
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Zabihiyeganeh et al. BMC Musculoskeletal Disorders          (2024) 25:438 
https://doi.org/10.1186/s12891-024-07559-y

BMC Musculoskeletal 
Disorders

*Correspondence:
Ali Sharifi Kia
Ashari45@uwo.ca
1Bone and Joint Reconstruction Research Center, Department of 
Orthopedics, School of Medicine, University of Medical Sciences, 
Baharestan Sq, Tehran, Iran
2Department of Orthopaedic Surgery, University of Minnesota, 
Minneapolis, MN, USA

3Student Research Committee, School of Medicine, Iran University of 
Medical Sciences, Tehran, Iran
4Department of Health Information Management, School of Health 
Management and Information Sciences, Iran University of Medical 
Sciences, Tehran, Iran
5Department of Medical Physics, Faculty of Medical Sciences, Tarbiat 
Modares University, Tehran, Iran
6Department of Computer Science, Faculty of Science, Western University, 
London, ON, Canada

Abstract
Background Machine learning (ML) has shown exceptional promise in various domains of medical research. 
However, its application in predicting subsequent fragility fractures is still largely unknown. In this study, we aim to 
evaluate the predictive power of different ML algorithms in this area and identify key features associated with the risk 
of subsequent fragility fractures in osteoporotic patients.

Methods We retrospectively analyzed data from patients presented with fragility fractures at our Fracture Liaison 
Service, categorizing them into index fragility fracture (n = 905) and subsequent fragility fracture groups (n = 195). We 
independently trained ML models using 27 features for both male and female cohorts. The algorithms tested include 
Random Forest, XGBoost, CatBoost, Logistic Regression, LightGBM, AdaBoost, Multi-Layer Perceptron, and Support 
Vector Machine. Model performance was evaluated through 10-fold cross-validation.

Results The CatBoost model outperformed other models, achieving 87% accuracy and an AUC of 0.951 for females, 
and 93.4% accuracy with an AUC of 0.990 for males. The most significant predictors for females included age, serum 
C-reactive protein (CRP), 25(OH)D, creatinine, blood urea nitrogen (BUN), parathyroid hormone (PTH), femoral neck 
Z-score, menopause age, number of pregnancies, phosphorus, calcium, and body mass index (BMI); for males, the 
predictors were serum CRP, femoral neck T-score, PTH, hip T-score, BMI, BUN, creatinine, alkaline phosphatase, and 
spinal Z-score.

Conclusion ML models, especially CatBoost, offer a valuable approach for predicting subsequent fragility fractures 
in osteoporotic patients. These models hold the potential to enhance clinical decision-making by supporting the 
development of personalized preventative strategies.
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Background
Osteoporosis represents a significant public health con-
cern within the aging population [1, 2]. Epidemiological 
data suggest that approximately one-third of women and 
one-fifth of men over the age of 50 will experience at least 
one osteoporotic fracture in their lifetime [3]. The inci-
dence of such fractures is estimated to increase almost 
two folds by 2045 [4]. Patients with a history of fragility 
fracture face an elevated risk of subsequent fractures, 
linked to increased morbidity, mortality, and diminished 
quality of life [5, 6], thereby necessitating prevention of a 
subsequent fracture.

The identification of risk factors for subsequent fragil-
ity fractures is a crucial element in preventing re-fracture 
[7]. Prior research has identified numerous predictors, 
including age, gender, the site of the initial fracture, and 
comorbid conditions like hypertension and diabetes 
[6, 8–11]. Despite the recognized importance of these 
factors in preventing further fractures, they are often 
overlooked in clinical decision-making due to a lack of 
personalized risk assessment tools [12].

The World Health Organization developed the Fracture 
Risk Assessment Tool (FRAX) to evaluate the 10-year 
probability of bone fractures due to osteoporosis using 
clinical risk factors [13]. Despite being a significant 
advancement in fracture risk assessment, FRAX has sev-
eral limitations, including but not limited to not taking 
into account changes in risk factors over time and pro-
viding a static risk assessment [14].

