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Abstract
Background Osteosarcoma (OS) is the most common bone malignant tumor in children, and its prognosis is often 
poor. Anoikis is a unique mode of cell death.However, the effects of Anoikis in OS remain unexplored.

Method Differential analysis of Anoikis-related genes was performed based on the metastatic and non-metastatic 
groups. Then LASSO logistic regression and SVM-RFE algorithms were applied to screen out the characteristic genes. 
Later, Univariate and multivariate Cox regression was conducted to identify prognostic genes and further develop the 
Anoikis-based risk score. In addition, correlation analysis was performed to analyze the relationship between tumor 
microenvironment, drug sensitivity, and prognostic models.

Results We established novel Anoikis-related subgroups and developed a prognostic model based on three Anoikis-
related genes (MAPK1, MYC, and EDIL3). The survival and ROC analysis results showed that the prognostic model 
was reliable. Besides, the results of single-cell sequencing analysis suggested that the three prognostic genes were 
closely related to immune cell infiltration. Subsequently, aberrant expression of two prognostic genes was identified 
in osteosarcoma cells. Nilotinib can promote the apoptosis of osteosarcoma cells and down-regulate the expression 
of MAPK1.

Conclusions We developed a novel Anoikis-related risk score model, which can assist clinicians in evaluating 
the prognosis of osteosarcoma patients in clinical practice. Analysis of the tumor immune microenvironment and 
chemotherapeutic drug sensitivity can provide necessary insights into subsequent mechanisms. MAPK1 may be a 
valuable therapeutic target for neoadjuvant chemotherapy in osteosarcoma.
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Introduction
Osteosarcoma is a threatening bone malignancy that is 
common in adolescents and children [1]. Current treat-
ments include surgical resection and pre-and postop-
erative chemotherapy, with five-year survival rates of 
up to 70% for non-metastatic osteosarcoma patients [2]. 
Osteosarcoma, a type of bone cancer, is known for its 
resistance to conventional chemotherapy treatments, 
which can have a significant impact on the patient’s prog-
nosis [3]. Our aim is to identify the genes that hinder 
patients’ response to treatment and find suitable chemo-
therapy drugs. This would help us discover more effective 
targeted therapies that can overcome treatment resis-
tance and serve as prognostic indicators for patients with 
osteosarcoma [4].

Anoikis is a type of programmed cell death that 
occurs when cells separate from the correct extracellular 
matrix, thereby disrupting integrin ligation. It is a critical 
mechanism that prevents dysplastic cells from growing 
abnormally or attaching to inappropriate substrates [5]. 
Anoikis resistance was found to be an important mech-
anism of cancer growth, invasion, and metastasis [6]. 
Numerous studies have shown that Anoikis plays a sig-
nificant role in the occurrence and development of can-
cer. CPT1A promotes colorectal cancer cell metastasis by 
inhibiting Anoikis [7]. In addition, the CamKK2-AMPK 
signaling pathway leads to the metastasis and invasion of 
LKB1-deficient lung cancer [8]. However, the correlation 
between Anoikis and the prognosis of osteosarcoma still 
needs to be elucidated.

In the present study, we constructed a new model of 
risk score based on the Anoikis-related genes in osteosar-
coma. We further explored the predictive value of these 
genes and investigated the association between Anoi-
kis and the tumor immune microenvironment. We also 
focused on the analysis of related genes and chemothera-
peutic susceptibility. Our findings will provide a novel 
perspective for predicting individualized survival and 
better treatment of osteosarcoma patients.

Materials and methods
Data collection
The gene sets information, and corresponding clinical 
data of 84 osteosarcoma patients(63 nonmetastasis and 
21 metastasis) were obtained from the Therapeutically 
Applicable Research to Generate Effective Treatments 
(TARGET) database. Clinical information included gen-
der, age, diagnosis, metastasis, survival time, status, and 
follow-up. We downloaded another dataset of 53 osteo-
sarcoma patients from the Gene Expression Omni-
bus (GEO) database (GSE21257). We retrieved the 639 
Anoikis-related gene lists from the Genecards database 
(https://www.genecards.org/) and Harmonizome portals 
(https://maayanlab.cloud/Harmonizome/) [9] (Shown in 

Table S1 and Table S2). The expression data were normal-
ized to fragment per kilobase million (FPKM) values. The 
calculation of FPKM for gene i uses the following formula 
[10]:
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qi are raw read or fragment counts, li  is feature length, ∑
j
qj  and corresponds to the total number of mapped 

reads or fragments.

