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tions at risk.

of articles; LR, in 32.65%; SVM in 26.53% of articles.

The application of Artificial intelligence (Al) and machine learning (ML) tools in total (TKA) and unicompartmental
knee arthroplasty (UKA) emerges with the potential to improve patient-centered decision-making and outcome
prediction in orthopedics, as ML algorithms can generate patient-specific risk models. This review aims to evaluate
the potential of the application of Al/ML models in the prediction of TKA outcomes and the identification of popula-

An extensive search in the following databases: MEDLINE, Scopus, Cinahl, Google Scholar, and EMBASE was con-
ducted using the PIOS approach to formulate the research question. The PRISMA guideline was used for reporting

the evidence of the data extracted. A modified eight-item MINORS checklist was employed for the quality assessment.
The databases were screened from the inception to June 2022.

Forty-four out of the 542 initially selected articles were eligible for the data analysis; 5 further articles were identified
and added to the review from the PUBMED database, for a total of 49 articles included. A total of 2,595,780 patients
were identified, with an overall average age of the patients of 70.2 years+ 7.9 years old. The five most common Al/

ML models identified in the selected articles were: RF, in 38.77% of studies; GBM, in 36.73% of studies; ANN in 34.7%

This systematic review evaluated the possible uses of Al/ML models in TKA, highlighting their potential to lead
to more accurate predictions, less time-consuming data processing, and improved decision-making, all while mini-
mizing user input bias to provide risk-based patient-specific care.
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Introduction
Artificial intelligence (AI) and Machine learning (ML)
tools in knee arthroplasty (KA) have the potential to
improve patient-centered decision-making and outcome
prediction in orthopedics. The application of ML in KA
has been useful for predicting implant size, reconstruct-
ing data, and assisting with component positioning and
alignment. ML implementation enhances surgical preci-
sion and can help predict parameters such as length of
hospitalization, healthcare costs, and discharge disposi-
tion [1-3].

Additionally, ML algorithms have been proven, in more
recent studies, to be useful when selecting the right drugs
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to treat prosthetic joint infection (PJI) to have a more
patient specific approach to medicine; this was pos-
sible due to the development of a Random Forest (RF)
model able to take notice of several risk variables, such
as patients’ characteristics and comorbidities and using
the, for the selection [4]. In data science theory, the quan-
tity and quality of input parameters are crucial; therefore,
the previously mentioned variables, if not selected by rel-
evance to the topic of each study, although beneficial in
theory, may hinder the full potential of ML algorithms
for KA. This is because, analyzing all underlying rela-
tions between variables, with a large number of inputs
the models may highlight irrelevant patterns, leading to
a greater risk of overfitting: the algorithms perform sig-
nificantly better with the training data in respect to the
newly presented one [4, 5].

Moreover, patient satisfaction following primary KA is
one of many outcome measures currently used to assess
the efficacy of this procedure. Patients’ satisfaction is
dependent on many factors such as age, gender, and the
presence of comorbidities. Therefore, it is essential to
understand the relationship between the variables under-
lying satisfaction to provide the best care and optimized
postoperative care for KA patients. ML algorithms, capa-
ble of generating patient-specific risk models, appear to
be very effective means to achieve this goal [6].

Overall, the application and use of ML and Al in
orthopaedics are beneficial not only for the previously
mentioned situations, but also for the identification of
possible patients that are at high risk for severe walking
limitations post-total knee arthroplasty [7], and the selec-
tion of high-risk patients who will require a blood trans-
fusion after KA [8].

This review will focus on investigating which predic-
tions are achievable by using AI and ML models in knee
arthroplasty, identifying prerequisites for the effective
use of this new approach. Moreover, the second aim is to
highlight the latest findings of these technologies in pre-
dicting outcomes after KA.

Materials and methods

Study selection

The research question was defined by using a PIO
approach: Population (P); Intervention (I); Comparison
(C); Outcome (O). The objective of this systematic review
was to investigate which outcomes can be assessed by
using Al or ML models (I) in patients with knee osteo-
arthritis who underwent total (TKA) or unicompartmen-
tal (UKA) knee replacement (P). The following outcomes
were considered: complications, costs, functional out-
comes, revision rate, and postoperative satisfaction (O).
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Inclusion criteria

Only articles that evaluated AI/ML-based applications
in clinical decision-making in knee arthroplasty were
considered. Only original clinical studies written in
English, Spanish, or Italian were screened.

Exclusion criteria

Studies that did not evaluate AI/ML applications in
KA. Studies with nonhuman subjects. Medical imaging
analysis studies without explicit reference or applica-
tion to KA. Inaccessible articles, conference abstracts,
reviews, and editorials. No limits were placed on the
level of evidence or publication date of the study.

