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Abstract
Background  The frequency of anterior cervical discectomy and fusion (ACDF) has increased up to 400% since 
2011, underscoring the need to preoperatively anticipate adverse postoperative outcomes given the procedure’s 
expanding use. Our study aims to accomplish two goals: firstly, to develop a suite of explainable machine learning 
(ML) models capable of predicting adverse postoperative outcomes following ACDF surgery, and secondly, to embed 
these models in a user-friendly web application, demonstrating their potential utility.

Methods  We utilized data from the National Surgical Quality Improvement Program database to identify patients 
who underwent ACDF surgery. The outcomes of interest were four short-term postoperative adverse outcomes: 
prolonged length of stay (LOS), non-home discharges, 30-day readmissions, and major complications. We utilized five 
ML algorithms - TabPFN, TabNET, XGBoost, LightGBM, and Random Forest - coupled with the Optuna optimization 
library for hyperparameter tuning. To bolster the interpretability of our models, we employed SHapley Additive 
exPlanations (SHAP) for evaluating predictor variables’ relative importance and used partial dependence plots 
to illustrate the impact of individual variables on the predictions generated by our top-performing models. We 
visualized model performance using receiver operating characteristic (ROC) curves and precision-recall curves (PRC). 
Quantitative metrics calculated were the area under the ROC curve (AUROC), balanced accuracy, weighted area under 
the PRC (AUPRC), weighted precision, and weighted recall. Models with the highest AUROC values were selected for 
inclusion in a web application.

Results  The analysis included 57,760 patients for prolonged LOS [11.1% with prolonged LOS], 57,780 for non-home 
discharges [3.3% non-home discharges], 57,790 for 30-day readmissions [2.9% readmitted], and 57,800 for major 
complications [1.4% with major complications]. The top-performing models, which were the ones built with the 
Random Forest algorithm, yielded mean AUROCs of 0.776, 0.846, 0.775, and 0.747 for predicting prolonged LOS, non-
home discharges, readmissions, and complications, respectively.
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Background
Anterior cervical discectomy and fusion (ACDF) is a 
common surgical procedure in the treatment of cervical 
spine conditions such as spondylosis or stenosis, caus-
ing symptoms such as radiculopathy and/or myelopathy 
[1, 2]. The anterior approach enables direct decompres-
sion of the spinal cord and reconstruction of the anterior 
column of the spine while providing access to the cervi-
cal spine along anatomic planes [3, 4]. According to the 
recent literature, the frequency of ACDF has increased 
by up to 400% since 2011 [5]. The increased practice of 
ACDF underscores the need to anticipate adverse post-
operative outcomes preoperatively [6–10].

In an effort to control healthcare costs, emphasis is 
being placed on the use of registries and databases to 
track and establish risk-adjusted estimates for these 
outcomes. This has necessitated clinicians to manage 
extensive volumes of complex data, sparking the need 
for robust analytical techniques [11]. Machine learning 
(ML) algorithms, capable of leveraging high-dimensional 
clinical data, are increasingly employed to develop accu-
rate patient risk assessment models, contribute to the 
development of guidelines, and adjust care to individ-
ual patient needs, thereby influencing healthcare deci-
sions. These algorithms present several advantages over 
traditional prognostic models, often employing some 
form of linear or logistic regression. Firstly, ML seldom 
requires prior knowledge of primary predictors [12]. 
Secondly, these advanced ML algorithms often impose 
fewer constraints on the number of predictors used for 
a given dataset than logistic regression, proving benefi-
cial in handling large datasets with numerous predictors, 
where associations between predictors and outcomes are 
not always obvious. Lastly, these algorithms can identify 
complex, nonlinear relationships within datasets, which 
are often overlooked by regression-based models [13]. 
Owing to these advantages, ML algorithms frequently 
outperform regression methods in terms of reliability and 
accuracy when applied to identical datasets [14, 15].

Several studies have demonstrated the predictive 
potential of ML models for various spinal procedures 
and pathologies, including ACDF [11, 16–25]. Yet, a vast 
majority of these investigations predominantly exist as 
feasibility studies, with a limited contribution towards 
the practical application of these models potentially in 
clinical environments. Our study seeks to address this 

gap by developing ML models focused on the predic-
tion of short-term adverse postoperative outcomes after 
ACDF for degenerative cervical disease. We focus on 
short-term outcomes because they have critical implica-
tions for hospital reimbursements, surgeon evaluations, 
and patient recovery and satisfaction. Following model 
development, we intend to incorporate these models into 
an accessible web application, thereby demonstrating 
their pragmatic value.

Methods
The methodology employed is summarized with a flow-
chart in Fig. 1.

Data source
Data for this study is from the American College of Sur-
geons (ACS) National Surgical Quality Improvement 
Program (NSQIP) database, which was queried to iden-
tify patients who underwent ACDF from 2014 to 2020. 
Detailed information about the database and data collec-
tion methods have been provided elsewhere [26].