Identification of differentially expressed Anoikis-related 
genes
We applied the “limma” R package to find different 
expressions of Anoikis-related genes. Then we used the 
“heatmap” R package to accomplish the heatmaps of dif-
ferentially expressed genes (DEGs).

Machine learning algorithm
LASSO logistic regression and support vector machine 
recursive feature elimination (SVM-RFE) algorithms 
were used to screen out characteristic genes. LASSO 
logistic regression was performed based on the “glm-
net” R package [11]. SVM analysis, a machine learning 
method that depends on the “e1071” R package, can find 
the best variables by deleting the feature vectors gener-
ated by SVM [12].

Development and validation of the Anoikis-related genes 
(ARGS) prognostic model
Univariable Cox regression analysis was used to assess 
the prognostic value of each Anoikis-related DEG in the 
TARGET cohort. Those genes with p < 0.05 were chosen 
for further investigation, and multivariate Cox regres-
sion analysis was applied to shrink the potential genes 
and build the prognostic prediction model. The formula 
calculating for risk score was “Riskscore = Gene A∗Coef 
A + Gene B ∗ Coef B + … + Gene N ∗ Coef N” [13]. 
High- and low-risk score groups were divided according 
to the median Anoikis-related risk score of the training 
cohort. And the Kaplan-Meier analysis was conducted 
to compare survival possibility and overall survival time 
between the high- and low-risk groups. The area under 
the curve (AUC) was calculated to assess the sensitivity 
and specificity of the risk score system. Then, we used 
the univariate and multivariate Cox regression analysis 
to validate the independence of our prognosis model. 
Finally, we underwent external validation for the Anoi-
kis-related risk score system in the GEO cohort.

Development of a nomogram
We applied the univariate and multivariable Cox regres-
sion analysis (“survival” R package) to assess the risk 
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score combined with clinical information (age, gender, 
and metastatic status) in the TARGET cohort. Based 
on the results of Cox regression analysis, a nomogram 
was presented to predict the prognosis of osteosarcoma 
patients. Besides, the calibration curve was shown to 
evaluate the nomogram’s performance.

Gene set enrichment analysis (GSEA)
Gene set enrichment analyses (GSEA) software was used 
to identify the enriched pathways between the two cluster 
groups based on the curated genesets (go.v7.4.symbols.
gmt and kegg.v7.4.symbols.gmt) [14].

Immune Cell Infiltration and Immune function analysis
We used the “GSVA” R package to quantify immune cell 
infiltration and immune function in the TARGET cohort 
[15]. Subsequently, we analyzed the correlation between 
the two clusters and different enriched pathways.

Drug susceptibility analysis
The “OncoPredict” R package was applied to predict in 
vivo drug responses in cancer patients [16]. OncoPre-
dict fits the gene expression profile of tissues to the half-
maximal inhibitory concentration (IC50) of the cancer 
cell lines to drugs downloaded from Genomics of Drug 
Sensitivity in Cancer (GDSC; https://www.cancerrx-
gene.org/) and the gene expression profile of cancer lines 
from the Broad Institute Cancer Cell Line Encyclopedia 
(CCLE; https://portals.broadinstitute.org/ccle_legacy/
home). 198 drugs were calculated in total, and the sen-
sitivity of the drugs was analyzed using unpaired t-tests. 
p < 0.05 was considered statistically significant.

In addition, we downloaded the NCI-60 human cancer 
cell lines from the CellMiner database (https://discover.
nci.nih.gov/cellminer) [17]. Pearson correlation analysis 
was applied to assess the relationship between MAPK1 
and chemosensitivity.

Single-cell sequencing analysis
The Tumor Immune Single Cell Hub (TISCH, http://
tisch.comp-genomics.org) database is a comprehensive 
website that can realize the visualization of the tumor 
immune microenvironment [18]. Gene expression data 
were downloaded from the GEO database (GSE162454). 
All data were uniformly processed with a standardized 
cell-type annotation and differential expression analysis.