Search

Following the Preferred Reporting Items for System-
atic Reviews and Meta-analysis (PRISMA) guidelines,
a thorough literature search was conducted using the
following string: ((((total) OR (unicompartmental or
unicondylar)) AND (knee replacement)) AND (((arti-
ficial intelligence) OR (machine learning)) OR (algo-
rithm))) AND ((((((((complications) OR ((blood) AND
((transfusion) OR (loss)))) OR (functional outcomes))
OR (revision)) OR (satisfaction)) OR (surgical tech-
nique)) OR ((length of stay) OR (hospitalization)))
OR ((costs) OR (economic analysis))). The use of key-
words was both combined and isolated. The following
databases were used: MEDLINE (Medical Literature
Analysis and Retrieval System Online), Scopus, Cinahl,
Google Scholar, PUBMED, and EMBASE (Excerpta
Medica Database). The reference lists of selected sys-
tematic reviews [2, 5] were searched for the selection of
further studies. The authors (F.V. and M.V.C.) searched
from June of 2022 to January 2024. The databases were
screened from the inception to January 2024.

Data collection process

Two independent reviewers (F.V. and M.V.C.) collected
the data, and mutual approval resolved differences.
A third reviewer (S.D.S) was consulted in case of any
disagreement. Title and abstract screening were the
first steps, followed by the full-text evaluation of the
selected articles. The inclusion and exclusion of the
reviewed studies were displayed in the PRISMA flow-
chart, seen in Fig. 1.

Data items

A database was developed by collecting and categoriz-
ing the general study characteristics from the selected
articles, which comprised: primary author, year of pub-
lication, study design, level of evidence, study duration,
AI/ML methods, data source, input variables, output
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Fig. 1 Prisma flowchart

variables, sample size, average patient age, percentage
of female patients, Area Under the Receiving Operating
Characteristic Curve (AUC-ROC), accuracy, sensitivity,
specificity.

Risk of bias assessment
For the quality assessment, a modified eight-item
Methodological Index for Non-Randomized Stud-
ies (MINORS) checklist was employed to evaluate the
selected articles. The eight-item checklist included: dis-
closure, study aim, input feature, output feature, valida-
tion method, dataset distribution, performance metric,
and Al model. Each item was scored using the following
binary scale: 0 (not reported or unclear) and 1 (reported
and adequate). The following criteria were used as a
guide when assessing the quality of each publication:
Disclosure: Scored 1 if clearly reported possible con-
flicts of interest, funding, or ethical considerations,
scored 0 if not reported or unclear. Study aim: scored

1 if the research question and/or objective were clearly
reported, scored O if unclear or not reported. Input fea-
ture: scored 1 if variables were clearly reported, scored
0 if unclear or not reported. Output feature: scored 1 if
clearly reported, scored 0 if unclear or not reported. The
validation method involves the evaluation of the AI/ML
model’s performance by specific methods: scored 1 if
the tools external validation, cross-validation, and/or
bootstrapping were used and clearly reported, scored
0 if not reported nor used. Dataset distribution: scored
1 if the phases of training, testing, and validation for
the AI/ML methods were clearly reported, scored 0 if
unclear or not reported. Performance metric: scored 1
if the study clearly reported the metrics accuracy, sen-
sitivity, specificity, and/or AUC-ROC for assessing the
AI/ML model performance, scored 0 if unclear or not
reported. Al model: scored 1 if clearly stated the spe-
cific AI/ML algorithm used by the study, scored 0 if not
clearly stated.
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Compared to the original MINORS checklist, this
modified version, proposed by [9], provides a more accu-
rate grading tool for studies focused on applying AI/
ML methods in medical research and diagnostic studies
within the medical field. Two independent reviewers (EV.
and M.V.C.) evaluated each publication individually.

Results

Study selection

The initial search identified 654 studies. After the dupli-
cate removal, 479 studies were screened from which 402
articles were excluded after the title/abstract examina-
tion, resulting in 77 records for the full-text evaluation.
After the full-text assessment, 49 studies were included
in the data analysis (Fig. 1). Of these excluded articles,
9 studies did not evaluate AI/ML application in knee
arthroplasty, 8 were medical imaging analysis studies
without explicit reference or applications to knee arthro-
plasty, 2 used non-human objects, and 9 were inaccessi-
ble articles or systematic reviews.

Study characteristics

A total of 2,595,780 patients were identified from 48 of
the 49 studies included, with one study [10] not pro-
viding the sample size. Thirty-seven of the 49 studies
stated the percentage of female patients, adding up to
1,435,218 female patients, which account for 55.29% of
the total patients. The overall average age of the patients
was 70.2 years+7.9 years old, with 33 out of 49 articles
providing an average age of the study population. The
study which had the highest number of patients was Hyer
et al., 2020 [11] with 1,049,160 patients (40.41% of all the
patients included in the studies). All the study character-
istics are reported in Table 1.

The five most common AI/ML models used were: RF,
used in 19 articles; Gradient Boosting Machine (GBM),
used in 18 articles (including less generalized versions
such as Extreme Gradient Boosting (XGBoost) and Sto-
chastic Gradient Boosting (SGB)); Artificial Neural Net-
work (ANN) used in 17 articles; Logistic regression (LR),
used in 16 articles (together with less generalized ver-
sions such as Elastic-net penalized logistic regression
(EPLR)); and Support Vector Machine (SVM) used in 13
articles.