Guidelines
We followed Transparent Reporting of Multivariable 
Prediction Models for Individual Prognosis or Diag-
nosis (TRIPOD) [27] and Journal of Medical Internet 
Research (JMIR) Guidelines for Developing and Report-
ing Machine Learning Predictive Models in Biomedical 
Research [28].

Study population
We queried the NSQIP database to identify patients in 
whom the following inclusion criteria were met: (1) Cur-
rent Procedural Terminology (CPT) codes for ACDF 
surgery (22,551, 22,552, 22,554, and 22,585), (2) elective 
surgery, (3) operation under general anesthesia, and (4) 
surgical subspecialty neurosurgery or orthopedics. We 
excluded patients with the following criteria: (1) emer-
gency surgery, (2) patients with any unclean wounds 
(defined by wound classes 2 to 4), (3) patients with sep-
sis, shock, or systemic inflammatory response syndrome 
48  h before surgery, (4) patients with American Society 
of Anesthesiologists (ASA) physical status classification 
score of 4, 5 or not assigned, (5) patients still in hospital 
after 30 days since the NSQIP database captures post-
operative outcomes up to 30 days after surgery, and (6) 

Conclusions  Our study employs advanced ML methodologies to enhance the prediction of adverse postoperative 
outcomes following ACDF. We designed an accessible web application to integrate these models into clinical practice. 
Our findings affirm that ML tools serve as vital supplements in risk stratification, facilitating the prediction of diverse 
outcomes and enhancing patient counseling for ACDF.

Keywords  Artificial intelligence, Machine learning, Outcome prediction, Web application, ACDF, Personalized 
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patients who were discharged to hospice, those who left 
against medical advice, and those who passed away. We 
excluded patients with 30-day mortality since our pre-
liminary analysis of our patient cohort yielded only 19 
patients with 30-day mortality, thus we could not inves-
tigate mortality as an outcome of interest due to the 
very few number of patients. Additionally, we excluded 
patients who underwent concomitant posterior cervi-
cal spinal surgery and total disc arthroplasty with rel-
evant CPT codes (22,590, 22,595, 22,600, 22,614, 22,856, 
22,858, 22,861, and 22,864). We reviewed the Interna-
tional Classification of Diseases (ICD) 10 codes assigned 
to the patients as principal diagnoses to further iden-
tify those undergoing surgery for degenerative diseases. 
Using ICD codes, patients with diagnoses of a fracture, 
neoplasm, or infection were also excluded. To avoid the 
effect of any confounding effect from rare pathologies 
and ICD-10 coding errors, we excluded cases with ICD 
codes that were utilized less than 50 times in the total 
patient population.

Predictor variables and outcomes of interest
Variables from the NSQIP database that were supposed 
to have been known preoperatively were included as pre-
dictor variables. These included (1) demographic infor-
mation such as age, sex, race, Hispanic ethnicity, height, 
weight, transfer status; (2) comorbidities and disease 
burden such as current smoker within one year, diabetes 
mellitus requiring therapy, dyspnea, ventilator depen-
dency, history of severe chronic obstructive pulmonary 
disease (COPD), ascites within 30 days prior to surgery, 
congestive heart failure within 30 days prior to surgery, 
hypertension requiring medication, acute renal failure, 
currently requiring or on dialysis, disseminated cancer, 
presence of open wounds, steroid or immunosuppressant 

for a chronic condition, malnourishment, bleeding disor-
ders, preoperative transfusion of ≥ 1 unit of whole/packed 
RBCs within 72 h prior to surgery, the ASA classification, 
functional status prior to surgery; (3) preoperative labo-
ratory values such as serum sodium, blood urea nitrogen 
(BUN), serum creatinine, serum albumin, total bilirubin, 
serum glutamic-oxaloacetic transaminase (SGOT), alka-
line phosphatase, white blood cell (WBC) count, hema-
tocrit, platelet count, partial thromboplastin time (PTT), 
International Normalized Ratio of prothrombin time 
(PT) values, PT; (4) operative variables such as surgical 
specialty, single- versus multiple-level surgery.

The outcomes under investigation included prolonged 
LOS, non-home discharges, 30-day readmissions, and 
major complications. We defined the prolonged LOS as 
total LOS exceeding 90% of the entire patient population, 
which equated to ≥ 3 days. The discharge destination 
variable was dichotomized to delineate non-home dis-
charges. In instances where patients necessitated further 
levels of care post-discharge, a non-home discharge desti-
nation was classified. This category incorporated destina-
tions such as ‘Rehab’, ‘Skilled Care, Not Home’, ‘Separate 
Acute Care’, ‘Unskilled Facility Not Home’, and ‘Multi-
level Senior Community’. Discharges to a ‘Facility Which 
Was Home’ were categorized as home discharges in addi-
tion to discharges to ‘Home’. Patients considered to have 
experienced major complications if they developed one 
or more of the following after surgery: deep incisional 
or organ/space surgical site infections, wound dehis-
cence, reintubation, pulmonary embolism, prolonged 
mechanical ventilation beyond 48  h, renal dysfunction 
or outright failure necessitating dialysis, cardiac arrest, 
myocardial infarction, hemorrhage requiring transfusion, 
deep venous thrombosis, sepsis, or septic shock. The 
NSQIP database also contained data on some less serious 

