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Abstract 

Background Prior studies have suggested a potential relationship between osteoporosis and sarcopenia, 
both of which can present symptoms of compromised mobility. Additionally, fractures among the elderly are often 
considered a common outcome of both conditions. There is a strong correlation between fractures in the elderly 
population, decreased muscle mass, weakened muscle strength, heightened risk of falls, and diminished bone 
density. This study aimed to pinpoint crucial diagnostic candidate genes for osteoporosis patients with concomitant 
sarcopenia.

Methods Two osteoporosis datasets and one sarcopenia dataset were obtained from the Gene Expression Omnibus 
(GEO). Differential expression genes (DEGs) and module genes were identified using Limma and Weighted Gene Co-
expression Network Analysis (WGCNA), followed by functional enrichment analysis, construction of protein–protein 
interaction (PPI) networks, and application of a machine learning algorithm (least absolute shrinkage and selection 
operator (LASSO) regression) to determine candidate hub genes for diagnosing osteoporosis combined with sarcope-
nia. Receiver operating characteristic (ROC) curves and column line plots were generated.

Results The merged osteoporosis dataset comprised 2067 DEGs, with 424 module genes filtered in sarcopenia. The 
intersection of DEGs between osteoporosis and sarcopenia module genes consisted of 60 genes, primarily enriched 
in viral infection. Through construction of the PPI network, 30 node genes were filtered, and after machine learning, 7 
candidate hub genes were selected for column line plot construction and diagnostic value assessment. Both the col-
umn line plots and all 7 candidate hub genes exhibited high diagnostic value (area under the curve ranging from 1.00 
to 0.93).

Conclusion We identified 7 candidate hub genes (PDP1, ALS2CL, VLDLR, PLEKHA6, PPP1CB, MOSPD2, METTL9) 
and constructed column line plots for osteoporosis combined with sarcopenia. This study provides reference 
for potential peripheral blood diagnostic candidate genes for sarcopenia in osteoporosis patients.
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Introduction
Sarcopenia, a progressive skeletal muscle disorder, is 
linked to increased risks of falls, fractures, physical dis-
ability, and mortality[1]. While commonly observed in 
older adults, sarcopenia can also manifest earlier in life. 
Rooted in age-related muscle changes, it significantly 
reduces muscle strength and mass, contributing to 
heightened fall risks and impaired daily activities. This 
often leads to disability, loss of independence, and even 
death. The substantial impact of sarcopenia on morbid-
ity, mortality, and healthcare expenditure has spurred 
significant research and policy discussions, underscor-
ing its critical importance. Decreased muscle strength, 
crucial for mobility, significantly increases fall preva-
lence among the elderly. This condition correlates closely 
with self-reported physical disability, transcending fac-
tors such as ethnicity, age, morbidity, obesity, income, 
or health behaviors[2]. Age-related decline in muscle 
strength not only diminishes functional capacity but 
also exacerbates disability, mortality, and other adverse 
health outcomes[3]. With the aging population, sarco-
penia-related morbidity is expected to pose a significant 
healthcare challenge. Management strategies for sarco-
penia include non-pharmacological interventions like 
resistance exercise and proper nutrition, notably protein 
intake and vitamin D supplementation. Resistance exer-
cise, in particular, is a standard non-pharmacological 
treatment, supported by substantial evidence. While var-
ious pharmacological agents have shown efficacy, future 
research should focus on elucidating biological pathways, 
refining diagnostics, and developing superior treatment 
methods[4].

Osteoporosis and related fractures are prevalent among 
older adults, posing substantial morbidity and mortal-
ity risks. Bisphosphonates are the primary therapy, with 
additional options like denosumab, teriparatide, and 
selective estrogen receptor modulators available. Early 
identification and intervention for osteoporosis are cru-
cial for mitigating its effects[5]. The coexistence of oste-
oporosis and sarcopenia, termed ’osteosarcopenia’[5], 
poses a dual challenge. Interactions between muscles 
and bones at various levels may contribute to osteosar-
copenia’s pathophysiology [6]. Understanding shared 
genes between these systems could offer novel treatment 
insights.

