and elements of the four 
components
Components Nodes Elements
Screw 4,389 3,640
Bony fragment 7,431 37,172
ACL 3,367 2,772
Tibia 70,118 379,772

Table 2 Comparisons of initial displacement of the bony 
fragment in the present study and previous studies
Study Applied maximum load 

to failure (N)
Initial dis-
placement 
(mm)

Present study 450 0.88
Ezechieli et al. [16] 311.7 ± 120.3 0.84 ± 0.15
Eggers et al. [15] 457.1 ± 13.4 2.17 ± 1.4
In et al. [17] 101.8 ± 29.0 0.4 ± 0.2

Fig. 2 (a) The mid-lower part of the tibia was fixed and a posterior shear force was applied at the femur at 30° of knee flexion; (b) The maximum displace-
ment of the fixed bony fragment was calculated. (c) The volume of strain on the bone above 25,000 µ-strain was recorded
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Figure 7 showed the stress distribution on the bone for 
each model. Various stress distribution patterns existed 
due to the different screw insertions. The stress concen-
tration point on the bony fragment occurred at the poste-
rior contact surface between the two bones in all models. 
The stress concentration point on the tibia occurred at 
the end of the screw in LPP and LSP models, occurred 
at the posterior contact surface between the two bones 
in MPP and MSP models, and occurred at the junction 

between the two bones and screw in CTP, ALP and AMP 
models. The maximum Mises stresses were 33.00  MPa 
and 44.07  MPa on the bony fragment and the tibia, 
respectively, when the screw was implanted through 
CTP. The minimum Mises stresses were 16.25 MPa and 
22.97  MPa on the bony fragment and the tibia, respec-
tively, when the screw was implanted through LSP and 
MSP.

Discussion
The most noteworthy finding of the present study was 
that screws implanted from different portals could 
impact the displacement of the bony fragment and the 
strain on the bone around the screw path. Screws that 
were implanted through a higher medial portal resulted 
in less displacement of the bony fragment and a mini-
mum damaging strain around the screw path. The current 
findings are of clinical relevance as they might provide 
biomechanical evidence to optimize screw placement in 
arthroscopic ACL tibial avulsion fracture fixation.

The initial stability is essential to the risk of residual 
laxity and could predict potential loss in reduction dur-
ing healing after surgery [31]. Previous research on bio-
mechanics has focused on comparing the strength of 
screw fixation and suture techniques [15, 31–34]. Some-
times studies favour either screws or sutures, while other 
times reporting no significant difference between them. 
Eggers et al. [15] reported that a second screw has no 
positive effect on the biomechanical characteristics 
than one-screw fixation. Regarding the method of screw 
placement, Ezechieli et al. [16] and In et al. [17] used 

Fig. 4 Load-elongation curves for tensile testing demonstrate the simi-
larities in results between the model and experiment

 

Fig. 3 Schematic of tensile testing. The tensile load was applied along the axis of the ACL while the normal anatomical angles of ACL were preserved
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Fig. 7 Distribution of Mises stress on bony fragment and tibia through a view perpendicular to the tibial plateau

 

Fig. 6 The distribution of the damaged bone for each model. (a) The position of the screw in the bone from the sagittal view; (b) The damaged bone 
around the screw path

 

Fig. 5 Comparison of (a) the maximum displacement of the bony fragment and (b) the volume of strain on the bone above 25,000 µ-strain among the 
different portals
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the dissected knee joint to implant the screw, which was 
inconsistent with the condition of arthroscopic screw 
fixation. As for the arthroscopic portal for screw implant-
ing, Hunter et al. [9] implanted the screw through CTP 
and Lubowitz et al. [10] through AMP. Senekovic et al. 
[11] implanted the screw through a superior antero-
medial portal, higher than AMP and lower than MPP. 
However, there is no consensus on the effect of different 
portals on the biomechanical stability of the screw. To the 
knowledge of the authors, this is the only study to explore 
the biomechanical stability of screw placement orienta-
tion in ACL tibial avulsion fractures. The results showed 
that CTP might not be a good choice when implanting 
the screw with the arthroscopic technique. Instead, it 
might be better to implant the screw through a higher 
medial portal as much as possible.

Experiments in previous biomechanical studies were 
performed at specific knee flexion angles, approximately 
in the Lachmann position [15, 34]. Cyclical loading forces 
such as anterior shear or upward traction force were 
applied to the tibia or femur to simulate the failure con-
ditions [15, 17]. In the current study, shear loads were 
applied at 30° of knee flexion to be consistent with in 
vitro experiments. Standardized cubic bony fragments 
with various sizes have usually been created in previous 
studies to simulate the ACL tibial avulsion fracture [17, 
32]. Considering the experimental rigour, hemispheri-
cal bony fragments were hereby used to ensure that the 
screw orientation was the only variable, although it was 
inconsistent with the clinical fracture pattern. In addi-
tion, simplification of tissue properties was performed in 
this study, which would affect the magnitude but not the 
tendency of calculated results. Even so, validation results 
showed that the structural properties and elastic defor-
mations of the model were reliable.

The pull-out of the screw and fracture of the fragment 
were two main failure modes in previous literature, with 
the former one being the most common. Ezechieli et al. 
[16] reported 60% screw pull-out failure and 40% frag-
ment fracture failure. In et al. [17] reported 86% screw 
pull-out failure and 14% fragment fracture failure. Bong 
et al. [32] found the single observed failure mode for the 
specimens was screw pull-out from the cancellous bone 
of the fracture bed. Unlike other failure modes of frac-
ture internal fixation, none of the literature studies has 
reported screw breakage in treating ACL tibial avulsion 
fractures. Feng et al. [35] indicated that screw loosening 
is closely related to bone damage caused by abnormal 
stress around the screw. That was the reason why this 
study investigated the damaged bone volume around the 
screw path. The damaged bone was mainly concentrated 
at the junction of the bony fragment and the tibia and the 
end of the screw, which could reduce the stability of the 

screw (Fig. 6). The smaller the damaged bone volume, the 
less probability the screw would pull out from the bone.

This study has several limitations. First, only one direc-
tion of force was applied, and the cyclical loading force 
from daily knee motion, such as walking, was not ana-
lyzed. In fact, the force of the ACL is quite complex, 
depending on different activities. Additionally, the bony 
fragment is idealized as a hemisphere, which is incon-
sistent with the actual situation. The simplification to 
be able to control the single variable is necessary. The 
thread of the screw was not considered, and only one 
size of the screw was explored in this study, which is not 
entirely consistent with clinical practice. However, dif-
ferent screw sizes may affect the biomechanical effect of 
screw fixation. Since this study was mainly designed to 
explore the impact of different surgical portals on the ini-
tial stability of screw fixation, these factors may not affect 
the conclusions. Furthermore, the current study did not 
take into account the growth plate presence, which might 
challenge the surgeon’s decision to select the portal when 
treating children and adolescents.

Conclusion
The findings of this study demonstrate that screw inser-
tion through a higher medial portal improves the ini-
tial stability in arthroscopic ACL tibial avulsion fracture 
fixation, resulting in less displacement of the bony frag-
ment and a minimum detrimental strain surrounding the 
screw path. Although there is no clear advantage of screw 
fixation compared with suture fixation in the treatment 
of ACL tibial avulsion fracture. The results are clinically 
relevant as they provide biomechanical evidence on opti-
mizing screw placement in arthroscopic ACL tibial avul-
sion fracture fixation.
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