Regarding the variables reported, the most common
input variables were: Age [38, 41, 45, 47, 49, 50, 52] (44
articles), Sex (33 articles), Comorbidities (29 articles),
BMI (27 articles), Race/ ethnicity (26 articles), ASA
classification (10 articles). The most common output
variables provided by the studies were: post-surgical
complications (11 articles), Probability of TKA (7 arti-
cles), and length of stay (4 articles).
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This review included studies with level of evidence
II-IV. Level of evidence II studies consist of Randomized
controlled trials (RCTs) and are considered one of the
strongest study designs, second only to reviews and
meta-analysis which are considered as level of evidence
I; Level of evidence III studies are composed of non-ran-
domized controlled trials; the last category of evidence
included in the review is Level IV: Case—control studies
assessing associations between exposure and outcome.

The following level of evidence was included in the
selected articles: 37 level III retrospective cohort studies
[6, 8, 10-19, 23-37, 40, 48, 51]; three level III diagnos-
tic studies [20-22, 54]; three level II prospective cohort
studies [4, 39, 53]; one level II comparative studies [46];
three level IV cohort pilot studies [42, 44, 55], one level
III multi-center retrospective study [47]. One study [43]
did not present the level of evidence. All the characteris-
tics are reported in Tables 1, 2 and 3.

Al and ML methods

The following section reports the AI and ML methods
identified in the reviewed articles. Each section includes
the number of articles that used each Al or ML method,
its corresponding AUC value, and the evaluated output
variable. Table 4 classifies each article regarding the out-
put variable studies and presents the highest AUC score
for the respective article.

Random forest

RF is a decision trees-based algorithm introduced in the
2000s and capable of handling a variety of data types; its
implementation in many medical fields is sustained by
its high performance with large datasets and its ability to
integrate both clinical and imaging data to achieve more
accurate predictions compared to older models such as
LR. This ML method operates by constructing and aver-
aging a multitude of decision tress, a simpler ML method,
with each of the tress randomly analyzing selected sub-
set variations of the original data, the model is capable
to analyze large and complex subset of data, resulting
in a more resistant model to overfitting, while also add-
ing diversity in the analysis. It was the most common
Al method, applied in 38.77% of the reviewed articles.
Mainly it was used to evaluate outcomes, one of them
being a technical outcome: TKA component size predic-
tion (femoral and tibial) [35]. Eight publications imple-
mented RF for the evaluation of clinical outcomes, some
of them being: achievement of Minimal Clinically Impor-
tant Differences (MCIDs), prediction of Patient Reported
Outcomes (PROs), prolonged postoperative opioid pre-
scription, improvement of Knee injury and Osteoarthri-
tis Outcome Score (KOOS) to one-year, dissatisfaction,
assessment of sensitization in patients with chronic pain
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Table 1 Study characteristics

Authors and year Country Study design Level of Sample size Average patient age Percent female patients
evidence
Ben-Arietal, 2017 [12] USA RCS Il 32,636 64.45+941 5.6%
Bloomfield et al., 2019 [13] Canada RCS Il 68 67.5+9.8 50%
Bonakdari et al,, 2020 [10] Canada RCS Il - - -
Bovonratwet et al,, 2021 [14] USA RCS Il 319 63.1+6.7 -
Chanetal, 2020 [15] - RCS Il 7 - -
Crawford et al,, 2023 [16] USA RCS Il 59 65 60.8%
Devanaetal, 2021 [17] USA RCS I 156,750 682+9.2 61.4%
Farooq et al., 2020 [18] USA RCS Il 897 66.2+8.9 72.6%
Farooq et al., 2021 [19] USA RCS 1] 1,091 657493 67%
Fontana et al, 2019 [20] USA DS Il 6,480 669+9.7 61%
Harris et al,, 2019 [21] - DS Il 65,819 65.7 59.4%
Harris et al,, 2021 [22] USA DS Il 637 - -
Heisinger et al,, 2020 [23] - RCS Il 165 64.5+84 60%
Hinterwimmer et al,, 2022 [5] Germany - \% 864 66.5+119 56.5%
Hsieh et al, 2020 [24] Taiwan RCS Il 26 69.15+£6.71 87.77%
Huang et al,, 2018 [25] - RCS 1l 15,187 62+149 66%
Huber et al,, 2019 [26] UK RCS 1l 34,110 60-79 56.44%
Hyer et al,, 2020 [11] USA RCS Il 1,049,160 73 55.8%
Jamshidi et al, 2021 [27] Canada RCS 1l 1107 - -
Jayakumar et al,, 2021 [28] - RCS Ml 69 - 67% (C: 62%)
Joetal, 2020 [8] - RCS Il 1,686 7454638 87.8%
Johannesdottir et al,, 2022 [29] Denmark RCS 1l 4,448 68 59%
Jones et al., 2016 [30] UK RCS 1l 145 65 (UKA); 68 (TKA); 32 -
(Healthy controls)
Karnuta et al., 2019 [31] - RCS Ml 159,726 - 66.32%
Katakam et al,, 2020 [32] USA RCS Il 12,542 67+7 60.3%
Katakam et al,, 2022 [33] USA RCS Il 744 68 60.8%
Ko et al, 2022 [34] - PCS I 5,757 71.2+69 88%
Kunze et al, 2020 [6] USA RCS Il 430 66.2 68.8%
Kunze et al, 2021 [35] - RCS Il 17,283 663+94 57.1%
Leung et al, 2020 [36] USA RCS Il 728 64+8 61%
Lietal, 2022 [37] Singapore RCS Il 1,826 67.86+8.13 77.98%
Mohammed et al., 2022 [38] - RCS Il 636,062 - 62.33%
Navarro et al, 2018 [39] - RCS 1l 141,446 - -
Puaetal, 2020 [7] - PCS Il 4,026 679+7.5 75%
Rajamohan et al.,, 2023 [40] USA RCS Il 706 - -
Ramazanian et al, 2022 [41] USA CS Il 4901 66+104 55%
Ramkumar et al,, 2019 [42] - RCS 1l 171,025 73.53 64%
Ramkumar et al., 2019 [43] - CPS v 25 - -
Rexwinkle et al.,, 2018 [44] USA - - 6 63 333%
Sachau et al,, 2022 [45] Denmark PS 2 100 62.9+9.6 66%
Sagheb et al, 2021 [46] - RCS Il 19,954 - -
Shohat et al., 2020 [4] UK MCRS I 609 70 54.2%
Tolpadi et al,, 2020 [47] USA RCS Il 719 - -
Tsai et al, 2023 [48] Taiwan RCS Il 3495 73 77%
Verstraete et al,, 2020 [49] USA RCS 1l 479 - -
Wei et al, 2021 [50] - RCS Il 28,742 - 54.1%—66.1%
Yeo et al, 2023 [51] USA RCS 1l 10,021 7424227 60.16%
Yietal, 2020 [52] USA RCS Il 690 - -
Zhang et al,, 2022 [53] USA PCS Il 2,008 663182 70.7%