In this study, instrumental variables at the genome-
wide significance level were utilized to assess the 
bi-directional causality between sarcopenia and osteo-
porosis. The results suggest a potential mutual influence 
between the two conditions. The study also highlights 
the frequency of osteosarcopenia and its association 
with increased fracture risks. Standardized classifica-
tion of sarcopenia is crucial for accurately assessing its 

relationship and consequences [7]. Muscles and bones, 
originating from mesodermal and ectodermal mesenchy-
mal stem cells, share close anatomical proximity, facilitat-
ing mechanical and chemical signal exchange. Identifying 
shared crosstalk genes could offer novel prevention and 
treatment avenues [8]. After identifying shared genetic 
markers, validate the functionality of these genes using 
cellular or animal models, and determine their potential 
mechanisms in disease progression. Develop molecu-
lar diagnostic tests based on blood or tissue samples for 
screening the risk of muscle atrophy and osteoporosis. 
Develop gene therapy approaches or novel drugs target-
ing the expression or functionality of these genes.

Material and methods
Data collection
The datasets GSE1428 and GSE230665, as well as 
GSE56116, were curated from the GEO database (https:// 
www. ncbi. nlm. nih. gov/ geo/) [9]. For the microarray 
analysis of the GSE1428 [10] dataset, the GPL96 platform 
(Affymetrix Human Genome U133A Array) was utilized. 
GSE230665 [11] employed the GPL10332 platform (Agi-
lent-026652 Whole Human Genome Microarray 4 × 44 
K v2, Feature Number version). GSE56116 [11] utilized 
the GPL4133 platform (Agilent-014850 Whole Human 
Genome Microarray 4 × 44 K G4112F, Feature Number 
version). The GSE1428 dataset presents transcriptional 
responses related to sarcopenia, as provided by Giresi 
et  al. On the other hand, the datasets GSE230665 and 
GSE56116, focusing on osteoporosis, were contributed by 
Ge, Li, and their respective collaborators. The GSE1428 
dataset showcases the transcriptional responses associ-
ated with sarcopenia, while GSE230665 and GSE56116 
pertain to datasets on osteoporosis (Fig. 1).

Identification of DEGs between sarcopenia 
and osteoporosis
For the two original osteoporosis datasets, empiri-
cal Bayes methods [12] were applied to eliminate batch 
effects. The merged osteoporosis dataset and the sarcope-
nia dataset underwent the extraction of expression matri-
ces, with the exclusion of genes and samples featuring 
missing values exceeding 50%. Subsequently, missing val-
ues were imputed using the "impute.knn" function from 
the R package "impute," setting the Number of neighbors 
to 10 for data completion. Furthermore, a log2 transfor-
mation was applied to the data. In cases where multiple 
probes identified the same gene, the average expression 
was calculated. Finally, utilizing the Limma package, cri-
teria of |log2 Fold change (FC)|> 1.5 and P < 0.05 were set 
as the standards for identifying DEGs. The definition of 
this threshold range refers to the study by Liu et al. [13].

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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Weighted gene co‑expression network analysis 
and module gene selection
Exploring gene–gene correlations using systems biol-
ogy strategy WGCNA [14]. Based on gene expression 
profiles, we computed the median absolute deviation for 
each gene and removed the bottom 50% of genes with 

the smallest median absolute deviation. We utilized the R 
software package WGCNA’s goodSamplesGenes method 
to eliminate outlier genes and samples. Subsequently, we 
employed WGCNA to construct a scale-free co-expres-
sion network. Initially, Pearson’s correlation matrices and 
the average linkage method were applied to all pairwise 