In response to these limitations, there have been sig-
nificant strides in applying machine learning (ML) in per-
sonalized medicine [15, 16], including the prediction of 
cancer recurrence [17, 18], to enhance osteoporosis man-
agement. Numerous studies have employed a variety of 
ML techniques such as logistic regression, XGBoost, ran-
dom forest, K-nearest neighbor, support vector machine, 
decision trees, and neural networks. These methods 
address various facets of osteoporosis from risk predic-
tion and early detection to diagnosis, treatment, and 
management [19–23].

The potential of ML to predict re-fracture risk in osteo-
porotic patients remains largely untapped. A predictive 
ML model could facilitate personalized preventative 
strategies encompassing structured exercise, fall preven-
tion, nutritional supplementation, custom orthoses, and 
prophylactic pharmacotherapy [24]. This study aims to 
develop an ML-based model to predict the risk of subse-
quent fragility fractures in patients with a history of such 
fractures, incorporating clinically relevant features.

Methods
Data sources and study population
This retrospective analysis received approval from the 
institutional review board of our institute, designated 

by the code IR.IUMS.REC.1401.106, which granted a 
waiver for informed consent. This study involved patients 
presenting with fragility fractures at the FLS of Shafa 
Orthopedic Hospital, affiliated with the Iran University 
of Medical Sciences in Tehran, from 2020 to 2023. The 
cohort was categorized into two groups: those with an 
initial fragility fracture (n = 905) and those with a sub-
sequent fragility fracture (n = 195). The index fragility 
fractures were located in the distal radius (38%), lumbar 
spine (18%), femoral neck (15%), proximal humerus (5%), 
and other locations (24%). The re-fractures were mainly 
located in the distal radius (47%), femoral neck (32%), 
proximal humerus (14%), and other locations (7%). The 
mean time interval between the primary and secondary 
fragility fracture was 41.2 ± 31.7 months (range 1-120).

Re-fractures were mainly self-reported. However, the 
clinical history of patients was checked by the involved 
rheumatologist to make sure it was a subsequent osteo-
porotic fracture and not a traumatic fracture.

Inclusion criteria were those that were regarded for 
FLS (age ≥ 50 years and osteoporosis-related fractures). 
Any fracture caused by low-trauma fracture, often fol-
lowing a fall from standing height or less, was considered 
an osteoporotic fracture, excluding fractures at the toes, 
metatarsal bones, fingers, metacarpal bones, skull, facial 
bones, and mandible [25].

In total, 1100 patients who were registered during the 
study period were included in the analysis. Input features 
were extracted as an Excel file from the data captured by 
the FLS system. We excluded features considered irrel-
evant to the osteoporotic fracture based on the earlier 
evidence [26–30] and physician opinion. Features with 
more than 30% missing values or more than 95% of the 
data distributed in one class were excluded. In total, 118 
features were identified at initial inspection, of which 27 
features met the study criteria and were used for train-
ing the models. Since the FLS database in our center is 
grounded upon the workup of the causes of secondary 
osteoporosis, factors such as ESR, CRP, PTH, 25(OH)D, 
ALP, etc. which could indicate a secondary root of osteo-
porosis, were included in the feature sets.

Model training was done for males and females sepa-
rately, considering the exclusion of pregnancy frequency 
and menopause age in the male group. As a result, model 
training in the male group was performed with 25 fea-
tures. Characteristics of these features are demonstrated 
in detail in Table 1.

Quantitative variables are demonstrated with 
mean ± standard deviation for normally distributed 
quantitative parameters, with median (range) for non-
normally distributed quantitative parameters, and with 
numbers (%) for qualitative parameters.
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Data preprocessing
Outliers in the dataset were identified as data points 
lying beyond ± 3 standard deviations from the mean of a 
given feature. These outliers were subsequently replaced 
with the nearest values within the interquartile range 

boundaries. Numerical data underwent normalization to 
scale the values, while categorical variables were trans-
formed via one-hot encoding, assigning 1 for “Yes” and 
0 for “No.”