CPS Cohort pilot study, CS Comparative study, DS Diagnostic study, MCRS Multi center retrospective study, PCS Prospective cohort study, PS Pilot study, RCS
Retrospective cohort study
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Table 4 Output variables
Output Authors and year Al/ML AUC
Length of Hospital Stay (LOS)  Johannesdottir et al., 2022 RF, SVYM 0.71
[29]
Lietal, 2022 [37] ANN, XGBoost 0.738
Navarro et al., 2018 [39] NB 0.782
Ramkumar et al,, 2019 [42] ANN 0.832
Complications Devana et al,, 2021 [17] AP 0.679+0.04
Harris et al, 2019 [21] LASSO -
Hinterwimmer et al, 2022 [5]  XGBoost 0.78
Hyer etal, 2020 [11] SHC Perioperative morbidity: 0.868; 90-day readmission:

0.707; 30-day readmission: 0.717; postoperative super-
use: 0.817; 30-day mortality: 0.834; 90-day mortality:

0.849

Ko etal, 2022 [34] GBM 0.89

Mohammed et al,, 2022 [38]  GBM 0.871

Yeo et al, 2023 [51] ANN, EPLR, RF, SGB, SYM 0.78-0.84
Blood transfusion Huang et al,2018 [25] RF, SVYM 0.85

Joetal, 2020 (8] GBM 0.842

Mohammed et al,, 2022 [38]  ANN 0.812
Inpatient cost Navarro et al,, 2018 [39] NB 0.738

Ramkumar et al, 2019 [42] ANN 0.828
Cost Prediction Karnuta et al,, 2019 [31] DenseNet 0.813
Future Clinical Intervention Ben-Arietal, 2017 [12] NLPM -

Crawford et al, 2023 [16] ANN, EPLR, RF, SGB, SYM 0.78-0.83

Heisinger et al., 2020 [23] ANN -

Jamshidi et al,, 2021 [27] Cox-PH, DeepSury, SYM 0.87

Leung etal, 2020 [36] DLTL-MT 0.87

Rajamohan et al., 2023 [40] MLP. CNN, Ensemble model  0.77-0.90

Tolpadi et al.,, 2020 [47] LR, DNN 0.88
Clinical outcomes Farooq et al, 2021 [19] TreeNet GBM -

Katakam et al., 2020 [32] EPLR, SGB 0.76

Sachau et al.,, 2022 [45] RF -

Shohat et al,, 2020 [4] RF 0.74

Tsai et al, 2023 [48] SORG-MLA 0.75

Wei et al., 2021 [50] ANN 0.801

Mohammed et al,, 2022 [38] GBM 0.857
Patient Satisfaction Farooq et al, 2020 [18] TreeNet GBM 0.81

Kunze et al,, 2020 [6] SGB 0.79
MCIDs, KOOS, PROs Fontana et al,, 2019 [20] LASSO 0.60-0.89

Harris et al,, 2021 [22] LASSO, GBM, QDA 0.72

Katakam et al,, 2022 [33] ANN 0.77

Jayakumar et al,, 2021 [28] - -

Zhang et al, 2022 [53] RF, LASSO 0.89 (WOMAC)

XGB, SVM 0.95 (MCS)

Huber et al,, 2019 [26] XGBoost 0.87
Functional outcomes Bloomfield et al., 2019 [13] - -