Fig. 1 Workflow of the whole study
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genes. Then, a weighted adjacency matrix was created 
using a power function A_mn =|C_mn|^β (where C_mn 
represents the Pearson’s correlation between gene_m and 
gene_n, and A_mn denotes the adjacency between gene 
m and gene n). The parameter β was chosen to be 12 for 
soft-thresholding, emphasizing strong correlations and 
penalizing weak ones. The adjacency matrix was trans-
formed into a topological overlap matrix, measuring the 
network connectivity of a gene, defined as the sum of its 
adjacencies with all other genes for network gene ration, 
and the corresponding dissimilarity (1-TOM) was com-
puted. To classify genes with similar expression profiles 
into gene modules, average linkage hierarchical cluster-
ing was performed based on the TOM-based dissimilar-
ity measure, with a minimum module size of 100 for the 
gene dendrogram. We set the sensitivity to 3. To further 
analyze the modules, we calculated the dissimilarity of 
module eigen genes, selected a cut line for the module 
dendrogram, and merged some modules. Additionally, 
we merged modules with a distance less than 0.25, result-
ing in the identification of 2 co-expression modules.

Functional enrichment analysis
The Gene Ontology (GO) [15] system provides struc-
tured and computable information about the functions 
of genes and gene products. The Kyoto Encyclopedia of 
Genes and Genomes (KEGG) [16] is a widely used data-
base for gene system research. Using gene annotations 
from the R package org.Hs.eg.db (version 3.1.0), and 
obtaining the latest KEGG Pathway gene annotations 
from the KEGG rest API (https:// www. kegg. jp/ kegg/ 
rest/ kegga pi. html) as background, genes were mapped 
to the background set. Functional enrichment analysis 
was performed using the R package clusterProfiler (ver-
sion 3.14.3) to obtain results of gene set enrichment. The 
minimum gene set was set to 5, and the maximum gene 
set was set to 5000. A P value of < 0.05 and a false discov-
ery rate of < 0.1 were considered statistically significant. 
Two rounds of GO and KEGG analyses were conducted 
based on the intersection of DEGs in sarcopenia and the 
most significant module genes, as well as the intersection 
of DEGs in osteoporosis and the most significant module 
genes in sarcopenia.

Construction of protein–protein interaction network
To explore the interactions between protein-coding 
genes, we utilized the String database [17] (version 11.5; 
www. string- db. org), with a minimum interaction score 
set to 0.400. The obtained network from String was fur-
ther modified using Cytoscape software. All interacting 
genes within the protein–protein interaction (PPI) net-
work were selected for subsequent analysis.

Machine learning
To further screen candidate genes for diagnosing sarco-
penia and osteoporosis, a machine learning algorithm 
was employed. LASSO [18] (Least Absolute Shrinkage 
and Selection Operator) is a regression method used 
for variable selection to improve prediction accuracy. It 
is also a regularization technique that enhances the pre-
dictive accuracy and interpretability of statistical mod-
els. Utilizing the R package glmnet, gene expression data 
was integrated, and regression analysis was performed 
using the lasso-cox method. A threefold cross-validation 
was set up to obtain the optimal model. By dividing the 
dataset into 3 parts and rotating 2 of them for model 
training while keeping 1 for testing, we iterated through 
this process. In each iteration, we evaluated the perfor-
mance of the model under different λ values, primarily 
by observing the prediction errors of the model. Finally, 
we selected the λ value that minimized the cross-valida-
tion error as the optimal λ. The Lambda value was set to 
0.0639847346226388. The genes obtained from this anal-
ysis were identified as candidate hub genes for diagnosing 
sarcopenia and osteoporosis.

Construction of column line plots and ROC curve 
evaluation
Construction of column line plots holds certain value in 
diagnosing clinical sarcopenia and osteoporosis. Using 
the candidate genes, column line plots were constructed 
using the R package pROC (version 1.17.0.1). The "Score" 
represents the score of the candidate genes, while "Total 
Score" represents the sum of scores for all the aforemen-
tioned genes. ROC curves were established to evaluate 
the diagnostic value of the candidate genes and column 
line plots for sarcopenia and osteoporosis.