Table 1 Patients’ characteristics
Variable Female patients

n = 712 ( 65%)
Male patients
n = 388 (35%)

Female Patients’ data 
Missing percentage

Male Pa-
tients’ data 
Missing 
percentage

Age (year) 64.6 ± 9.5 62.5 ± 9.6 0 0
Age of Menopause (year) 47.9 ± 5.6 - 6.18 -
BMI (kg/m2) 28.8 ± 4.8 26.2 ± 4 1.54 1.03
Re-fracture

Yes
No

149 [21]
563 (79)

46 (11.9)
292 (88.1)

0 0

Femoral Neck BMD (g/cm2) 0.638 ± 0.176 0.698 ± 0.125 8.43 11.34
Femoral Neck T-score -1.92 ± 1.1 -1.57 ± 1 8.43 11.34
Femoral Neck Z-score -0.5 (-4.4 to 2.8) -0.5 (-2.8 to 3.1) 8.43 11.34
Total Hip BMD (g/cm2) 0.821 ± 0.164 0.910 ± 0.169 8.01 12.37
Total Hip T-score -0.9 (-4.8 to 2.8) -0.6 (-4 to 5) 8.29 12.63
Total Hip Z-score 0.2 (-4.1 to 3.5) 0.1 (-2.9 to 10) 8.15 12.37
Spine BMD (g/cm2) 0.804 ± 0155 0.873 ± 0.159 10.53 11.86
Spine T-Score -2.1 ± 1.4 -1.77 ± 1.44 10.25 12.11
Spine Z-Score -0.530 ± 1.3 -0.863 ± 1.56 10.25 12.37
Serum CRP (mg/dL) 7 (1 to 130) 9 (0 to 120) 3.51 3.35
Serum ALP (U/L) 192.6 ± 65.9 183.9 ± 60 4.78 4.64
Serum BUN (mg/dl) 16.9 ± 6.1 17.1 ± 5.4 5.06 4.38
Serum Creatinine (mg/dl) 0.95 ± 0.19 1 ± 0.2 3.51 3.35
Parathyroid hormone (ng/L) 52.4 ± 25 49.6 ± 17.4 17.13 17.01
25(OH)D (gr/ dl) 36.8 ± 14.5 33.3 ± 13.1 7.44 9.79
Serum calcium (mg/dl) 8.9 ± 0.6 8.6 ± 0.8 4.35 5.15
Serum phosphor (mg/dl) 3.7 ± 0.7 3.5 ± 0.8 5.20 5.67
Pregnancy numbers

0
1
2
3
4
5
More than 5

44 (6.2)
35 (4.9)
102 (14.3)
112 (15.7)
119 (16.7)
98 (13.8)
202 (28.4)

- 13.62 -

Anticoagulant consumption
Yes
No

42 (5.9)
670 (94.1)

21 (5.4)
367 (94.6)

17.56 16.75

Current smoker
Yes
No

39 (5.4)
693 (94.6)

157 (40.5)
231 (59.5)

21.77 11.86

History of smoking
Yes
No

36 (5.1)
696 (94.9)

28 (7.2)
360 (92.8)

5.20 4.12

Using calcium supplement
Yes
No

97 (13.6)
615 (86.4)

29 (7.5)
359 (92.5)

5.48 3.61

Diabetes mellitus
Yes
No

151 (21.3)
561 (78.7)

60 (15.5)
328 (84.5)

16.15 16.75



Page 4 of 10Zabihiyeganeh et al. BMC Musculoskeletal Disorders          (2024) 25:438 

The rate of missing data for the male dataset varied 
from 1.03 to 17.01%, and for the female dataset, it ranged 
from 1.54 to 21.77%. For normally distributed numeri-
cal variables, the mean of the feature was used to impute 
missing values. In contrast, the median was employed for 
skewed numerical data. The mode was used for imput-
ing missing categorical data, chosen based on the most 
frequent value within each class (re-fracture or no re-
fracture). Detailed missing data rates for each feature are 
tabulated in Table 1.