Hsieh et al., 2020 [24] AdaBoost -

Pua et al, 2020 [7] LR+ridge 0.755-0.76
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Table 4 (continued)
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Output Authors and year Al/ML AUC
Surgical technique/outcomes  Chan et al, 2020 [15] RF -
Hinterwimmer et al, 2022 [5]  XGBoost 0.78
Jones et al,, 2016 [30] DT
Sagheb et al, 2021 [46] NLPM -
Verstraete et al,, 2020 [49] RF 0.89

Yietal, 2020 [52]

Kunze et al, 2021 [35]
Ramazanian et al,, 2022 [41]
Ramkumar et al, 2019 [43]

DCNN

Technical outcomes / biome-
chanical properties

XGBoost, SGB, EPLR, SVM, RF,
DL algorithm -
ML-based Remote Patient -

Monitoring System

Rexwinkle et al., 2018 [44] ANN

AKI Acute Kidney Infection, ALBT Allogenic Blood Transfusion, DL-TL-MT Deep Learning - Transfer Learning — Multitask, ANN Artificial Neural Network, AP
AutoPrognosis, CoxPH Cox proportional hazards, DCNN Deep Convolutional Neural Network, DenseNet Densely Connected Convolutional Network, DS DeepSurv, DT
Decision tree, EPLR Elastic-net Penalized Logistic Regression, EPLR Elastic-net Penalized Logistic Regression, GBM Gradient Boosting Machine, HKA Hip-knee-angle,
IC Inpatient costs, KOOS JR Knee injury and Osteoarthritis Outcome Score for Joint Replacement, KOOS Knee Injury and Osteoarthritis Outcome Score, LASSO Least
Absolute Shrinkage and Selection Operator, LOS Length of stay, LR Logistic Regression, MCIDs minimally clinically important differences, MLP Multilayer perceptron,
NB Naive-Bayes, NLPM Natural Language Processing Method, OA Osteoarthritis, PROs Patient-reported outcomes, QDA Quadrant Discriminant Analysis, RF Random
Forest, RPM Remote patient monitoring, SGB Stochastic Gradient Boosting, SORG-MLA Skeletal Oncology Research Group Machine Learning Algorithm, SVYM Support
Vector Machines, TKA Total Knee Arthroplasty, TUG Time Up and Go test, XGBoost EXtreme Gradient Boosting

after TKA, etc. [4, 6, 20, 26, 32, 33, 45, 53]. Only one arti-
cle evaluated the post-walking limitation with RF, under
the functional outcome category [7, 56].

RF was also utilized to analyze the surgical technique
by two articles [15, 49], which considered the following
outputs respectively: characterization of anatomical tis-
sues and surgical corrections, the latter presenting the
highest AUC (0.89) for this ML method. Postoperative
length of stay (LOS) was predicted using RF only by one
article [57], which presented an AUC of 0.71.

Another application of RF was regarding possible com-
plications such as major complications after primary
TKA, blood transfusion, surgical site infection, and dis-
position of patients at discharge [15, 25, 38]. Lastly, two
reviewed articles implemented RF for predicting TKA
risk depending on knee OA, evaluating both risk and
time [16, 27].

Gradient boosting machine

The ML model GBM gained popularity in the 2000s due
to the model’s high predictive accuracy even in settings
with mixed data types and missing values. GBM works by
building decision tress sequentially, rather than in paral-
lel like RF, with each of the tress correcting the predict-
ing errors made by the previous ones. This results in the
model being able to analyse complex relationships in data
and producing an accurate prediction, even if lacking the
randomized selection or diversity of the RF model. It can
be used for both classification and regression due to its
ability to produce new decision trees by correcting the

errors of the previous predictions, gaining more accuracy
than popularly used models such as SVM.

It was used by 18 studies, one employing it to predict
TKA component size [35]. The highest AUC value was
applied by an article that evaluated the development of
acute kidney infection (AKI) after TKA, AUC: 0.89 [34].
Other studies that evaluated complications with GBM
comprised the following outputs: major complications after
primary TKA, blood transfusion after TKA, surgical site
infection, and disposition of patients at discharge [8, 17,
38]. One study used GBM for the prediction of LOS after
TKA [37], a different study employed this method to evalu-
ate functional outcome: post-TKA walking limitations [7].

In addition, GB was used by 7 articles to evaluate clini-
cal outcomes: prediction of patient satisfaction, achieve-
ment of MCIDs in KOOS 1 year after TKA, prediction
of PROs, extended prescription of postoperative opioids,
MCIDs attainment 2 years after TKA [6, 18, 19, 22, 26,
32, 33, 53]. Only one study evaluated the use of SGB to
predict the risk of TKA in comparison to other ML mod-
els, resulting in the highest performance together with RF
among the algorithms observed, with an AUC: 0.83 [16].