Results
Identification of DEGs
Identification of DEGs using Limma method revealed a 
total of 821 DEGs (337 upregulated, 484 downregulated) 
in the sarcopenia dataset. The heatmap and volcano plot 
of sarcopenia DEGs are shown in Fig. 2A-B. In the com-
bined osteoporosis dataset, a total of 2067 DEGs were 
identified, with 2059 upregulated and 9 downregulated 
genes. The heatmap and volcano plot of osteoporosis 
DEGs are illustrated in Fig. 3A-B.

WGCNA analysis and identification of key modules
We selected β = 12 (scale-free  R2 = 0.86) as the "soft" 
threshold based on scale independence and average con-
nectivity (Fig.  4A-B). The dendrogram (Fig.  4C) depicts 
the clustering of sarcopenia and control samples. Based 
on this, two gene co-expression modules were generated, 

https://www.kegg.jp/kegg/rest/keggapi.html
https://www.kegg.jp/kegg/rest/keggapi.html
http://www.string-db.org
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Fig. 2 Heatmap and volcano plot for the DEGs identified from the sarcopenia dataset

Fig. 3 Heatmap and volcano plot for the DEGs identified from the osteoporosis dataset
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Fig. 4 WGCNA of DEGs. A‑B Estimation of the soft thresholding value for a scale-free co-expression network. C Cluster dendrogram of all DEGs. D 
Heatmap showing the correlation between modules and sarcopenia. The turquoise module is found to be significantly correlated with sarcopenia. 
The numbers in the top and bottom brackets represent the correlation coefficient and p-value, respectively.
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as indicated by different colors in Fig.  4D. Among 
them, the turquoise module (424 genes) exhibited the 
highest correlation with sarcopenia (correlation coef-
ficient = -0.41, P = 0.06) and was considered the key mod-
ule for subsequent analysis.

Functional enrichment analysis of sarcopenia
To assess whether the dataset GSE1428 reliably reflects 
the pathogenesis of sarcopenia, we further conducted 
functional enrichment analysis based on the intersec-
tion of Limma and WGCNA module genes. The intersec-
tion of 424 DEGs from the turquoise module with 821 
genes yielded 16 common genes (Fig. 5A). KEGG analysis 
revealed that common genes were primarily enriched in 
"Metabolic pathways" and "Carbon metabolism" (Fig. 5B). 
GO analysis indicated that common genes were pre-
dominantly enriched in biological process (BP) terms, 
including "coenzyme metabolic process" and "purine rib-
onucleotide metabolic process" (Fig. 5C). Regarding cel-
lular component (CC) ontology, CGs were mainly located 
in "mitochondrion," "mitochondrial part," and "mito-
chondrial matrix" (Fig.  5D). Molecular function (MF) 
analysis showed that "Ras guanyl-nucleotide exchange 
factor activity," "isocitrate dehydrogenase (NAD +) activ-
ity," and "L-aspartate transmembrane transporter activ-
ity" were the most significant terms within common 
genes (Fig. 5E).

Enrichment analysis and node gene identification 
for osteoporosis and sarcopenia based on PPI networks
To further explore whether key genes associated with 
sarcopenia are also related to the pathogenesis of osteo-
porosis, we visualized the intersection of DEGs in osteo-
porosis and module genes in sarcopenia through a Venn 
diagram, identifying 60 genes (Fig.  6A). KEGG enrich-
ment analysis revealed that these 60 genes were mainly 
enriched in "Human papillomavirus infection," "mTOR 
signaling pathway," and "Kaposi sarcoma-associated her-
pesvirus infection" (Fig.  6B). GO analysis showed that 
these genes were enriched in "Kaposi sarcoma-associ-
ated herpesvirus infection," "organonitrogen compound 
biosynthetic process," and "cellular amide metabolic 
process" in BP; "cytosol," "cytosol," and "nuclear chro-
mosome" in CC; and "transcription coregulator activity," 
"transcription coregulator activity," and "ubiquitin-like 
protein ligase activity" in MF (Fig. 6C-E).