Fig. 1  Methodology flowchart
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postoperative complications like superficial surgical site 
infection, pneumonia, and urinary tract infection, but 
these were not classified as major for the purposes of this 
analysis. Any patients with missing data for any of the 
four primary outcome measures being examined were 
omitted from the related analytical procedures.

Data preprocessing and partition
We employed imputation to avoid any bias that might 
arise by excluding patients with missing data. The k-near-
est neighbor imputation algorithm was utilized to fill in 
missing values in continuous variables after discarding 
variables that had more than 25% missing data [29]. For 
categorical variables, missing values were filled in with 
‘Unknown’ or ‘Unknown/Other’.

To provide adequate data for the phases of model 
development, validation, and testing, we divided the 2014 
to 2020 data into three subsets in a 60:20:20 ratio for 
training, validation, and test sets, respectively. The train-
ing set was used for training the ML models, the valida-
tion set for fine-tuning hyperparameters and calibration, 
and the test set for evaluating the models’ performance.

To address potential class imbalance in the training 
data, we employed the Synthetic Minority Over-sampling 
Technique (SMOTE) prior to model training. SMOTE 
counteracts skewed class distributions by artificially 
generating new examples belonging to the minority 
class, rather than duplicating existing samples [30]. This 
approach grows the number of instances from the under-
represented class and has been shown to improve model 
performance compared to simply replicating minority 
samples. Applying SMOTE ensured adequate represen-
tation of all classes and avoided learning bias towards 
majority groups during the training process.

Model development and performance evaluation
We built our prediction models using five different ML 
algorithms. These ML algorithms comprised a trans-
former-based algorithm named TabPFN [31], a neural 
network-based approach called TabNET [32], two gradi-
ent boosting algorithms, specifically XGBoost [33] and 
LightGBM [34], and a decision-tree-based algorithm 
Random Forest [35]. In order to maximize these models’ 
discriminatory abilities, we utilized the Optuna optimi-
zation library [36], employing the area under the receiver 
operating characteristic (AUROC) as the optimization 
standard. We used the Tree-Structured Parzen Estima-
tor Sampler (TPESampler), a Bayesian optimization algo-
rithm, to provide AUROC estimates that would guide the 
optimization process. The finalized prediction models 
were developed using the training sets and the hyper-
parameters optimized with Optuna. These optimized 
hyperparameters can be found in Supplementary Table 
3. We applied Platt scaling, also recognized as isotonic 

regression, for model calibration [37]. All these analyses 
were performed on Python version 3.7.15 on the Google 
Colab platform.

We conducted a thorough evaluation of our models’ 
performance, both visually and numerically. The visual 
assessment was accomplished through the receiver oper-
ating characteristic (ROC) and precision-recall curve 
(PRC), while numerical metrics used for classification 
performance evaluation included AUROC, balanced 
accuracy, weighted area under PRC (AUPRC), weighted 
precision, and weighted recall. Calibration was evaluated 
using the Brier score.

We chose models for web application deployment 
based on their AUROC values. AUROC, a widely used 
performance metric in ML models, is particularly ben-
eficial in binary classification tasks [38]. This measure 
assesses a model’s ability to differentiate between posi-
tive and negative samples across various classification 
thresholds. We chose AUROC as a primary measure due 
to its multiple advantages. First, it is not affected by class 
imbalance, making it a suitable choice for datasets with 
uneven class distribution. Second, it considers the com-
plete range of classification thresholds, providing a thor-
ough evaluation of model performance across diverse 
points. Third, AUROC quantifies the model’s ability to 
correctly rank instances irrespective of the chosen clas-
sification threshold. By distilling the model’s performance 
into a single value, AUROC simplifies the comparison 
process among different models or algorithms. As a 
result, it offers a reliable reflection of the model’s discrim-
inative power and is thus an appropriate metric for model 
evaluation and selection across various applications.

To enhance our models’ interpretability, we used SHap-
ley Additive exPlanations (SHAP) to determine the rela-
tive importance of predictor variables [39]. In addition, 
we used partial dependency plots (PDPs) to display the 
effect of individual variables on the predictions of the 
top-performing models.