Cell lines and cultures
One human osteoblast cell line (hFOB1.19) and two 
human osteosarcoma cell lines (U-2OS and MG-63) were 
obtained from the National Collection of Authenticated 
Cell Cultures (Shanghai, China). Dulbecco’s modified 
Eagle’s medium (DMEM, Gibco) contains 1% penicillin/
streptomycin (Thermo Fisher Scientific, United States) 

and 10% fetal bovine serum (FBS, Gibco). We cultured 
human osteoblast cells in the medium at 34℃ with 5% 
CO2, and the osteosarcoma cells at 37℃ with 5% CO2.

Cell viability assay
Following the manufacturer’s protocol, U-2OS and 
MG-63 cell survival was assessed via the CCK-8 kit. 
About 5 × 10³ cells were extracted from U-2OS and 
MG-63 cell suspensions, respectively, and incubated at 
37℃ and 5% CO2 for 24  h in each well of the 96-well 
plate. The cells were then treated with different concen-
trations of Nilotinib (0, 10, 20, and 30 µM). Cells were 
washed using phosphate-buffered saline (PBS) after incu-
bation. 100 µl of DMEM containing 10 µl CCK-8 solution 
was added to each well, then the mixture was incubated 
for 2–4  h. The absorbance of the wells was measured 
using a microplate reader at 450 nm.

Western blotting
After cell treatments, whole-cell proteins from hFOB, 
U-2OS, and MG-63 cells were extracted using com-
mercial kits (Beyotime) according to the manufacturer’s 
instructions. The protein quantification was determined 
using the BCA protein assay kit. Then 20 ng of protein 
from each group was resolved via sodium dodecyl sul-
fate-polyacrylamide gel electrophoresis (SDS PAGE) 
and transferred to a PVDF membrane. Membranes 
were blocked with 5% non-fat milk. Then the blots were 
cut prior to incubated with primary antibodies against 
MYC (1:1000), MAPK1 (1:1000), GAPDH (1:1000), Bcl-2 
(1:1000), Bax (1:1000), and CASP3 (1:1000) overnight 
at 4℃. Membranes were washed and further incubated 
with the respective secondary antibodies. Electroche-
miluminescence plus reagent (Invitrogen) was used to 
detect the bands. Blots were imaged and quantified using 
Image Lab 3.0 software.

TUNEL staining
To measure U-2OS apoptosis under various 24  h treat-
ments, TUNEL labeling was used. After being fixed for 
15  min at room temperature in 4% paraformaldehyde 
(PFA), U-2OS were rinsed with PBS and permeabilized 
for 3  min on ice using 0.1% Triton X-100 buffer. Fol-
lowing observation under a confocal microscope, apop-
totic U-2OS were stained with the TUNEL staining kit 
reagents, and the nuclei were counterstained with DAPI 
for 10  min. Apoptotic U-2OS were then counted and 
analyzed.

RNA extraction and real-time PCR analysis (RT-PCR)
Following the manufacturer’s instructions, total RNA 
was isolated from the hFOB, U-2OS, and MG-63 using 
TRIzol (Invitrogen), and then reverse-transcribed into 
cDNA (MBI Fermentas, Germany), and the RT-PCR 
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reaction was performed in the RT-PCR system (Bio-
Rad Laboratories, CA, USA), according to the operat-
ing instruction. The expression levels of relative genes 
were calculated via a comparative quantification method 
(2 − ΔΔCt formula) and were normalized to internal con-
trol, GAPDH. MYC and MAPK1 primers were designed 
with the NCBI Primer-Blast Tool, and they are presented 
below:

MYC

a. (F) 5’  G G C T C C T G G C A A A A G G T C A 3’,
b. (R) 5’  C T G C G T A G T T G T G C T G A T G T 3’.

MAPK1

c. (F) 5’  T A C A C C A A C C T C T C G T A C A T C G 3’,
d. (R) 5’  C A T G T C T G A A G C G C A G T A A G A T T 3’.

