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Abstract
Objective To develop an AI-assisted MRI model to identify surgical target areas in pediatric hip and periarticular 
infections.

Methods A retrospective study was conducted on the pediatric patients with hip and periarticular infections who 
underwent Magnetic Resonance Imaging(MRI)examinations from January 2010 to January 2023 in three hospitals in 
China. A total of 7970 axial Short Tau Inversion Recovery (STIR) images were selected, and the corresponding regions 
of osteomyelitis (label 1) and abscess (label 2) were labeled using the Labelme software. The images were randomly 
divided into training group, validation group, and test group at a ratio of 7:2:1. A Mask R-CNN model was constructed 
and optimized, and the performance of identifying label 1 and label 2 was evaluated using receiver operating 
characteristic (ROC) curves. Calculation of the average time it took for the model and specialists to process an image 
in the test group. Comparison of the accuracy of the model in the interpretation of MRI images with four orthopaedic 
surgeons, with statistical significance set at P < 0.05.

Results A total of 275 patients were enrolled, comprising 197 males and 78 females, with an average age of 
7.10 ± 3.59 years, ranging from 0.00 to 14.00 years. The area under curve (AUC), accuracy, sensitivity, specificity, 
precision, and F1 score for the model to identify label 1 were 0.810, 0.976, 0.995, 0.969, 0.922, and 0.957, respectively. 
The AUC, accuracy, sensitivity, specificity, precision, and F1 score for the model to identify label 2 were 0.890, 0.957, 
0.969, 0.915, 0.976, and 0.972, respectively. The model demonstrated a significant speed advantage, taking only 0.2 s 
to process an image compared to average 10 s required by the specialists. The model identified osteomyelitis with an 
accuracy of 0.976 and abscess with an accuracy of 0.957, both statistically better than the four orthopaedic surgeons, 
P < 0.05.
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Introduction
Given the various pathogenic factors, the diversity of 
affected regions, and the unpredictable sequelae and 
complications, pediatric musculoskeletal infections have 
remained a focal topic of research. The hip stands out 
as a primary site for septic arthritis in children [1–5]. 
Compared to other joints, the harm and consequences it 
entails are more severe, including avascular necrosis of 
the femoral head, chondrolysis, leg length discrepancy, 
hip joint dislocation or subluxation, and growth retarda-
tion [6]. The etiology of hip infections in children can be 
attributed to bacterial colonization of the synovial mem-
brane via a hematogenous route or can result from the 
adjacent osteomyelitis. In some cases, septic arthritis can 
be associated with psoas abscess causing hip symptoms 
[7]. Therefore, periarticular infections of the hip in chil-
dren may not only manifest as joint abscesses but may 
also encompass adjacent infections, such as osteomyeli-
tis, subperiosteal abscesses, and intramuscular abscesses 
[8–11]. Simple debridement and drainage of joints tends 
to neglect the management of adjacent infections, which 
would lead to prolonged hospitalization, increased costs, 
increased risk of reoperation, and a higher incidence of 
sequelae [2, 5, 10, 12–16].

MRI exhibits high sensitivity in the early diagnosis of 
musculoskeletal infections in children and can precisely 
show the extent of adjacent infections [17–19]. However, 
MRI sequences are numerous, and each image contains 
complex information as the infection progresses to the 
subacute or chronic stage. This complexity poses a chal-
lenge to unexperienced physicians in making a diagno-
sis. Accurate identification of osteomyelitis and abscess 
through MRI not only aids in localizing puncture sites for 
definitive diagnosis, but also serves as a critical factor in 
ensuring thorough debridement and drainage. This high-
lights the importance of using advanced imaging tech-
niques for accurate and comprehensive diagnosis and 
treatment planning in pediatric hip infections.

Artificial intelligence(AI) holds significant potential in 
analyzing medical images. Through deep learning algo-
rithms, AI can automatically detect and analyze abnor-
malities in images, assisting doctors in swiftly identifying 
lesions. Mask R-CNN [20] is a further improved network 
model developed based on the Faster R-CNN [21] frame-
work, representing an advanced target detection algo-
rithm in the field of AI. This model exhibits the capability 
to not only detect target regions within an image but 
also classify them based on the detected features, which 

closely resembles the diagnostic mindset of doctors. To 
the best of our knowledge, there have been no studies 
of AI-assisted MRI diagnostic models applied to pediat-
ric periarticular infections of the hip. Thus in this study, 
we aim to construct an AI-assisted MRI model based on 
Mask R-CNN, and to investigate the feasibility in identi-
fying surgical target areas in pediatric hip and periarticu-
lar infections.