Web application
We developed a web application to allow users to make 
individual patient predictions. The top-performing 
models for each outcome were incorporated into this 
application. The source code for implementing these 
models online can be found on the Hugging Face plat-
form, which a community-friendly site for sharing ML 
models. We have also included Supplementary Video 1 
to demonstrate the web application’s functionality. The 
web application can be accessed via this link: https://
huggingface.co/spaces/MSHS-Neurosurgery-Research/
NSQIP-ACDF.

https://huggingface.co/spaces/MSHS-Neurosurgery-Research/NSQIP-ACDF
https://huggingface.co/spaces/MSHS-Neurosurgery-Research/NSQIP-ACDF
https://huggingface.co/spaces/MSHS-Neurosurgery-Research/NSQIP-ACDF
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Descriptive statistics
For continuous variables with a normal distribution, we 
reported means (± standard deviations), and for those 
with a non-normal distribution, we presented medians 
(interquartile ranges). The patient count was represented 
as percentages for categorical variables.

Results
63,912 patients were identified with the inclusion cri-
teria. Exclusion criteria were applied sequentially, and 
6,053 patients were excluded (Fig.  2). After outcome-
specific exclusion criteria were applied, there were 
57,760 patients included in the analysis for the outcome 
prolonged LOS [n = 6,386 (11.1%) with prolonged LOS], 
57,780 for the outcome non-home discharges [n = 1,913 
(3.3%) with non-home discharges], 57,790 for the out-
come 30-day readmissions [n = 1,694 (2.9%) with 30-day 
readmissions], and 57,800 for the outcome major compli-
cations [n = 794 (1.4%) with major complications. Charac-
teristics of the patient population (n = 57,859) before the 

outcome-specific exclusion criteria were applied are pre-
sented in Table 1.

Performance evaluation indicated that the top-per-
forming models for each outcome were the models built 
with the Random Forest algorithm. The Random For-
est models yielded AUROCs of 0.776 [95% confidence 
interval (CI), 0.766–0.792], 0.846 (95% CI, 0.809–0.855), 
0.775 (95% CI 0.731–0.791), and 0.747 (0.702–0.779) in 
predicting prolonged LOS, non-home discharges, 30-day 
readmissions, and major complications respectively. 
These results indicate good success in distinguishing 
patients who had non-home discharges from those who 
did not. Fair discriminatory ability was seen in differ-
entiatiating patients who experienced prolonged LOS, 
30-day readmissions, and major complications [40]. 
Detailed information on these performance metrics is 
displayed in Table 2. Illustrated in Fig. 3 are radar plots, 
each corresponding to one of the four outcomes of inter-
est. These charts serve as an instrument for multidimen-
sional visualization, with each of the five axes standing 

Fig. 2  Patient selection flowchart
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Variables Mean (± SD), Median (IQR), or n (%)
Age 56.0 (16.0)

Sex Female 29,065 (50.2%)
Male 28,794 (49.8%)

Race White 45,483 (78.6%)
Black or African American 6059 (10.5%)
Asian 997 (1.7%)
American Indian or Alaska Native 302 (0.5%)
Native Hawaiian or Pacific Islander 160 (0.3%)
Other/Unknown 4858 (8.4%)

Hispanic Ethnicity No 50,365 (87.0%)
Yes 3226 (5.6%)
Unknown 4268 (7.4%)

Height (cm) 168 (± 15.2)
Weight (kg) 86.18 (± 27.22)

Transfer Status Not transferred 57,501 (99.4%)
Transferred 348 (0.6%)
Unknown 10 (< 0.1%)

Current Smoker Status No 43,719 (75.6%)
Yes 14,140 (24.4%)

Diabetes Mellitus Requiring Therapy No 48,005 (83.0%)
Yes 9854 (17.0%)

Dyspnea No 55,196 (95.4%)
Yes 2663 (4.6%)

Functional Status Independent 56,903 (98.4%)
Partially Dependent 693 (1.2%)
Unknown 214 (0.4%)
Totally Dependent 49 (0.1%)

Ventilator Dependency No 57,857 (> 99.9%)
Yes 2 (< 0.1%)

History of Severe COPD No 55,309 (95.6%)
Yes 2550 (4.4%)

Ascites within 30 Days Prior to Surgery No 57,856 (> 99.9%)
Yes 3 (< 0.1%)

CHF within 30 Days Prior to Surgery No 57,750 (99.8%)
Yes 109 (0.2%)

Hypertension Requiring Medication No 30,710 (53.1%)
Yes 27,149 (46.9%)

Acute Renal Failure No 57,841 (> 99.9%)
Yes 18 (< 0.1%)

Currently Requiring or on Dialysis No 57,798 (99.9%)
Yes 61 (0.1%)

Disseminated Cancer No 57,802 (99.9%)
Yes 57 (0.1%)

Open Wound No 57,780 (99.9%)
Yes 79 (0.1%)

Steroid or Immunosuppressant for a Chronic Condition No 55,876 (96.6%)
Yes 1983 (3.4%)

Malnourishment No 57,783 (99.9%)
Yes 76 (0.1%)

Bleeding Disorder No 57,272 (99.0%)
Yes 587 (1.0%)