Statistical analysis
All statistical analysis was conducted by using R software 
(Version:3.6.1) and GraphPad Prism (Version:7.00). Com-
parisons between two independent groups were applied 
using a two-tailed, unpaired t-test. Two-way analysis of 
variance (ANOVA) with Tukey’s multiple comparisons 

test was applied to analyze differences among three or 
more groups when the data were normally distributed. 
What’s more, nonparametric Mann-Whitney U tests 
were used for groups if the data were not normally dis-
tributed. P value < 0.05 was considered statistically 
significant.

Results
Identification of characteristic genes
The 639 Anoikis-related gene expression levels were 
compared in the TARGET database from metastatic 
and non-metastatic tissues. We identified 28 DEGs (all 
P < 0.05). The RNA levels of these Anoikis-related genes 
are shown in Fig. 1A (red: high expression level; blue: low 
expression level). LASSO logistic regression and SVM-
RFE algorithms were applied to screen out the charac-
teristic genes related to metastasis (Fig.  1B, C). Finally, 
we ended up with 12 genes which were selected between 
LASSO and SVM- RFE algorithms for further research., 
including MAPK1, ERBB2, CALR, PIK3CG, MYC, 
SIRT3, PIN1, CASP6, FBLIM1, PIP5K1C, DNMT1, and 
CXCL14 (Fig. 1D).

Cancer classification based on the DEGs
We further investigated the association between the 
expression level of 12 Anoikis-related DEGs and osteo-
sarcoma. Hence, we performed a consensus clustering 

Fig. 1 Identification of anoikis-related gene signature. (A) A heatmap (blue: low expression level; red: high expression level) of genes between the 
metaststic and the non-metaststic tumor tissues. (B) LASSO coefficient profiles. (C) SVM- RFE algorithm. (D) Twelve characteristic genes were selected 
between LASSO and SVM- RFE algorithms
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analysis with 84 osteosarcoma patients. The intragroup 
correlations decreased as the clustering variable (k) 
increased from 2 to 10. when k = 2, the 84 osteosarcoma 
patients could be well divided into two clusters (Fig. 2A). 
We compared survival rates among the two clusters 
and found significant differences among these clusters’ 
patients (p < 0.01, Fig.  2B). Then the principal compo-
nents analysis (PCA) results indicated that patients sep-
arated into A and B groups had significantly different 
discrimination (Fig.  2C). The relationship between the 
expression of these genes and the clinical characteristics, 
including gender, age (< 15 or > 15 years), metastasis sta-
tus (metastatic or non-metastatic), and primary tumor 
site (Arm/hand Leg/Foot and other), is displayed in a 
heatmap (Fig. 2D).

Immune status and tumor microenvironment (TME)
To study the TME differences between the two clusters, 
we further used ssGSEA to evaluate the enrichment 
scores of 23 types of immune cells. Several immune cell 
infiltrates were significantly enriched in group A, such as 
Macrophages, CD8 T cells, activated NK cells, and others 
(Fig.  3A). Gene Set Variation Analysis (GSVA) revealed 
that the following pathways were significantly activated 
in group A: JAK/STAT signaling pathway, chemokine sig-
naling pathway, and others. Interestingly, Arginine and 

Proline Metabolism pathways were much more active in 
group B (Fig. 3B, C).

Development of a prognostic model in the TARGET cohort
A total of 84 osteosarcoma specimens were matched to 
corresponding patients with complete survival informa-
tion. Univariate Cox regression analysis was used to ini-
tially screen genes associated with survival. The 4 genes 
(MAPK1, PIK3CG, MYC, EDIL3) that met the criteria 
of P < 0.05 were further analyzed. Then multivariate Cox 
regression analysis was performed, and a three-gene sig-
nature was constructed. The risk score was calculated 
as follows: risk score = (-0.884* MAPK1 exp.) + (0.656* 
MYC exp.) + (-0.772* EDIL3 exp.). According to the 
median risk score, we divided 84 osteosarcoma patients 
into high- and low-risk subgroups (Fig.  4A). High-risk 
patients had more deaths and shorter survival times 
than low-risk patients (Fig. 4B). The Kaplan-Meier curve 
showed that overall survival time and possibility were sig-
nificantly lower in the high-risk group (Fig. 4C, P < 0.001). 
The value of the area under the curve was 0.948 for 
1-year, 0.788 for 3-year, and 0.783 for 5-year survival pre-
diction (Fig. 4D).