Materials and methods
Study population
A retrospective study was conducted on 359 cases of hip 
and periarticular infections treated in three hospitals in 
China from January 2010 to January 2023. Among these 
cases, complete data and MRI examinations performed 
in 275 cases, aging of ≤ 14.00 years with an average age 
of 7.10 ± 3.59 years. Of these cases, 197 were male, and 
78 were female. There were 166 cases of septic arthritis, 
13 cases of acetabular osteomyelitis, 12 cases of proximal 
femoral osteomyelitis, 28 cases of septic arthritis com-
bined with acetabular osteomyelitis, 32 cases of septic 
arthritis combined with proximal femoral osteomyelitis, 
16 cases of septic arthritis combined with acetabular and 
proximal femoral osteomyelitis, and 8 cases of isolated 
soft-tissue infections alone.

The patients were included in the study based on the 
following criteria: (1) age of ≤ 14.00years; (2) hip and 
periarticular infectionsdefined as follows: (a) puru-
lent fluid observed during percutaneous puncture, with 
positive puncture fluid or blood cultures; (b) purulent 
fluid observed during percutaneous puncture, with-
out positive puncture fluid or blood cultures, while in 
combination with clinical history, physical examina-
tion, laboratory tests, and radiological findings indica-
tive of infections; (c) postoperative pathology confirming 
infections. The exclusion criteria were: (1) autoimmune 
inflammatory diseases; (2) bone tumors or tumor-like 
lesions; and (3) poor imaging quality for clear visualiza-
tion. This study obtained ethical approval from the eth-
ics committees of Nanjing Children’s Hospital (Ethical 
Approval Number: 202301026-1), Wuxi Children’s Hos-
pital (Ethical Approval Number: WXCH2023-02-029), 
and Qinghai Women’s and Children’s Hospital (Ethical 
Approval Number: 2022QHFELL 2KY).

Establishment of MRI database
Of the 275 cases, 64 patients underwent repeat 
MRI examinations, resulting in a total of 339 MRI 

Conclusion The Mask R-CNN model is reliable for identifying surgical target areas in pediatric hip and periarticular 
infections, offering a more convenient and rapid option. It can assist unexperienced physicians in pre-treatment 
assessments, reducing the risk of missed and misdiagnosis.
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examinations performed. The axial STIR images were 
selected as the target training dataset, comprising a 
total of 7970 images, which were randomly divided into 
three groups: training group(5579 images), validation 
group(1594 images), and testing group(797 images) using 
a 7:2:1 split ratio. MRI scans were conducted using a 3.0T 
HDX MR scanner with a 16-channel phased-array coil or 
a 1.5T MR scanner with an 8-channel phased-array coil.

Annotation of images
The determination of the osteomyelitis and abscess 
involved the examination of coronal and axial STIR 
images of the hip. Regions with bone marrow edema 
and damage were considered as osteomyelitis [22]. This 
process was jointly completed by an orthopaedic special-
ist and a radiologic specialist with more than 15 years of 
experience. In case of disagreement, we consulted the 
pediatric chief radiologist who specializes in pediatric 
musculoskeletal infection imaging. For the axial STIR 
images, the Labelme software (http://labelme.csail.mit.
edu) was used to outline the area of osteomyelitis marked 
as ‘label1’and the area of abscess marked as ‘label2’ 
(Fig. 1).

Network framework
The collected image data was fed into a network based 
on the Mask R-CNN framework, which simultaneously 
performed classification and segmentation tasks. The 
detailed processing pipeline was as follows (Fig. 2). First, 

we chose the ResNet-101 architecture [23], which con-
tains multiple convolutional layers, as the basic frame-
work for extracting deep semantic and high-dimensional 
features containing spatial information. Next, the Region 
Proposal Network (RPN) was employed to process the 
obtained feature images and generate the corresponding 
bounding boxes of candidate objects that may contain 
important information. The model then combined the 
Regions of Interest (ROI) and feature images to predict 
the categories of osteomyelitis (label 1) and abscess (label 
2) as well as the precise segmentation region by two sepa-
rate convolutional branches.