After confirming the filtered genes, we constructed a 
PPI network to identify interacting node genes for sub-
sequent machine learning filtering. Figure  6F displays 
the PPI network, where 30 genes can interact with each 
other. These genes are sorted by node degree in Fig. 6G

Identifying candidate hub genes through machine 
learning
The LASSO regression machine learning algorithm was 
applied to select candidate genes for column line plot 
construction and diagnostic value assessment. From 
Fig. 7A-B, it can be observed that the LASSO regression 
algorithm identified 7 potential candidate biomarkers for 
final validation.

Diagnostic Value Evaluation
Based on the 7 candidate hub genes, a column line plot 
was constructed (Fig. 8A), and ROC curves were estab-
lished to evaluate the diagnostic specificity and sen-
sitivity of each gene and the column line plot. The area 
under the curve (AUC) and its 95% confidence interval 
(CI) were calculated for each item. The results are as fol-
lows: PDP1 (AUC 0.96, CI 1.00 ~ 0.88), ALS2CL (AUC 
0.80, CI 1.00 ~ 0.58), VLDLR (AUC 0.83, CI 1.00 ~ 0.5), 
PLEKHA6 (AUC 0.93, CI 1.00 ~ 0.83), PPP1CB (AUC 
0.82, CI 1.00 ~ 0.63), MOSPD2 (AUC 0.73, CI 1.00 ~ 0.44), 
METTL9 (AUC 0.82, CI 1.00 ~ 0.58), and the column line 
plot (AUC 0.98, CI 1.00 ~ 0.93) (Fig. 8B-I). All candidate 
genes exhibited high diagnostic value for sarcopenia 
combined with osteoporosis, with the column line plot 
demonstrating the highest diagnostic value.

Discussion
Osteosarcopenia, characterized by the coexistence of 
osteopenia/osteoporosis and sarcopenia, has emerged as 
a significant health concern, imposing a substantial global 
health burden. According to the World Health Organi-
zation, osteopenia and osteoporosis are defined by T 
scores equal to or less than − 1 and − 2.5 standard devia-
tions, respectively, below the peak bone mass of a young, 
healthy cohort or in the presence of a minimal-trauma 
fracture. This skeletal condition results in the deteriora-
tion of bone microarchitecture and compromises bone 
strength [19]. Conversely, sarcopenia is identified by 
cut-off values indicating low muscle mass, strength, and/
or functional capacity [20].  Both osteosarcopenia and 
sarcopenia share common risk factors [21] and exhibit 
strong associations with frailty, falls, fractures, hospitali-
zations, and mortality [21–23], contributing to a signifi-
cant increase in healthcare expenditure. The coexistence 
of these conditions underscores the intricate interplay 
between skeletal and muscular health and emphasizes 
the need for comprehensive approaches to address their 
shared impact on overall well-being.

In this study, we utilized a series of integrated bio-
informatics analyses and machine learning meth-
ods to construct a nomogram and evaluate the 
diagnostic value of osteoporosis in sarcopenia patients. 
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Fig. 5 Enrichment analysis of the intersection of genes in sarcopenia. A Venn diagram shows that 16 genes are identified from the intersection 
of DEGs via Limma and green module genes via WGCNA.B KEGG pathway analysis of the intersection of genes. Different colors represent various 
significant pathways and related enriched genes. C‑E GO analysis of the intersection of genes, including biological process, cellular component, 
and molecular function, respectively. The y-axis represents different GO terms, the x-axis represents gene ratio enriched in relative GO terms, 
the circle size refers to gene numbers, and the color represents p value. 
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Fig. 6 Enrichment analysis of common genes from osteoporosis with sarcopenia and the identification of node genes from PPI network. A Venn 
diagram shows that 60 common genes are identified from the intersection of genes in osteoporosis using Limma and sarcopenia using WGCNA. 
B KEGG analysis of 60 common genes.C‑E GO analysis (biological process, cellular component, and molecular function) of 60 common genes.F PPI 
network reveals that 30 genes interact with each other.G The column shows the gene nodes of 26 genes in PPI network. 
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A notable finding is the identification of 7 key candidate 
genes (PDP1, ALS2CL, VLDLR, PLEKHA6, PPP1CB, 
MOSPD2, and METTL9), and the development of a 
nomogram for diagnosing osteoporosis in sarcopenia 
patients.