Artificial Neural Network (ANN) /Multilayer perceptron

Although it originated in the 1940s, the ANN model
gained prominence in the 2010s due to the application of
deep learning in modeling complex relationships, mak-
ing it suitable for a wide range of applications. ANN is
a computational algorithm consisting of interconnected
nodes organized in sequential layers, each analyzing the
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data to pass the prediction to the following one, mim-
icking the functioning of human neural network. This
model was applied by 17 studies, one of them being for
the prediction of LOS, inpatient charges, and discharge
disposition before primary TKA [43]. Five articles ana-
lyzed clinical outcomes, the one having the highest AUC
for this method (0.86) was regarding the prediction of
PROs [26]; other outputs under this category were: pro-
longed postoperative opioid prescription, dissatisfaction
after TKA, prediction of same-day discharge in patients
undergoing TKA [6, 32, 33, 50]. One article applied ANN
for TKA component size prediction (femoral and tibial)
[44], and another study applied it for procedural cost pre-
diction for TKA [31, 58].

Regarding complications, ANN was applied to evalu-
ate the disposition of patients at discharge, post-surgical
complications such as surgical site infection, and blood
transfusion [38]. Additionally, two articles used this ML
method to characterize tissues and surgical corrections
based on patient-specific intra-operative assessment
[15, 49]. Another application of ANN, by four other
articles, was related to future clinical intervention out-
puts: effect of opioid use in risk of knee revision and
manipulation in the first year after primary TKA [59];
identification of influential factors before surgery, and
prediction of the risk of TKA surgery [23, 60].

Logistic regression

LR is a simply interpretable model for binary classifica-
tion developed in the early twentieth century; being one
of the oldest predictive models, its role is well estab-
lished in the medical setting to estimate the probability of
occurrence of different events. Although, it is to be con-
sidered that the advent of newer algorithms able to form
wider and more complex associations between inputs
and outputs causes this model to be more frequently rele-
gated to a comparator role. The algorithm was used by 16
out of 49 articles. Four articles evaluated complications,
which comprised the following outputs: disposition of
patient at discharge, predictors of Allogenic Blood Trans-
fusion (ALBT), and post-surgical complications [17, 25,
38]. The future clinical intervention was studied by three
articles, specifically regarding the risk and time for a
TKA in a patient presenting knee OA [27]. One article
used this machine learning method for TKA component
size prediction [35], and a different publication used it to
evaluate post-TKA walking limitations, a type of func-
tional outcome [7].

Regarding clinical outcome, LR was applied by 7 arti-
cles to study: achievement of MCIDs in KOOS 1 year
after TKA, extended opioid prescription post-surgery,
dissatisfaction after TKA, assessment of sensitization
in patients with chronic pain after TKA, prediction of
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same-day discharge in patients undergoing TKA, and
prediction of PROs [6, 22, 26, 32, 33, 45, 50]. The arti-
cle that presented the highest AUC (0.88) evaluated the
probability of TKA within 5 years [47].

Support vector machine

SVM is an effective model which can be used for both
classification and regression; developed in the 1960s it
still is one of the most popular algorithms used to classify
disease progression based on imaging data. However, due
to its low accuracy in performances with noisy datasets,
newly developed algorithms such as K-Nearest Neighbors
(kNN) are gaining prominence in this role. SVM is par-
ticularly effective when the number of features exceeds
the number of samples in the data, being able to handle
both linear and non-linear relationships in data. It was
used by 13 articles, one of them evaluating the prediction
of LOS and complications after TKA [29, 51]. Mainly to
assess clinical outcomes such as: prolonged postopera-
tive opioid prescription [32]; improvement of KOOS one
year after TKA [33]; dissatisfaction after TKA [6]; attain-
ment of MCIDs 2 years after TKA [20, 53]. SVM was also
employed to analyze subtask segmentation of the TUG
test for perioperative TKA [24]; Risk and Time of TKA in
patients with knee OA [16, 27]; surgical corrections based
on patient-specific intra-operative evaluation [49]. Addi-
tionally, one article used the algorithm to evaluate the
characterization of tissues [15, 60] while another applied
SVM in component sizing for TKA [35].

Other Al models

Two Al models were employed to evaluate major compli-
cations after primary TKA [17]: AutoPrognosis (AP) and
AdaBoost. The ML method Decision tree was utilized
in two studies for the analysis of the following outputs:
gait comparison between UKA and TKA patient [30],
and subtask segmentation of TUG test for perioperative
TKA, the latter also being assessed by the methods: Ada-
Boost, kNN, Naive Bayes Classifier (NB) [24].

Regarding the analysis of post-TKA walking limitation,
the model SuperLearner was used [7]. Both the Cox-PH
model and DeepSurv model were used to predict the risk
and time of TKA in patients with knee osteoarthritis [27];
an Ensemble Deep Learning (DL) model based on the use
of MRI and radiograph was also compared with tradi-
tional ML algorithms to predict the risk of TKA, obtain-
ing promising results [40]. The prediction of PROs was
assessed by the models: NB, kNN, and Multi-Step Adap-
tive Elastic-Net (MSAENET) [26].