External validation of risk score in a GEO cohort
53 osteosarcoma patients from a GEO cohort (GSE21257) 
were extracted as the external validation set. Based on 

Fig. 2 Tumor classification based on DEGs. (A) 84 osteosarcoma patients were grouped into two clusters via the consensus clustering matrix (k = 2). (B) 
Kaplan–Meier overall survival curves for the two clusters. (C) PCA plot. (D) A heatmap (blue: low expression level; red: high expression level)
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Fig. 4 Construction of risk signature in the TARGET cohort. (A) Distribution of patients based on the risk score. (B) The survival status for each patient (left 
side of the dotted line: low-risk population; right side of the dotted line: high-risk population). (C) Kaplan–Meier curves for the overall survival of patients 
between the high- and low-risk groups. (D) ROC curves

 

Fig. 3 Immune status and tumor microenvironment. (A) The ssGSEA analysis for immune cells between two clusters. (B) The GSVA (Gene Set Variation 
Analysis) for KEGG pathways between two clusters. (C) GSEA (Gene set enrichment analysis) in B cluster (low survival group)
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the median risk score of the TARGET model, 30 patients 
were regarded as the high-risk group, while the other 23 
were at low risk (Fig. 5A). The risk scores, survival time, 
and survival status of patients are shown in Fig. 5B. High-
risk patients had higher mortality and shorter overall sur-
vival time. Besides, the Kaplan-Meier curve results also 
showed a lower survival possibility in the high-risk group 
(Fig.  5C, P = 0.024). AUC values of external validation 
also showed an optimistic prediction, and the AUC was 
0.801 for 1 year, 0.787 for 3 years, and 0.744 for 5 years 
(Fig. 5D).

Independent prognostic value of the risk model
Univariate and multivariable Cox regression models were 
conducted to assess independent prognostic factors of 
the gene-based risk score and clinical characteristics. In 
the TARGET cohort, univariate Cox analysis showed the 
metastatic status, primary tumor site, and risk score were 
significantly associated with prognosis (Fig. 6A).

Nomogram
According to the prognostic model and clinical factors 
(age, gender, and metastatic status), we developed a risk 
estimation nomogram in the TARGET cohort (Fig.  6B). 
1-, 3-, and 5-year calibration curves showed that the 
nomogram consistently predicted the survival rate 
(Fig. 6C).

Immune microenvironment analysis
The immune infiltration of 22 immune cells was investi-
gated by the CIBERSORT algorithm (Fig. 7A). As shown 
in Fig.  7B, there were apparent correlations between 
various immune cells in the prognostic model. Further-
more, we validated the correlation of MAPK1, PIK3CG, 
and EDIL3 expression and immune cell infiltration in 
the datasets of GSE162454 from the TISCH database 
(Fig.  7C). The results showed MAPK1, PIK3CG, and 
EDIL3 play a valuable role in the fibroblast cell(Fig. 7D). 
In osteosarcoma, immunotherapy often faces hurdles 
posed by cancer-associated fibroblasts (CAFs) that 
secrete dense extracellular matrix components and cyto-
kines. Directly removing CAFs may prove ineffective and 
even promote tumor metastasis [19]. Therefore, we spec-
ulate that the metastasis and deterioration of osteosar-
coma can be inhibited by influencing these three targets.

OncoPredict for drug susceptibility analysis
To explore suitable drugs for patients with high-risk 
scores, we transformed the gene expression of osteo-
sarcoma tissues in the TARGET group into a drug sen-
sitivity matrix using the OncoPredict algorithm (Fig. 8). 
Osteosarcoma tissues from high-risk group patients 
were more sensitive to 6 drugs than those osteosarcoma 
tissues from low-risk group patients, including those of 
Dihydrorotenone (mitochondrial inhibitor), MG-132 

Fig. 5 Validation of the risk model in the GSE21257. (A) Distribution of patients in the GSE21257 based on the median risk score of the TARGET cohort. (B) 
The survival status for each patient. (C) Kaplan–Meier curves. (D) Time-dependent ROC curves for osteosarcoma
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(autophagy activator), Sabutoclax(targeting drug, Bcl-2 
inhibitor), Telomerase Inhibitor IX(Telomerase Inhibi-
tor), Vorinostat(HDAC1 inhibitor), and VX-11e ERK 
inhibitor). These drugs may help in the treatment of 
osteosarcoma patients with high-risk scores.