The sarcopenia patient dataset used in this study all 
comes from peripheral blood samples. Therefore, we only 
need to collect peripheral blood samples from sarcopenia 
patients and evaluate the expression of the 7 identified 
immune-related genes to infer the probability of sarcope-
nia patients developing osteoporosis. This is an efficient 
and practical clinical approach. The use of peripheral 
blood testing in diagnosing various diseases is also widely 
accepted. Furthermore, although we confirmed that gene 
expression levels can serve as independent diagnos-
tic markers, we plan to develop a more comprehensive 
diagnostic model by transforming them into scores and 
considering all 7 markers. The expression of each gene is 
quantified and converted into a score, with an increase in 
score indicating a higher linear prediction factor. When 
the linear prediction factor is high, we can conduct early 
monitoring and intervention in sarcopenia patients, 
which is more valuable for implementing osteoporosis 
diagnosis in sarcopenia. Using machine learning to iden-
tify pseudo-gene features for bone sarcoma prognosis, 
these four pseudo-gene features not only serve as prom-
ising indicators for predicting prognosis and survival 
rates but also represent potential markers for monitoring 
treatment regimens [24].

PDP1encodes a protein that is one of the three com-
ponents (E1, E2, and E3) of the large pyruvate dehydro-
genase complex. PDP1 plays a crucial role in protein 
phosphorylation and has been implicated in various 
diseases [25, 26]. Research has shown that miR-18a-3p 
improves cartilage matrix remodeling and suppresses 

inflammation in osteoarthritis by targeting PDP1 [27]. 
In pancreatic cancer, PDP1 promotes cancer prolifera-
tion and invasion by regulating the MAPK/mTOR sign-
aling pathway [28]. Additionally, PDP1 is associated with 
osteosarcoma progression, patient prognosis, and che-
mosensitivity, making it a potential biomarker for osteo-
sarcoma [29]. Given its role in multiple diseases, PDP1 is 
considered a potential diagnostic target for osteoporosis 
in sarcopenic patients. ALS2CL encodes a 108-kD pro-
tein with specific but relatively weak Rab5-GEF activ-
ity and strong Rab5-binding properties. Co-expression 
of ALS2CL and Rab5A in HeLa cells results in a unique 
tubulation phenotype of endosome compartments, indi-
cating ALS2CL’s involvement in modulating Rab5-medi-
ated endosome dynamics [30]. VLDLR, or Very Low 
Density Lipoprotein Receptor, belongs to the low-density 
lipoprotein receptor family, with high expression levels in 
the brain, heart, skeletal muscle, and adipose tissue, while 
its expression in the liver is very low under physiologi-
cal conditions. It plays a crucial role in controlling serum 
triglycerides and the development of non-alcoholic fatty 
liver disease. Previous studies have demonstrated the 
involvement of VLDLR in regulating the onset of vari-
ous diseases. Research has found that homozygous loss-
of-function mutations in VLDLR lead to dysequilibrium 
syndrome, a non-progressive cerebellar ataxia syndrome 
associated with intellectual disability [31]. PLEKHA6, 
along with other members of the WW-PLEKHA fam-
ily, plays a role in the trafficking and retention of trans-
membrane proteins, including nectins, Tspan33, and the 
copper pump ATP7A, at cell–cell junctions and lateral 
membranes. Its C-terminal region and coiled-coil region 
promote its localization at adherens junctions of epi-
thelial cells. This suggests that PLEKHA6 is involved in 
maintaining cell–cell adhesion and potentially regulates 