The models Quadratic Discriminant Analysis (QDA)
and LASSO regression were employed to evaluate
MCIDs attainment after TKA in different periods. One
of the studies made the assessment 1 year after TKA [22],
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other two articles made the evaluation 2 years after TKA
[20, 53]. LASSO regression was also used to analyze mor-
tality and complication after TKA, such as respiratory,
cardiovascular, and nervous system and renal complica-
tions [21]. Regarding the prediction of clinical outcomes,
the new Skeletal Oncology Research Group Machine
Learning Algorithm (SORG-MLA) was validated for the
identification of patients at risk of prolonged postopera-
tive opioid use after TKA, obtaining an AUC: 0.75 [48].

Moreover, the models Linear Discriminant Analy-
sis (LDA), Recursive Partitioning (RP), and NB were
employed for the assessment of sensitization in patients
with chronic pain after TKA [1]. The prediction of proce-
dural cost after TKA, the DenseNet was used, presenting
an AUC score of 0.813 [31].

Natural Language Processing Method (NLPM) was
utilized to assess surgical technique, using the following
outputs: category of surgery, implant model, presence of
patellar resurfacing, constraint type, and laterality of sur-
gery [46]. NLPM was also used to estimate ITS data [4]
and analyze the alteration that opioid use can have in risk
of knee revision and manipulation in the first year after
primary TKA [12].

Lastly, the Stochastic Hill Climbing Complexity score
was for the prediction of surgical 90-day morbidity, mor-
tality, and complications [11]. NB was employed to ana-
lyze inpatient cost and LOS after TKA [32, 45].

Quality assessment by modified MINORS

All 49 of the reviewed articles were evaluated following
the modified MINORS checklist to assess quality and
risk of bias. All 49 articles clearly reported the study aim,
however, 11 studies failed to report the performance met-
ric. Two publications did not report the output feature,
while 46 of the studies clearly stated the input feature,
and 45 of the articles indicated disclosure. Regarding the
item Al model, 45 of the reviewed articles fulfilled this
criterion. These findings showed a relatively high degree
of quality and low likelihood of bias, only two of the
reviewed articles received a score of 5/8, five articles with
6/8 as a score, and the majority, 42 out of 49 publications,
scored 7/8 and higher (Table 5).

Discussion

This systematic review evaluated the possible uses of
AI/ML models in TKA, highlighting their potential in
improving decision-making, component sizing, inpatient
costs, perioperative planning, and streamlining the sur-
gical workflow. Implementing these prediction models in
TKA can ultimately lead to more accurate predictions,
less time-consuming data processing, and higher preci-
sion in identifying patterns, all while minimizing user
input bias to provide risk-based patient-specific care.
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A key finding was the benefits of RF in aiding surgical
decision-making when applied in intraoperatively col-
lected surface models and patient-specific intraoperative
assessments. RF outperformed both ANN and SVM not
only when categorizing various types of anatomical tis-
sue [15], but also when identifying populations at risk for
TKA [16], and assessing balance and alignment during
TKA surgery, aiding the surgeon regarding the optimal
choice for the suitable bone recut or soft tissue adjust-
ment [49, 61]. This review highlights how the application
of RF in all the steps leading to TKA, perioperative and
postoperative care can lead to optimal clinical and sur-
gical outcomes, while reducing complications thanks to
patient-specific planning. Moreover, by streamlining the
surgical workflow and helping to select surgical correc-
tions, this AI model can overcome the risk of data over-
load and the challenge of data interpretation, while being
fast, cost-efficient, and accurate.

The SGB model presented promising results in the
Kunze et al. (2021) study, by outranking RF, SVM, and
EPLR for the prediction of the component sizing of the
implant used in TKA. This model demonstrated the best
overall performance regarding minimizing prediction
error and maximizing accuracy for both femoral and tib-
ial implant component size prediction. A potential ben-
efit is an ability to predict final component sizes of the
prosthetic without reliance on digital or manual templat-
ing, therefore being faster than traditional methods. Also,
showing good performance across different TKA compo-
nent manufacturers, streamlining component selection
processes, improving inventory control, and reducing
shipping costs [35, 62].

Regarding prediction models for allogenic blood trans-
fusion, the highest AUC score was reported by the RF
and SVM-based models [25]. With a slightly lower differ-
ence of 0.038 in the AUC score, the ANN-based model
was still significantly higher than the classic prediction
models [38]. Overall, these results show how the imple-
mentation of various ML-based models can result in an
improvement of peri-operative complications predic-
tions, ensuring that the identified population at risk, for
blood transfusion, receives proper care while also opti-
mizing the operative process and reducing the risk of
prolonged LOS, caused by complications, such as blood
transfusion, during TKA.