Verification the expression of two predictive genes
To verify the expression levels of MAPK1 and MYC in 
osteosarcoma, we performed Western blotting and RT-
PCR analysis on the osteoblast cell line hFOB1.19 and 
two osteosarcoma cell lines (U-2OS and MG-63). The 

Fig. 7 Immune microenvironment. (A) The immune infiltration of 22 immune cells between low- and high-risk group. (B) An immunocyte related heat-
map. (C, D) single-cell cluster in TISCH database

 

Fig. 6 Construction of the predictive model. (A) Independence detection of the constructed risk prediction model. (B) A prognostic model to predict 
overall survival in the TARGET cohort. (C) Calibration curves of the OS nomogram model
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results showed that the expression levels of MYC and 
MAPK1 were significantly upregulated in two osteosar-
coma cell lines (U-2OS and MG-63) compared with the 
osteoblast cell line hFOB1.19 (Fig. 9A, B).

Nilotinib can decrease osteosarcoma cell viability and 
down-regulate MAPK1 expression
We further investigated the sensitivity of MAPK1 to che-
motherapeutic agents. The results showed that MAPK1 
was sensitive to Nilotinib (Fig. 10A, p = 0.035). Nilotinib 
is an anti-vascular targeted agent that promotes apop-
tosis of several sarcoma cell lines, thereby inhibiting 
the metastasis of osteosarcoma [20]. However, there are 

few reports in the literature. To evaluate the therapeutic 
effect of Nilotinib on osteosarcoma, two types of osteo-
sarcoma cell lines (U-2OS and MG-63) were treated with 
different doses of Nilotinib (10, 20, and 30 µM). Then the 
U-2OS and MG-63 cell survival rate was assessed via the 
CCK-8 kit. We found that Nilotinib has a dose-depen-
dent cytotoxic effect on osteosarcoma cell lines (Fig. 10B, 
C). Subsequently, we used the western blotting analysis 
to detect the expression level of MAPK1 in the U-2OS 
and MG-63 osteosarcoma cell lines in response to Nilo-
tinib (30µM). The results showed that the expression of 
MAPK1 was down-regulated in both osteosarcoma cell 
lines after Nilotinib treatment (Fig. 10D, E, F).

Fig. 9 The expression levels of two genes between osteosarcoma cell lines and osteoblasts. (A) The qRT-PCR results of MYC and MAPK1. (B) Western 
blotting results of MYC and MAPK1 expression

 

Fig. 8 OncoPredict for drug susceptibility analysis
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Nilotinib promotes apoptosis in two osteosarcoma cells
The results of Western blotting analysis demonstrated 
that the expression levels of Bax and CASP3 were 
enhanced. In contrast, the expression of Bcl-2 decreased 
after applying Nilotinib to treat MG-63 osteosarcoma 
cells. What’s more, the effect of the high-concentration 
group (30µM) on apoptosis-related proteins in MG-63 
osteosarcoma cells was more evident than the low-con-
centration group (10µM) (Fig.  11A, B). In addition, we 
applied TUNEL to evaluate the treatment of Nilotinib 
for U-2OS osteosarcoma cells. As expected, the number 
of TUNEL-positive cells was upregulated with increased 
Nilotinib concentration (Fig. 11C, D).

Discussion
Osteosarcoma, one of the common malignant bone 
tumors, occurs predominantly in the long bone epiphy-
sis of children and adolescents and often develops metas-
tasis [21]. Effective therapeutic strategies, including 
surgery, radiotherapy, and chemotherapy, are considered 
against osteosarcoma [22, 23]. However, the progno-
sis of osteosarcoma patients is still poor, and the 5-year 
survival rate is low [24]. Osteosarcoma patients with the 
same clinical risk factors may significantly differ in prog-
nosis and treatment [25]. Therefore, it is of great sig-
nificance for the early diagnosis, targeted therapy, and 
prognosis analysis of osteosarcoma to deeply understand 