Mask R-CNN is an improved network model based on 
the Faster R-CNN framework. The Faster R-CNN con-
sists of two stages. The first stage introduces the RPN, 
consisting of a Fully Convolutional Neural Network 
(FCNN), to propose the bounding boxes of candidate 
objects. In this study, the model was configured to extract 
2048-dimensional feature images to generate local neigh-
bourhood regions, with each object corresponding to a 
score. The second stage is essentially Fast R-CNN [24], 
which involves pooling operations for ROIs, extracting 
feature vectors from the detected candidate boxes using 
Fully Connected Layers(FCL), and then performing the 
tasks of classification and bounding box regression. In 
addition to the class labels and bounding box offsets 
produced by Faster R-CNN, the Mask R-CNN adds a 
segmentation mask corresponding to the output of the 
third branch to the input samples, by proposing a binary 

Fig. 1 Labeling of hip joint axial STIR images using Labelme software. Bone marrow edema was labeled as label1 (yellow area) and the abscess as label2 
(green area). (A) Left acetabular osteomyelitis with pelvic abscess. (B) Right hip septic arthritis with femoral osteomyelitis. (C) Left hip septic arthritis with 
acetabular osteomyelitis
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mask for each ROI. The ResNet-101 was used as the 
convolutional backbone architecture for feature extrac-
tion over the whole image, achieving excellent gains in 
accuracy and speed. The network heads for bounding 
box recognition (classification and regression) and mask 
prediction for each ROI extended the network heads 
in Faster R-CNN into a more efficient and lightweight 
extended head. This head included the first five layers of 
the ResNet, suitable for computationally intensive data, 
enabling more precise segmentation mask results for 
label 1 and label 2.

Training and validation of mask R-CNN
We employed a network model based on Mask R-CNN to 
achieve the recognition, classification, and segmentation 
of pediatric hip and periarticular infections. Based on 
previous research [21, 24–26], we iteratively optimized 
the Mask R-CNN network framework. The ResNet-101 
network was used as the primary convolutional archi-
tecture to extract crucial features from MRI images. It 
is important to note that the foundational deep models 
of the ResNet series have already undergone training on 
the open-source ImageNet image database. These mod-
els could extract deep semantic features through down-
sampling operations, such as the texture information of 
hip joints and lesion regions in MRI images. The network 
combined shallow and high-dimensional semantic fea-
tures to achieve accurate classification and segmentation 
of MRI images.

In this study, the training group consisting of 5579 
images was input into the Mask R-CNN network. 
Through convolutional and pooling layers, low-dimen-
sional features were mapped into a high-dimensional 

space and further processed by FCL to obtain the output. 
After iterative training, the network gradually converged 
and stabilised.The validation groupof 1594 images was 
then fed into the trained Mask R-CNN network. The net-
work performed feature extraction, candidate box extrac-
tion, pooling, and other steps to generate regression and 
classification results. These results included the catego-
ries and segmentation regions corresponding to osteo-
myelitis and abscess.

Evaluation of mask R-CNN
The model was comprehensively analyzed using key met-
rics, including accuracy, sensitivity, specificity, precision, 
and F1 score. ROC curves were generated, and the AUC 
was calculated using the trapezoidal method. Calculation 
of the average time it took for the model and specialists 
to process an image in the test group.

Comparison with diagnostic results from clinicians
Four orthopaedic surgeons were selected to participate in 
the interpreting of MRI images. Two of them had 2 years 
of experience (Doctor 1 and Doctor 2), while the other 
two had 5 years of experience (Doctor 3 and Doctor 4). 
The evaluation was performed on the images of the test 
group. To ensure fairness in the study, physicians who 
were involved in image collection, labeling, and model 
construction were excluded. All clinical information, 
including names, gender, age, hospital ID and dates, were 
concealed.

Statistical analysis
Chi-square test was employed to compare the accu-
racy of the model and the four orthopaedic surgeons 

Fig. 2 The framework used by the network
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in identifyingosteomyelitis and abscess. All statistical 
analyses were conducted using SPSS 27.0 software (IBM 
Corp., Armonk, NY, USA), with statistical significance 
set at P < 0.05.