Features and feature selection
The primary outcome, subsequent fragility fracture, was 
recorded as a binary variable (yes/no). The dataset com-
prised 26 features, excluding the target variable. These 
features encompassed demographics (age, sex, meno-
pause age, BMI), laboratory results (CRP, ALP, serum 
Vitamin D, PTH), medical history (comorbidities, medi-
cation use), and densitometry measurements (BMD, 
T-score, Z-score).

Seven distinct feature sets were engineered to pre-
dict fragility in both genders. Six of these were derived 
using recursive feature elimination with cross-validation 
(RFECV) applied to random forest, XGBoost, CatBoost, 
logistic regression, LightGBM, and AdaBoost algorithms. 
The seventh set was manually selected based on prior 
evidence and clinician expertise, deemed relevant for 
predicting future fragility risk.

Data balancing
Initial models, based on features selected by physi-
cian opinion and trained using the XGBoost algorithm, 
demonstrated suboptimal performance (AUC = 0.502 
for females and AUC = 0.498 for males), likely due to an 
imbalance in re-fracture instances. To address this, the 
synthetic minority oversampling technique (SMOTE) 
was implemented to augment the underrepresented class 
(re-fracture) in the datasets [31].

Model Development, evaluation, and explainability
We employed an array of models for development, 
including random forest, XGBoost, CatBoost, logistic 
regression, LightGBM, AdaBoost, MLP, and SVM, utiliz-
ing 10-fold cross-validation as illustrated in Fig. 1. Hyper-
parameter optimization for these models was conducted 
using a variable grid for each algorithm in combination 
with GridSearchCV from the scikit-learn library.

Model performance was assessed using accuracy, the 
area under the receiver operating characteristic curve 
(AUC ROC), precision, recall, F1 score, logistic loss, 
and Brier score. Model comparison hinged on the F1 
score and accuracy, leading to the selection of the opti-
mal models for both male and female patient groups. 
The contribution of individual features to the model 

performance was determined using Shapley Additive 
Explanations (SHAP) [32].

Results
Feature selection
Tables S1 and S2 present the details of the feature sets 
created using the male and female patients’ dataset.

Model performance and evaluation
A summarized evaluation of the performance of various 
predictive models for female patients, using feature sets 
one through seven, is provided in Tables S3-S9. Gener-
ally, the CatBoost algorithm demonstrated superior per-
formance across the majority of feature sets, with the 
exception of feature set 5, where the LightGBM algo-
rithm was more effective. Logistic regression exhibited 
the least robust performance across all feature sets, with 
the exception of feature set 7, where the SVM model was 
the least effective.

The performance details of the predictive models 
for male patients across different feature sets are docu-
mented in Tables S10-S16. The CatBoost algorithm 
consistently outperformed the other models across all 
feature sets. Logistic regression generally displayed the 
least favorable performance, except in feature sets 4, 5, 
and 7, where the SVM model showed the weakest results.

The optimal model for predicting subsequent fragil-
ity fractures in female patients was the CatBoost model 
trained on feature set 2, achieving an accuracy of 0.870 
and an F1 score of 0.882. For male patients, the most 
effective model was the CatBoost trained on feature set 
6, with an accuracy of 0.934 and an F1 score of 0.938. The 
performance metrics for the top five predictive models 
for female and male patients are presented in Tables  2 
and 3, respectively.