the molecular pathological mechanism and screen key 
biomarkers related to the occurrence and development of 
osteosarcoma. At present, many risk scoring systems and 
prognosis predictions have been developed in clinical 
application and improvement of patient prognosis man-
agement.For example, The four pseudo-genetic markers 
developed by Xiaoqiang Zhang et al. apply to patients of 
different sex, age, and metastatic status. These four pseu-
dogenes are involved in the regulation of malignant phe-
notype, immunity, and DNA/RNA editing, and have a 
good predictive effect on the treatment of osteosarcoma 
patients [26]. The result of this study proves that machine 
learning has a good prediction effect. In addition, the 
use of various algorithms will take your essay to the next 
level. Lai et al. used a variety of different algorithms to 
construct a new regulation network of gene-lncRNA-
pathway-immunocyte [27]. miRNA is the main target of 
function. Therefore we decided to combine the fields of 
machine learning and biology to develop an entirely new 
gene predictive model.

Programmed cell death is regulated by various genes 
and plays an important role in the growth and develop-
ment of organisms. It is also essential for maintaining 
tissue and organ homeostasis and is involved in a variety 
of pathological processes. In addition to apoptosis, iron 
death, necrotization and cell pyrodeath also contribute to 
the occurrence and development of cancer [28].Anoikis 

Fig. 10 Nilotinib can reduce cell viability and MAPK1 expression in osteosarcoma cells. (A) Scatter plot of relationship between MAPK1 expression and 
drug sensitivity. (B) Evaluation of MG-63 osteosarcoma cell viability using CCK-8 assay after exposure to nilotinib for 24 h. (C) Evaluation of U-2OS osteo-
sarcoma cell viability using CCK-8 assay after exposure to nilotinib for 24 h. (D, E, F) The expression level of MAPK1 protein in osteosarcoma cells. GAPDH 
serves as an internal standard. The gels have been run under the same experimental conditions. All experiments were repeated in triplicates (n = 3). The 
obtained data are represented as mean ± SE. Significance: *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001
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is an important defense of the organism. Once normal 
epithelial cells lose contact with the extracellular matrix 
(ECM), they rapidly undergo apoptosis [29]. However, 
a common feature of tumor development and growth is 
the ability of transformed cells to survive under indepen-
dent growth conditions [30]. This resistance to Anoikis 
has been shown to be associated with loss of intracel-
lular environmental homeostasis, cancer growth, and 
metastasis, and this acquired ability is known as lost-nest 
apoptosis resistance [31]. Cancer cells with Anoikis resis-
tance can spread to distant tissues or organs through the 
peripheral circulatory system and cause cancer metas-
tasis [32]. In this context, Anoikis resistance is a natural 
molecular prerequisite for the spread of invasive cancer 
metastases [33]. Studying the molecular mechanism con-
trolling Anoikis resistance will help search for effective 
therapies for malignant tumors.

In our study, we comprehensively assessed the Anoi-
kis-related genes in osteosarcoma. We found 28 Anoi-
kis-related genes were differentially expressed between 
metastasis and non-metastasis groups. Then we used 
Lasso and SVM-RFE algorithms to screen out feature 
genes. The two clusters generated by consensus cluster-
ing analysis based on the feature genes showed significant 
differences in survival probability. Next, we constructed a 

3-gene risk signature by univariable Cox and multivariate 
Cox regression analyses. Further, we evaluated the prog-
nostic value of these Anoikis-related gene regulators in 
training and validation cohorts.

Among the three prognosis gene signatures, MAPK1 
was a significant target in osteosarcoma treatment [34]. 
MAPK1/3 kinase can attenuate Mitophagy and promotes 
breast cancer bone metastasis [35]. In addition, Mitoph-
agy which plays an important role in carcinogenesis and 
tumor progression, occurs through an alternative autoph-
agy pathway, requiring the MAPK1 and MAPK14 signal-
ing pathways [36, 37]. Previous studies have shown that 
ezrin is required for metastasis of osteosarcoma in mouse 
models, and high expression levels are often associated 
with adverse outcomes in dogs and patients with osteo-
sarcoma [38]. Ezrin’s ability to attach cell membranes to 
the actin cytoskeleton allows the cell to interact directly 
with its microenvironment, thereby facilitating signal 
transduction through growth factor receptors and adhe-
sion molecules. Furthermore, in mouse models, Ezrin-
mediated metastasis survival was found to be partially 
dependent on MAPK signaling [38, 39]. Therefore, we 
speculate that MAPK1 may be an effective target to influ-
ence the resistance of osteosarcoma patients to anoikis by 
altering ezrin expression, thereby affecting the prognosis 