Results
The Mask R-CNN model accurately identified and 
labelled the locations and risk probabilities of osteomyeli-
tis and abscess in STIR images (Fig. 3). The performance 
of the model in identifying osteomyelitis and abscess in 
the test group and the ROC curves were shown in Figs. 4 
and 5. The diagnostic performance metrics for label 1 
were as follows: AUC of 0.810, accuracy of 0.976, sensi-
tivity of 0.995, specificity of 0.969, precision of 0.922, and 
F1 score of 0.957 (Table 1). For label 2, the metrics were 
as follows: AUC of 0.890, accuracy of 0.957, sensitivity 
of 0.969, specificity of 0.915, precision of 0.976, and F1 
score of 0.972 (Table 2). Additionally, the model demon-
strated a significant speed advantage, taking only 0.2 s to 

process an image compared to average 10 s required by 
the specialists.

In the STIR images, osteomyelitis shows bone marrow 
edema with high signal and abscess shows fluid-like high 
signal. The model was more sensitive than the specialists 
to imaging changes in bone marrow edema (Fig. 6). And 
the model was equally reliable in identifying microinfec-
tions (Fig. 7).

The comparative performance of the model and the 
four orthopaedic surgeons for osteomyelitis diagno-
sis was shown in Table  1 and for abscess diagnosis was 
shown in Table  2. The accuracy for osteomyelitis diag-
nosis by the model (0.976) was significantly higher than 
that of the four orthopaedic surgeons (0.928, 0.925, 0.954, 
0.937, respectively) with P < 0.05. Similarly, for abscess 
diagnosis, the model’s accuracy (0.957) was significantly 
higher than that of the four orthopaedic surgeons (0.897, 
0.887, 0.921, 0.912, respectively) with P < 0.05. Notably, 
the model outperformed the best-performing orthopae-
dic surgeon in all evaluated parameters.

Fig. 3 Axial STIR Images of pediatric hip infections. A series of axial STIR images of a pediatric hip were presented. The division of infected areas, including 
osteomyelitis and abscess, were labeled in red by the specialists. In contrast, the AI-generated diagnosis were depicted in blue, with the marker shade 
approaching crimson indicating a higher probability of infections
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Table 1 Comparison of osteomyelitis identification between the Mask R-CNN model and orthopaedic surgeons
Accuracy P-value Sensitivity Specificity Precision F1 Score

Mask R-CNN 0.976 0.995 0.969 0.922 0.957
 Doctor1 0.928 <0.001 0.883 0.945 0.855 0.868
 Doctor2 0.925 <0.001 0.901 0.933 0.831 0.865
 Doctor3 0.954 <0.001 0.944 0.957 0.889 0.916
 Doctor4 0.937 <0.001 0.930 0.940 0.850 0.888
P-values were used to assess and compare the diagnostic accuracy between the Mask R-CNN model and doctors

Fig. 5 The matrix diagram and ROC curve reflected the effect of Mask R-CNN-based deep learning system on the identification of abscess

 

Fig. 4 The matrix diagram and ROC curve reflected the effect of Mask R-CNN-based deep learning system on the identification of osteomyelitis
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Discussion
Pediatric hip and periarticular infections present with 
various manifestations, including septic arthritis, adja-
cent osteomyelitis, and intramuscular abscesses. There is 
a widespread consensus that early and thorough debride-
ment is necessary for joint abscesses, subperiosteal 
abscesses, and intramuscular abscesses [1–10]. The aim 
of this study was to construct an AI model to assist in 
surgical planning for orthopaedic surgeons. The results 
showed that the Mask R-CNN model was reliable for 
identifying osteomyelitis and abscess in pediatric hip and 

periarticular infections, offering a more convenient and 
rapid option.

Deep learning, a sophisticated neural network resem-
bling the human brain, has demonstrated the ability to 
tackle intricate problems that were previously challeng-
ing for low-level AI. In the medical field, deep learning 
has exhibited proficiency in interpreting two-dimen-
sional images, comparable to that of a human expert [27]. 
Convolutional Neural Networks (CNNs) have swiftly 
become a crucial method for analyzing medical images, 
particularly in image recognition and visual learning 

Table 2 Comparison of abscess identificationbetween the Mask R-CNN model and orthopaedic surgeons
Accuracy P-value Sensitivity Specificity Precision F1 Score

Mask R-CNN 0.957 0.969 0.915 0.976 0.972
 Doctor1 0.897 <0.001 0.924 0.802 0.942 0.933
 Doctor2 0.887 <0.001 0.918 0.780 0.936 0.927
 Doctor3 0.921 <0.001 0.944 0.842 0.954 0.949
 Doctor4 0.912 <0.001 0.939 0.819 0.948 0.943
P-values were used to assess and compare the diagnostic accuracy between the Mask R-CNN model and doctors