Feature importance
Female patient’s prediction model
As depicted in Fig.  2, age, serum CRP, serum level of 
25(OH)D (vitamin D3), serum creatinine, serum BUN, 
serum PTH, femoral neck Z-score, menopause age, num-
ber of pregnancies, serum phosphorus, serum calcium, 
and BMI had the highest contribution to the model’s 
prediction.

Male patients’ prediction model
As presented in Fig. 3, serum CRP, femoral neck T-score, 
serum PTH, hip T-score, BMI, serum BUN, serum cre-
atinine, serum ALP, and spinal Z-score had the highest 
amount of contribution to the model’s performance in 
order.
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Fig. 1 Study flow diagram
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Error analysis
Female patient’s prediction model
In total, there were 155 errors, of which 9 were false posi-
tives and 146 were false negatives. According to Figure 
S1, which presents the confusion matrix and heatmap 
of the error cases, ALP, PTH, 25(OH)D, age, menopause 
age, CRP, and BMI were more related to the error cases. 
As the color in the grid gets darker, it resembles a higher 
relation with errors.

Male patient’s prediction model
Overall, there were 9 errors, which 6 were false negatives 
and 3 were false positives. As depicted in Figure S2, ALP, 
PTH, 25(OH)D, CRP, BUN, and BMI were most related 
to the error cases.

Discussion
In this research, we assessed the predictive capabilities 
of various machine learning (ML) models in predict-
ing subsequent fragility fractures within distinct male 
and female cohorts. Additionally, we identified the most 