Fig. 11 (A, B) The protein expression levels of Bcl-2, Bax, and CASP3 in osteosarcoma cells. (C, D) TUNEL staining was used to detect osteosarcoma 
cell apoptosis (bar: 50 μm; nuclei: blue; positive cells: green). All experiments were repeated in triplicates (n = 3). The obtained data are represented as 
mean ± SE. Significance: *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001

 



Page 12 of 14Wu et al. BMC Musculoskeletal Disorders          (2024) 25:437 

of osteosarcoma patients. MYC is a transcription factor 
that dimerizes with MAX to bind DNA and regulate gene 
expression [40]. It has been known that MYC promotes 
cell growth and proliferation in normal cells, but it also 
contributes to the genesis of many human cancers [41–
43]. MYC could mediate cancer cell energy metabolism 
and may be a new anticancer therapy [44]. Moreover, 
previous research also proposes that therapies target-
ing the MYC pathway will be vital to reversing cancer-
ous growth and restoring antitumor immune responses 
in patients with MYC-driven cancers [45]. Inhibition of 
PML could lead to a remarkable growth arrest associated 
with a decrease in MYC kinase levels [46]. EDIL3 was 
identified as a novel regulator of epithelial-mesenchymal 
transition (EMT), contributing to angiogenesis, metas-
tasis, and recurrence of hepatocellular carcinoma [47]. 
EDIL3 is also a strong and highly accurate diagnostic 
marker for breast cancer [48]. Moreover, in accordance 
with previous studies, we found that tumor-derived 
EDIL3 was involved in tumor-associated bone loss [49]. 
We believe these three genes may be essential to osteo-
sarcoma’s occurrence, development, and prognosis.

Targeting the tumor immune and bone microenviron-
ment could open up new therapeutic opportunities for 
patients [50]. According to the immune cell Infiltration 
results, this new scoring system is closely related to the 
tumor immune microenvironment. We then used single-
cell sequencing analysis to verify our results, showing 
that the three genes characteristic of the novel scoring 
model are closely related to immune cells.

Currently, there are many factors that contribute to 
cancer chemotherapy resistance. For example, the regula-
tion of circular RNA on downstream targets [51, 52]. We 
want to find new therapeutic targets and drugs. Subse-
quently, we evaluated the association between relevant 
prognostic genes and chemotherapeutic drug sensitiv-
ity to apply our findings to clinical treatment. From the 
results, we found that MAPK1 is an important therapeu-
tic target sensitive to various chemotherapy drugs.

We found that the expression level of MAPK1 was sig-
nificantly decreased in osteosarcoma cells treated with 
Nilotinib. What’s more, the expression level of MAPK1 
decreased in a dose-dependent manner. In addition, 
through a series of studies, we found that Nilotinib could 
significantly increase the apoptosis of osteosarcoma cells 
by down-regulating MAPK1 expression. We suggest 
that Nilotinib may provide a better therapeutic effect for 
osteosarcoma patients with elevated MAPK1 expression. 
MAPK1 may be a key anoikis-related target for the treat-
ment of osteosarcoma.

However, there are some limitations to our study. 
Firstly, we constructed and validated our risk score model 
based on public databases, and the sample size was not 
rich enough. Therefore, our model needs to be further 

validated based on our clinical data in the future. More-
over, the mechanism of these three predictive genes 
could be more precise. We will conduct comprehensive 
functional experiments and multi-omics analysis in our 
future research.

Conclusion
In our study, we looked forward to exploring rational 
prognostic predictors for osteosarcoma patients with 
metastasis. To predict prognosis, we developed and 
validated an Anoikis-based risk score system for osteo-
sarcoma patients with metastasis. The AUC value also 
showed this Anoikis-related risk score system had a good 
prediction performance. Our study provides a novel gene 
signature for predicting the prognosis of osteosarcoma 
patients with metastasis. It opens an avenue for future 
studies of the relationships between Anoikis-related 
genes and immunity in these patients. Finally, MAPK1 
may be a vital biotherapeutic target.
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