RBC Transfusion within 72 h Prior to Surgery No 57,851 (> 99.9%)
Yes 8 (< 0.1%)

Table 1  Patient characteristics
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Table 2  Performance metrics of the models
Algorithm Weighted Preci-

sion (95% CI)
Weighted Recall 
(95% CI)

Weighted AUPRC 
(95% CI)

Balanced Accu-
racy (95% CI)

AUROC (95% CI) Brier Score 
(95% CI)

Prolonged LOS TabPFN 0.787 (0.78–0.794) 0.887 
(0.881–0.893)

0.241 (0.233–0.249) 0.5 (0.491–0.509) 0.682 
(0.672–0.702)

0.095 
(0.09–0.1)

TabNet 0.841 (0.834–0.848) 0.79 (0.783–0.797) 0.235 (0.227–0.243) 0.622 
(0.613–0.631)

0.663 (0.64–0.672) 0.095 
(0.09–0.1)

XGBoost 0.882 (0.876–0.888) 0.894 (0.888–0.9) 0.404 (0.395–0.413) 0.674 
(0.665–0.683)

0.729 
(0.711–0.747)

0.081 
(0.076–0.086)

LightGBM 0.823 (0.816–0.83) 0.875 
(0.869–0.881)

0.199 (0.192–0.206) 0.524 
(0.515–0.533)

0.646 
(0.635–0.665)

0.097 
(0.092–0.102)

Random 
Forest

0.878 (0.872–0.884) 0.894 (0.888–0.9) 0.473 (0.464–0.482) 0.651 (0.642–0.66) 0.776 
(0.766–0.792)

0.078 
(0.073–0.083)

Non-home 
Discharges

TabPFN 0.937 (0.933–0.941) 0.968 
(0.965–0.971)

0.165 (0.158–0.172) 0.5 (0.491–0.509) 0.791 
(0.755–0.805)

0.03 
(0.027–0.033)

TabNet 0.953 (0.949–0.957) 0.888 
(0.882–0.894)

0.141 (0.135–0.147) 0.677 
(0.668–0.686)

0.747 
(0.694–0.751)

0.029 
(0.026–0.032)

XGBoost 0.948 (0.944–0.952) 0.759 
(0.751–0.767)

0.059 (0.055–0.063) 0.611 (0.602–0.62) 0.69 (0.641–0.695) 0.031 
(0.028–0.034)

LightGBM 0.948 (0.944–0.952) 0.956 (0.952–0.96) 0.118 (0.112–0.124) 0.564 
(0.555–0.573)

0.74 (0.73–0.777) 0.031 
(0.028–0.034)

Random 
Forest

0.961 (0.957–0.965) 0.964 
(0.961–0.967)

0.402 (0.393–0.411) 0.666 
(0.657–0.675)

0.846 
(0.809–0.855)

0.024 
(0.021–0.027)

30-day 
Readmissions

TabPFN 0.944 (0.94–0.948) 0.972 
(0.969–0.975)

0.057 (0.053–0.061) 0.5 (0.491–0.509) 0.647 
(0.626–0.685)

0.028 
(0.025–0.031)

TabNet 0.955 (0.951–0.959) 0.908 
(0.903–0.913)

0.105 (0.099–0.111) 0.635 
(0.626–0.644)

0.674 
(0.648–0.712)

0.027 
(0.024–0.03)

XGBoost 0.971 (0.968–0.974) 0.976 
(0.973–0.979)

0.367 (0.358–0.376) 0.673 
(0.664–0.682)

0.705 
(0.683–0.749)

0.02 
(0.017–0.023)

LightGBM 0.945 (0.941–0.949) 0.957 
(0.953–0.961)

0.045 (0.041–0.049) 0.504 
(0.495–0.513)

0.622 
(0.595–0.655)

0.029 
(0.026–0.032)

Random 
Forest

0.968 (0.965–0.971) 0.971 
(0.968–0.974)

0.376 (0.367–0.385) 0.674 
(0.665–0.683)

0.775 
(0.731–0.791)

0.022 
(0.019–0.025)

Major 
Complications

TabPFN 0.972 (0.969–0.975) 0.986 
(0.984–0.988)

0.028 (0.025–0.031) 0.5 (0.491–0.509) 0.592 
(0.585–0.672)

0.014 
(0.012–0.016)

TabNet 0.977 (0.974–0.98) 0.951 
(0.947–0.955)

0.084 (0.079–0.089) 0.623 
(0.614–0.632)

0.649 
(0.602–0.699)

0.014 
(0.012–0.016)

XGBoost 0.972 (0.969–0.975) 0.979 
(0.976–0.982)

0.018 (0.016–0.02) 0.499 (0.49–0.508) 0.587 
(0.526–0.612)

0.014 
(0.012–0.016)

LightGBM 0.987 (0.985–0.989) 0.989 
(0.987–0.991)

0.241 (0.233–0.249) 0.63 (0.621–0.639) 0.698 
(0.617–0.717)