Table 2 Top 5 female patients’ prediction models
Rank Algorithm Feature 

set
Parameters Accuracy AUC Precision Recall F1 Score Log Loss Brier Score

1 CatBoost 2 depth = 10,
l2_leaf_reg = 7,
learning_rate = 0.1,
n_estimators = 700

0.870 0.951 0.826 0.948 0.882 0.324 0.100

2 CatBoost 4 depth = 10,
l2_leaf_reg = 1,
learning_rate = 0.1,
n_estimators = 600

0.868 0.956 0.819 0.950 0.879 0.322 0.100

3 CatBoost 1 depth = 10,
l2_leaf_reg = 1,
learning_rate = 0.03,
n_estimators = 700

0.857 0.951 0.804 0.948 0.869 0.333 0.104

4 CatBoost 3 depth = 10,
l2_leaf_reg = 1,
learning_rate = 0.03,
n_estimators = 600

0.853 0.940 0.805 0.936 0.865 0.354 0.111

5 CatBoost 6 depth = 10,
l2_leaf_reg = 1,
learning_rate = 0.1,
n_estimators = 300

0.828 0.903 0.795 0.886 0.837 0.431 0.131

Table 3 Top 5 male patients’ prediction models
Rank Algorithm Fea-

ture 
set

Parameters Accuracy AUC Precision Recall F1 Score Log Loss Brier Score

1 CatBoost 6 n_estimators = 600,
depth = 10,
l2_leaf_reg = 1,
learning_rate = 0.03

0.934 0.990 0.895 0.985 0.938 0.175 0.051

2 CatBoost 2 n_estimators = 300,
depth = 6,
l2_leaf_reg = 1,
learning_rate = 0.1

0.931 0.984 0.888 0.988 0.935 0.197 0.055

3 CatBoost 1 n_estimators = 300,
depth = 10,
l2_leaf_reg = 1,
learning_rate = 0.03

0.928 0.987 0.885 0.985 0.932 0.202 0.058

4 XGBoost 2 n_estimators = 700,
max_depth = 15,
learning_rate = 0.01,
colsample_bytree = 0.3

0.923 0.975 0.911 0.938 0.923 0.270 0.074

5 CatBoost 3 n_estimators = 300,
depth = 6,
l2_leaf_reg = 1,
learning_rate = 0.1

0.921 0.986 0.874 0.985 0.926 0.196 0.058
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contributing features in these predication models. For 
both genders, the CatBoost model emerged as the most 
accurate, yielding the highest predictive accuracy at 
93.4% for males and 87% for females. The SHAP analysis 
revealed that in the female-specific models, the features 
that contributed most significantly included age, CRP, 
25(OH)D, creatinine, BUN, PTH, femoral neck Z-score, 
menopause age, number of pregnancies, phosphorus, 
calcium, and BMI. For the male-specific models, the 
features with the greatest impact on the model’s predic-
tive power were CRP, femoral neck T-score, PTH, hip 
T-score, BMI, BUN, creatinine, ALP, and spinal Z-score. 
To date, various studies have investigated the risk fac-
tors of re-fracture in osteoporotic patients sustaining a 
fragility fracture [6, 8–11]. Although these studies have 

provided valuable information, there is still a gap in the 
clinical application of this data, mainly due to the inabil-
ity of physicians to interpret and implement these data 
in the process of treatment decision-making. ML algo-
rithms are able to interpret this data according to the 
feature importance and provide a personalized risk for 
re-fracture, thereby translating the patients’ data into 
clinical practice [15, 16].

Following the advent of ML in medical sciences, the 
potential of these algorithms in osteoporosis manage-
ment has been evaluated in many studies [33]. Although 
the use of ML algorithms in the prevention of subsequent 
fragility fractures has been considered, it has not received 
as much attention as it deserves. Shimizu et al. [34] eval-
uated the capability of ML algorithms for prediction and 

Fig. 3 Shapley Additive Explanation (SHAP) feature importance for Male CatBoost prediction model in male patients

 

Fig. 2 Shapley Additive Explanation (SHAP) feature importance for CatBoost prediction model in female patients
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feature selection of re-fracture after surgical treatment 
of non-vertebral index fragility fracture. More than 7000 
patients with an index fragility fracture were included 
in their study, randomly divided into training (75%) and 
test (25%) datasets. A decision-tree-based model (Light-
GBM), Artificial Neural Network, and SVM model 
were developed for the prediction purpose. LightGBM 
model showed moderate accuracy for the prediction in 
the training (AUC = 0.90) and test dataset (AUC = 0.75), 
whereas the other models revealed poor performance 
(AUC < 0.60). Rheumatoid arthritis (RA) and chronic 
kidney disease (CKD) were the most relevant features for 
predicting the subsequent fracture. In the present study, 
we evaluated various ML models, including LightGBM 
and SVM. CatBoost was the most predictive ML model 
in our study, with a maximum AUC of 0.990 for the male 
group and 0.956 for the female group. However, the male 
and female populations were not evaluated separately in 
the study of Shimizu et al. Considering the smaller num-
ber of patients compared to the study of Shimizu et al., 
we used a cross-validation approach to test the perfor-
mance of machine learning models. Features that had 
the highest contribution to the model’s prediction were 
significantly different from those reported by Shimizu 
et al., which could be attributed to the registration pro-
tocol. Since our center was a subspecialized orthopedic 
hospital, patients with RA, CKD, hyperthyroidism, and 
other important underlying disorders were not generally 
referred to our FLS department.

Ma et al. [35] compared the effectiveness of differ-
ent ML algorithms in predicting new fractures after the 
treatment of index osteoporotic vertebral compression 
fractures. In a retrospective analysis of 529 patients, ML 
models including decision trees, random forests, SVM, 
gradient boosting machines (GBM), neural networks, 
regularized discriminant analysis (RDA), and logistic 
regression were compared in terms of their effective-
ness in predicting new fractures occurring after surgical 
treatment of index fracture. The dataset was subdivided 
into the training (75%) and test set (25%). ML models 
were developed in training sets after ten cross-valida-
tions. Subsequently, the performance of each model was 
assessed in the test dataset. Almost all models predicted 
better than logistic regression, with random forest show-
ing the maximum AUC (0.940). In contrast to the study 
of Ma et al., which was limited to the prediction of sub-
sequent vertebral fragility fracture, the present study was 
not restricted by the location of the fragility fracture. 
Even so, both studies reveal the promising role of ML in 
the prediction of subsequent fragility fracture. The Cat-
Boost algorithm, which was the best-predicting model in 
the present study, was not used in the study of Ma et al. 
Again, the male and female populations were not evalu-
ated separately in the study of Ma et al.