Fig. 6 AI identified bone marrow edema in the right acetabulum which was not detected by the specialists (Figure A and B). AI agreed with expert 
diagnosis when identifying abscess (Figure C and D)
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tasks. Numerous studies across various medical fields, 
including X-ray, ultrasound, CT, MRI, microscopy, and 
endoscopy, have reported promising results in diagno-
sis and classification using CNNs [28–33]. ResNet, as 

exemplified by He et al. [34], not only address the issue of 
gradient vanishing by allowing gradients to pass through 
shortcut paths but also enable the learning of iden-
tity functions, ensuring that higher-level performance 

Fig. 8 For chronic abscess, STIR images showed heterogeneous abnormal signals and discrepancies between specialists and AI diagnosis occured, but 
AI was able to show residual high signal areas of fluid through colour risk prediction (Figure A and B)

 

Fig. 7 AI accurately identified small localised osteomyelitis (Figure A and B) and abscess (Figure C and D) at expert level
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matches or surpasses the underlying layer. Moreover, 
Faster R-CNN, introduced in 2015, is recognized for its 
powerful processing speed in target detection. However, 
Mask R-CNN is an improved network model based on 
the Faster R-CNN framework. In addition to the class 
labels and bounding box offsets produced by Faster 
R-CNN, Mask R-CNN adds a segmentation mask corre-
sponding to the output of the third branch to the input 
samples, by proposing a binary mask for each ROI.

Detecting target lesions in medical images and accu-
rately segmenting them pose significant challenges. 
These two tasks are often considered as two indepen-
dent processes, and using a multi-task framework may 
lead to false edges and systemic errors. Mask R-CNN 
introduces the mask branch to maintain a clear spatial 
layout of objects, which not only enhances lesion seg-
mentation accuracy but also requires fewer parameters, 
resulting in minimal computational overhead. Specifi-
cally, in the process of proposing candidate box object, a 
mask branch parallel to the classification and bounding 
box regression branches is added. The ROI Align layer, 
implemented through bilinear interpolation, replaces 
the ROI Pooling layer, computing precise values of input 
features at four regularly sampled positions within each 
RoI bin. This addresses pixel-level misalignment caused 
by spatial quantization. In addition, the ResNet-101 and 
the Feature Pyramid Network (FPN) were used as the 
backbone network, making training simple and flexible, 
leading to improved accuracy and speed. In this study, 
Mask R-CNN was used to precisely remove unneces-
sary information from the original images and segment 
the complete infected regions, including osteomyeliti-
sand abscess. This approach provided effective data aug-
mentation, enabling the model to focus on critical target 
regions and improve the overall performance. Addition-
ally, the model could detect, classify and display risk 
probabilities in real-time. This can assist doctors in visu-
ally assessing the risk level of infected areas directly and 
identifying the core of lesions.

The model was more sensitive to identify bone marrow 
edema and even compensated for the omission of expert 
judgement in some images. Moreover, as the progression 
of disease and conservative treatment, the manifesta-
tions of infections could change correspondingly, espe-
cially when abscess enters the subacute or chronic stage, 
leading to varying degrees of absorption and fibrosis. 
This was reflected in changes in STIR images(Figure 8), 
which made accurate labeling challenging. However, AI 
learning was based on the imaging characteristics of the 
target lesion, which was more objective and precise, and 
the colour risk prediction showed that the results of AI 
were more accurate compared to the subjective judge-
ment of the specialists. Future work will involve adding 
more training datasets to the network to improve the 

accuracy and reliability of the model’s classification and 
segmentation results. This study has the following limi-
tations. Firstly, a subset of the included MRI images (64 
cases) were re-exmaine images taken after conserva-
tive treatment without improvement within 3–5 days. 
The differences in the inflammatory manifestations may 
have influenced the effectiveness of the model’s train-
ing. Secondly, due to the wide range of soft tissue infec-
tions involving bone joints, the associated information on 
MRI images is complex. However, this model was limited 
to learn and recognize the content with distinct imag-
ing characteristics, such as osteomyelitis and abscess, 
and could not assess the overall extent of the infection. 
In conclusion, this study demonstrated the feasibility of 
an AI-assisted MRI model based on Mask R-CNN for 
identifying surgical target areas in pediatric hip and peri-
articularinfections. It can assist unexperienced physi-
cians in pre-treatment assessments, helping them avoid 
oversights.
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