0.011 
(0.009–0.013)

Random 
Forest

0.983 (0.981–0.985) 0.987 
(0.985–0.989)

0.276 (0.268–0.284) 0.629 (0.62–0.638) 0.747 
(0.702–0.779)

0.012 
(0.01–0.014)

Variables Mean (± SD), Median (IQR), or n (%)
Preoperative Serum Sodium 140.0 (± 3.0)

Preoperative Serum BUN 15.0 (± 6.0)
Preoperative Serum Creatinine 0.87 (± 0.25)

Preoperative WBC Count (x1000) 7.1 (± 2.6)
Preoperative Hematocrit 42.0 (± 5.0)

Preoperative Platelet Count (x1000) 247.0 (± 78.0)
Surgical Specialty Neurosurgery 41,894 (72.4%)

Orthopedics 15,965 (27.6%)
ASA Classification 1-No Disturb 1674 (2.9%)

2-Mild Disturb 29,641 (51.2%)
3-Severe Disturb 26,544 (45.9%)

Table 1  (continued) 
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for a separate performance indicator. The placement on 
each respective axis signifies the model’s performance in 
relation to that particular indicator. Consequently, these 
radar charts enable a comparative analysis of model per-
formance across various metrics.

Figures  4 and 5, respectively, illustrate the ROCs and 
PRCs for the three outcomes, while Fig.  6 presents the 
SHAP bar plots for each outcome’s top-performing 
model. SHAP bar plots for other algorithms for each 
outcome are available in Supplementary Fig.  1 through 
4. SHAP bar plots give a general overview of the sig-
nificance of features in a model. Each bar in these plots 
represents the importance of a feature, with its length 
corresponding to the average absolute SHAP value across 
all instances. This measure of importance shows the aver-
age effect a feature has on the model’s prediction. The 

features are arranged according to their significance, with 
the most influential at the top.

Moreover, to better understand how individual fea-
ture values influence the model’s predictions, we refer to 
Supplementary Figs. 5–8, which present the PDPs for the 
models built with the Random Forest algorithm, each for 
one of the four outcomes of interest. As an illustration, 
Figure Supplementary Fig. 5 displays a non-linear curve 
for ‘Age’, indicative of a non-linear association between 
the feature ‘Age’ and the outcome, prolonged LOS. This 
underscores the advantage of ML algorithms in captur-
ing non-linear relationships between variables and out-
comes, a strength that traditional regression algorithms 
may not possess.

Fig. 3  Algorithms’ radar plots for the outcomes (A) prolonged length of stay, (B) non-home discharges, (C) 30-day readmissions, and (D) major 
complications
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Discussion
The goal of our study was to develop ML models capable 
of predicting short-term adverse postoperative outcomes 
following ACDF. Furthermore, to make our models more 
accessible, we developed a web application that allows 
healthcare professionals to input patient data and receive 
predicted risks for each outcome. This web application 
has the potential to serve as a valuable tool for clinicians 
by facilitating the estimation of a patient’s risk of adverse 

outcomes following ACDF. These models can aid clini-
cians in identifying patients at high risk of adverse out-
comes following ACDF, thus enabling more informed 
patient counseling prior to the procedure.

When interpreting the metrics used to assess model 
performance, it is crucial to handle with care and under-
stand the use of imbalanced datasets for ML classifica-
tion tasks. We used metrics such as balanced accuracy, 
weighted precision, weighted recall, and weighted 

Fig. 4  Algorithms’ receiver operating characteristics for the outcomes (A) prolonged length of stay, (B) non-home discharges, (C) 30-day readmissions, 
and (D) major complications
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AUPRC to evaluate our models’ classification perfor-
mance. These metrics consider the data’s class distribu-
tion, assigning more importance to the minority class 
[41–43]. This facilitates a just evaluation of the model’s 
performance across both classes and a broader perspec-
tive of the model’s effectiveness, taking into account the 
class distribution in the data. Conversely, the unweighted 
versions of these metrics might not be reliable in situa-
tions with imbalanced datasets as they overlook the class 

distribution and could present a misleading impression 
of good performance by neglecting the minority class. 
Furthermore, interpreting AUPRC can be more complex 
than another area under the curve metric, AUROC, due 
to its distinctive baselines. AUROC employs a baseline of 
0.5, depicting a random classifier’s performance, whereas 
the baseline for AUPRC is the proportion of positive 
examples in the dataset [44]. This can result in signifi-
cantly lower AUPRC values than AUROC, especially for 