Fig. 7 Machine learning in screening candidate diagnostic biomarkers for osteoporosis with sarcopenia.A‑B Biomarkers screening in the Lasso 
model. The number of genes (n=7) corresponding to the lowest point of the curve is the most suitable for osteoporosis with sarcopenia diagnosis.
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Fig. 8 8 Nomogram construction and the diagnostic value evaluation. A The visible nomogram for diagnosing osteoporosis with sarcopenia.B‑I 
The ROC curve of each candidate gene (PDP1, ALS2CL, VLDLR, PLEKHA6, PPP1CB, MOSPD2, METTL9) and nomogram show the significant 
steoporosis with sarcopenia diagnostic value.
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signaling pathways associated with adherens junctions 
[32]. PPP1CB, located on chromosome 2p23.2, encodes 
a subunit of PPP1 involved in various cellular functions, 
including glycogen metabolism, cell division, and mus-
cle contraction [33–36]. Recent studies have identified 
PPP1CB as the myosin light chain phosphatase respon-
sible for Ca2 + -transient rise and enhanced cell shorten-
ing in cardiomyocytes [37]. MOSPD2, a member of the 
VAP family, facilitates contact between the endoplasmic 
reticulum and various cellular organelles [38]. Unlike 
other VAP family members, MOSPD2 contains an addi-
tional cytoplasmic domain called CRAL-TRIO, which 
may be involved in lipid transport [39]. Research suggests 
that MOSPD2 is a key regulator of inflammation-driven 
monocyte migration and a potential therapeutic target 
for CNS inflammatory diseases [40]. METTL9, a meth-
yltransferase, plays a crucial role in histone methylation 
and is implicated as an oncogene in various cancers [41, 
42]. Targeting METTL9 significantly inhibits the growth 
of hepatocellular carcinoma patient-derived xenografts 
[43] and correlates with increased metastatic activity in 
human gastric cancer [44].

Limitation
In summary, this study identified candidate hub genes 
for diagnosing osteoporosis combined with sarcopenia 
using integrated bioinformatics and machine learn-
ing approaches. However, limitations include reli-
ance on publicly available datasets, potential selection 
bias in gene identification, limited generalizability to 
diverse populations, cross-sectional data analysis, and 
the need for further experimental validation to elu-
cidate the functional mechanisms of the identified 
genes. These findings provide a foundation for poten-
tial peripheral blood diagnostic markers but require 
additional validation and clinical translation for prac-
tical application in healthcare settings. Examine the 
expression levels of these candidate genes in clinical 
samples using techniques such as real-time quantitative 
PCR or immunohistochemistry. Compare the expres-
sion differences of these genes between osteoporosis 
patients and healthy controls, as well as between mus-
cle atrophy patients and healthy controls. Use statistical 
methods to determine the presence of significant cor-
relations and evaluate the feasibility of these genes as 
potential biomarkers. Investigate the functions of these 
genes through cellular or animal models, especially 
their effects on bone and muscle tissue. For example, 
the impact of these genes on bone and muscle devel-
opment and maintenance can be studied through gene 
knockout or overexpression. Conduct clinical cohort 
studies to track the disease progression and treatment 
response of patients with osteoporosis accompanied by 

muscle atrophy, and assess the potential of these candi-
date genes as predictive or prognostic markers. Carry 
out drug intervention trials to evaluate the efficacy of 
drug treatments targeting these genes for osteoporosis 
with muscle atrophy.

Conclusion
Our study systematically identified seven candidate hub 
genes (PDP1, ALS2CL, VLDLR, PLEKHA6, PPP1CB, 
MOSPD2, and METTL9) through a combination of 
various bioinformatics analyses and machine learning 
algorithms, and provided a nomogram for diagnosing 
sarcopenia associated with osteoporosis. The research 
offers reference for potential peripheral blood diagnostic 
candidate genes for sarcopenia related to osteoporosis.
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