Vries et al. [12] compared three ML algorithms, includ-
ing the Cox regression, random survival forests (RSF), 
and an artificial neural network (ANN)-DeepSurv model, 
to design a risk assessment tool for future fractures. In 
total, 7578 patients with osteopenia or osteoporosis were 
included, of which 805 (11%) patients sustained a subse-
quent major osteoporotic fracture (MOF). For the com-
plete dataset, including the osteopenia and osteoporosis 
patients, no significant difference was found between the 
discriminative ability of the three models. In the osteo-
penia group, the Cox regression model significantly out-
performed the other models, with an AUC of 0.701 one 
year after the index fracture. Age, prior falls, simulta-
neous vertebral fracture, history of epilepsy, and age of 
menopause were independently associated with the inci-
dence of subsequent MOF in the complete dataset using 
the Cox regression model. The predictive capability of 
the ML models used in the present study was remark-
ably higher than the study of Vries et al. This difference 
can be attributed to several factors, including the patient 
population, the type of fractures, or the ML model itself. 
These differences should be further investigated in future 
studies.

Regarding the feature importance, some features that 
were already acknowledged as predictors of fragility frac-
ture, including age, sex, menopause age, and densitom-
etry parameters, were found to be important features in 
our model’s development, as well. In addition, some fea-
tures that were less frequently reported as predictors of 
subsequent fragility fracture in the general osteoporotic 
population were also included in our model’s develop-
ment, including the CRP, BUN, and creatinine. High CRP 
levels, as a marker of chronic inflammation, have been 
earlier attributed to the increased risk of fragility frac-
tures, although previous studies have yielded conflicting 
results [36, 37]. BUN and creatinine are acknowledged 
predictors of fragility fracture in osteoporotic patients 
with chronic kidney diseases, explained by the associa-
tion between renal function and BMD [38–40]. However, 
these markers are rarely notified as predictors of fragility 
fractures in the general osteoporotic population, which 
could infer the power of ML algorithms to explore their 
predictive power.

Altogether, the results of the present study show that 
ML models could play an important role in the perdic-
tion of subsequent fragility fractures. Therefore, optimi-
zation of these methods in the future could be regarded 
to empower clinicians to provide personalized re-frac-
ture strategies. Such tools have already been designed 
for index fragility fractures (Fracture Risk Assessment 
Tool). However, the prevention of second re-fracture has 
received less attention and deserves more investigations 
in the future.
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The present study had some strengths and weak points. 
The number of ML models evaluated in the present study 
was more than in earlier studies, and CatBoost, which 
was shown to be the most accurate model, was not used 
in earlier studies. Evaluation of the models separately for 
males and females could be the other strong point of the 
study, as menopause could be regarded as a confounding 
factor in males when models are trained on both sexes. 
The absence of an external validation set and a smaller 
number of patients, particularly in the male group, could 
be regarded as the weak points of this study. In addition, 
the study population was recruited from a subspecialized 
orthopedic hospital, and patients with important under-
lying disorders such as RA, CKD, hyperthyroidism, and 
other underlying disorders were not generally referred to 
our hospital. For this reason, the elaborated model might 
not be generalizable to other healthcare settings and 
patients with certain disorders.

Conclusion
Machine learning (ML) models, and the CatBoost algo-
rithm in particular, have demonstrated a strong abil-
ity to predict subsequent fragility fractures. As such, 
these models show promise as effective tools in predict-
ing future fragility fractures in patients with osteopo-
rosis. The further refinement and optimization of these 
ML models could aid clinicians in creating tailored pre-
vention strategies to reduce the risk of future fragility 
fractures.
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