Fig. 5  Algorithms’ precision-recall curves for the outcome (A) prolonged length of stay, (B) non-home discharges, (C) 30-day readmissions, and (D) major 
complications
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Fig. 6  The 15 most important features and their mean SHAP values for the model predicting the outcome (A) prolonged length of stay with the Random 
Forest algorithm, (B) non-home discharges with the Random Forest algorithm, (C) 30-day readmissions with the Random Forest algorithm, and (D) major 
complications with the Random Forest algorithm
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datasets with a small fraction of positive examples, like 
many real-world medical datasets. Nevertheless, AUPRC 
might be more relevant for a particular problem, but it 
is often reported less frequently than AUROC due to 
its lower absolute values. For instance, in our study, the 
weighted AUPRC for the Random Forest model predict-
ing prolonged LOS was 0.473 (95% CI, 0.464–0.482), 
while the prolonged LOS rate was 0.112, representing 
the baseline. Lastly, we evaluated the models’ calibration 
using the Brier score, a measure of the average squared 
disparity between predicted and actual probabilities [45, 
46]. A model calibrated well will have a Brier score close 
to zero, implying that the predicted probabilities align 
closely with the actual probabilities.

One interesting finding was that Random Forest mod-
els outperformed other modern algorithms like XGBoost 
and LightGBM in terms of predictive performance across 
all outcomes. Despite being around for many years [35], 
tree-based ensamble methods like Random Forest remain 
robust and powerful approaches for prediction problems. 
The Random Forest algorithm creates numerous ran-
domized decision trees and aggregates their predictions, 
allowing it to capture complex nonlinear relationships 
and high-order interactions between variables [47]. In 
addition, their ensemble nature makes them resistant to 
overfitting [48]. In contrast, more recent boosting meth-
ods like XGBoost [33] and LightGBM [34] also build 
ensembles of trees, but do so sequentially, focusing on 
misclassified examples in each iteration. While this can 
improve predictive accuracy, it may also increase over-
fitting risk compared to the Random Forest algorithm 
[49]. The superior performance of Random Forest in 
this study suggests that the additional hyperparameters 
and complexity of boosting methods did not provide an 
advantage over simpler Random Forest ensembles. The 
nonlinear effects and variable interactions present in our 
dataset appear well-suited for tree-based models, and the 
Random Forest algorithm effectively capitalized on these 
properties [50].

The performance metrics for the ML algorithms pre-
sented in this study align with recent research findings. 
The specific outcomes selected for this study have not 
been examined within a single study using ML algorithms 
before. However, several publications have explored the 
predictive performance of ML algorithms concerning 
postoperative outcomes following ACDF surgery using 
diverse data sources. For example, Gowd et al. employed 
ML models based on conventional comorbidity indices 
to compare predictive models for postoperative compli-
cations following ACDF surgery [21]. In this study, the 
logistic regression algorithm was the best performing for 
predicting any adverse event (AUROC = 0.73), transfusion 
(AUROC = 0.90), surgical site infection (AUROC = 0.63), 
and pneumonia (AUROC = 0.80), while gradient boosting 

trees was the best performing for predicting extended 
LOS (AUROC = 0.73). It is noteworthy that their study 
used ‘operative time’ as a predictor variable, and it was 
the most weighted variable for the prediction of any 
adverse event, extended LOS, and transfusion. Our study 
deliberately excluded variables like total operative time 
that would not be known prior to the surgery [51]. It 
must be kept in mind that instead of being the cause of 
undesirable outcomes, the length of the procedure might 
be a mediator [52]. Our study focuses on the preopera-
tive prediction of adverse outcomes.

Rodrigues et al. queried the IBM MarketScan Com-
mercial Claims and Encounters Database and Medi-
care Supplement from 2007 to 2016 to identify 176,816 
patients who underwent an ACDF [22]. Some of the 
variables that were incorporated in the study were not 
available in the NSQIP database, such as operative char-
acteristics, including bone morphogenic protein use, 
the use of anterior cervical plating, allograft or cage 
implants, and preoperative symptoms, including weak-
ness, stiffness, or cervicalgia. Some of these variables for 
predicting 90-day readmissions, two-year reoperations, 
and 90-day complications were among the ones with high 
magnitudes of attention: myelopathy, human immuno-
deficiency virus (HIV), weakness, and stiffness. For the 
prediction of investigated outcomes, the deep neural 
network-based models in the study by Rodrigues et al. 
achieved AUROCs of between 0.671 and 0.832. Similarly, 
Khazanchi et al. investigated the predictive utility of ML 
and deep learning algorithms on postoperative health 
care utilization, including 90-day readmissions, postop-
erative LOS, and non-home discharge, in patients under-
going ACDF [25]. They utilized data from a multisite 
academic center and included a robust set of patient fea-
tures, such as demographic information, medical/surgi-
cal history, operative characteristics, and preoperative lab 
values. The highest-performing model in their study was 
the Balanced Random Forest algorithm, with an AUROC 
of 0.70 for 90-day readmissions, 0.84 for non-home dis-
charge, and 0.74 for extended LOS. Despite the reported 
performance and availability of granular data, these stud-
ies’ implications are largely exploratory due to the lack of 
an accessible tool for practical use.

Previously, Russo et al. proposed the novel ACDF Pre-
dictive Scoring System (APSS) algorithm using conven-
tional statistics and ML to forecast LOS following one- or 
two-level ACDF surgery based on patient-specific pre-
operative characteristics and comorbidities [23]. The 
best-performing APSS model had an AUROC of 0.68. 
Although this study provides a form of tool to be used by 
clinicians, this study is limited by the low sample size of 
1,506 patients and lower performance metrics. Arvind 
et al. also employed ML algorithms to predict complica-
tions following ACDF surgery using the NSQIP database 
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[24]. Patients were excluded from the analysis in this 
study due to incomplete data, and no other exclusion cri-
teria were employed. Although the case deletion method 
for handling the missing data is the most expedient 
method, it yields unbiased estimates only if the data are 
missing completely at random [53]. Likewise, not exclud-
ing emergency procedures, infections, tumor cases, 
trauma, and concomitant posterior approach surger-
ies increases the potential for preoperative confounding 
variables concerning surgical indications. In contrast, our 
model focuses specifically on predicting outcomes for 
degenerative cervical disease cases. Unfortunately, none 
of the aforementioned studies provided the source code 
for data preprocessing and classification models, limiting 
result reproducibility. Furthermore, none of these above-
mentioned studies offered a publicly accessible tool. In 
contrast, our web application provides interpretive pre-
dictions for three different outcomes, bridging the gap 
between complex ML predictions and their evaluation by 
healthcare professionals.

Our ML models and the associated web application 
provide individualized, quantitative estimates for unfa-
vorable postoperative outcomes after ACDF. The pre-
sented approach represents a significant advancement 
over generalized risks derived from studies averaging 
across diverse populations, as well as the common prac-
tice of communicating risks qualitatively with some indi-
vidual quantitative evaluation based on the clinician’s 
personal experience. However, relying solely on personal 
experience is constrained by inherently limited patient 
populations and potential subjective biases. The person-
alized predictions from our models can be used preop-
eratively to gauge prognosis during patient counseling, 
thus contributing to patient care. They allow healthcare 
professionals to identify patients at risk of certain adverse 
outcomes, prioritize their treatment, and plan for dis-
charge requirements. Although the current web applica-
tion provides a convenient interface for estimating the 
likelihood of adverse short-term postoperative outcomes 
following ACDF, it is intended as a research tool and 
should not currently guide clinical recommendations. 
Further validation in diverse patient cohorts across insti-
tutions is essential to confirm its predictive accuracy. We 
hope this calculator serves as a first step toward more 
comprehensive models that integrate additional factors 
like imaging findings and more granular clinical data 
for further refinement of predictive accuracy and clini-
cal relevancy. As with any prediction tool, the estimates 
generated must be considered in the full context of each 
patient to personalize surgical counseling and planning.

Further limitations are similar to the limitations that 
have been described with other online prognostic models 
[52]. First, it is important to note that the patients in the 
ACS-NSQIP database may not be entirely representative 

of the general ACDF population. There may be biases 
related to the hospitals included in the database, as these 
hospitals may have above-average infrastructure and/
or resources. Additionally, the patients in the database 
may have different health status, age, or socioeconomic 
backgrounds than the general population. Despite Huff-
man et al. demonstrating that the ACS-NSQIP database 
is a dependable data source for examining postsurgi-
cal outcomes and validating its usage, these limitations 
can affect the generalizability of our results [54]. Sec-
ond, studies using a large clinical database are always 
influenced by coding errors and other inaccuracies. The 
NSQIP database is frequently used, but only a few stud-
ies have looked at it’s precision when it comes to cod-
ing. CPT codes for neurosurgical procedures contain 
numerous internal inconsistencies, according to Rolston 
et al. [55]. Furthermore, we did not compare our mod-
els’ performance to existing comorbidity indices or con-
duct external validation or user satisfaction analyses 
within the scope of the current study, which are impor-
tant aspects to consider in future studies. Finally, we did 
not aim to identify causal relationships between patient 
characteristics and outcomes, and did not intend to sug-
gest that our models could be used for causal inference or 
that they provide any information about the mechanisms 
underlying the observed associations between patient 
characteristics and outcomes. We do not encourage mak-
ing causal interpretations based on the results of the cur-
rent study.

In conclusion, our study has significantly improved the 
prediction of postoperative outcomes in patients under-
going ACDF surgery through the application of sophisti-
cated ML methods. A key contribution of our work is the 
development of a user-friendly web application designed 
to provide a demonstration of the developed models’ 
practical utility. Our findings suggest that ML algorithms 
can serve as an invaluable auxiliary tool for patient risk 
stratification in ACDF surgery, with the potential to pre-
dict a variety of postoperative outcomes. This approach 
has the potential to play a critical role in counseling 
ACDF surgery patients, shifting the clinical approach 
towards a more patient-centric, data-driven model. 
Therefore, our study represents a substantial advance-
ment in the field of precision medicine.
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