A further finding is the already established impor-
tance of LR models when used in healthcare settings,
which can lead to the development of patient-specific
care and peri-operative planning. The most successful
result of LR (AUC 0.88) was achieved by its implemen-
tation, together with DenseNet, in identifying a popula-
tion at higher risk of TKA within 5 years, particularly
at less advanced stages of OA [47]; although, in the
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Table 5 Quality assessment by modified MINORS

Author, year Disclosure Study Aim Input feature Output Validation Dataset Performance Al model Score
feature method distribution  metric

Ben-Arietal, 1 1 1 1 1 0 1 0 6

201712

Bloomfield 1 1 1 1 0 1 0 1 6

etal, 2019

[13]

Bonakdari 1 1 0 0 1 1 0 1 5

etal, 2020

[10]

Bovonratwet 1 1 1 1 0 1 1 0 6

etal, 2021

[14]

Chanetal, 1 1 0 1 1 1 1 1 7

2020 [15]

Crawford 1 1 1 1 1 0 1 1 7

etal, 2023

[16]

Devanaetal, 1 1 1 1 1 1 1 1 8

2021 [17]

Faroogetal, 1 1 1 0 1 1 1 1 7

2020 [18]

Faroogetal, 1 1 1 1 1 1 0 1 7

2021 [19]

Fontanaetal, 1 1 1 1 1 1 0 1 7

2019 [20]

Harris et al,, 1 1 1 1 1 1 1 1 8

2019 [21]

Harris et al., 1 1 1 1 1 1 1 1 8

2021 [22]

Heisinger 1 1 1 1 1 1 0 1 7

etal, 2020

[23]

Hinterwim- 1 1 1 1 1 1 1 1 8

mer et al.,

2022 [5]

Hsieh et al,, 1 1 1 1 1 1 1 1 8

2020 [24]

Huangetal, 1 1 1 1 1 0 1 1 7

2018 [25]

Huber et al, 1 1 1 1 1 1 1 1 8

2019 [26]

Hyeretal, 1 1 1 1 1 1 1 1 8

2020 [11]

Jamshidi 1 1 1 1 1 1 1 1 8

etal, 2021

[27]

Jayakumar 1 1 1 1 1 1 0 0 6

etal, 2021

[28]

Joetal, 2020 1 1 1 1 1 0 1 1 7

(8]

Johannesdot- 1 1 1 1 1 1 1 1 8

tiretal, 2022

[29]

Jones etal, 1 1 1 1 1 1 0 1 7

2016 [30]

Karnutaetal, 0 1 1 1 1 1 1 1 7

2019 [31]
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Table 5 (continued)

Author, year Disclosure Study Aim Input feature Output Validation Dataset Performance Al model Score
feature method distribution  metric

Katakametal, 1 1 1 1 1 1 1 1 8

2020 [32]

Katakametal, 1 1 1 1 1 1 1 1 8

2022 [33]

Kunze et al., 0 1 1 1 1 1 1 1 7

2020 [6]

Kunze et al,, 1 1 1 1 0 1 1 1 7

2021 [35]

Leungetal, 1 1 1 1 1 0 1 1 7

2020 [36]

Lietal,2022 1 1 1 1 1 1 1 1 8

[37]

Mohammed 0 1 1 1 1 1 1 1 7

etal, 2022

[38]

Navarroetal, 1 1 1 1 1 1 1 1 8

2018 [39]

Puaetal, 1 1 1 1 1 1 1 1 8

2020 [7]

Rajamohan 1 1 1 1 1 1 1 1 8

etal, 2023

[40]

Ramazanian 1 1 1 1 0 1 0 0 5

etal, 2022

[41]

Ramkumar 1 1 1 1 1 1 1 1 8

etal, 2019

[42]

Ramkumar 1 1 1 1 1 1 0 1 7

etal, 2019

[43]

Rexwinkle 0 1 1 1 1 1 0 1 6

etal, 2018

[44]

Sachauetal, 1 1 1 1 1 1 0 1 7

2022 [45]

Saghebetal, 1 1 0 1 1 1 1 1 7

2021 [46]

Shohatetal, 1 1 1 1 1 1 1 1 8

2020 [4]

Tolpadietal, 1 1 1 1 1 1 1 1 8

2020 [47]

Tsai et al, 1 1 1 1 1 1 1 1 8

2023 [48]

Verstraete 1 1 1 1 1 1 1 1 8

etal, 2020

[49]

Wei et al,, 1 1 1 1 1 1 1 1 8

2021 [50]

Yeo et al,, 1 1 1 1 0 1 1 1 7

2023 [51]

Yietal,2020 1 1 1 1 1 1 1 1 8

[52]

Zhangetal, 1 1 1 1 1 1 1 1 8

2022 [53]

Count 45 49 46 47 44 44 38 45
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more recent study published by Crawford et al. in 2023,
compared to other models such as SGB and RF (AUC:
0.83), EPLR scored a lower performance in identifica-
tion of population at risk of TKA [16]. Additionally,
implementing LR with other models, like the ML-based
remote patient monitoring system, can reduce the need
for TKA revision, while acquiring continuous data for
patients undergoing TKA, in terms of mobility and
rehabilitation compliance. This patient monitoring sys-
tem proved to be reliable, low-maintenance, and a well-
received platform for the patient recovering from TKA
[42]. Implementing LR models would result in higher
objectivity, cost-effectiveness, and ability to acquire
continuous data, together with higher accuracy in iden-
tifying at-risk population, overall increasing the success
rate for TKA.

Financial aspects are to be considered when proposing
a treatment plan to patients, as complications can arise
during the surgery and recovery, drastically changing the
cost expected beforehand. Although it was shown to be
an important element to consider when planning peri-
operative care during TKA, the cost-prediction outcome
was only analysed in one article. Demonstrating high
accuracy when used in clinical medicine, the DenseNet
model [31, 63] can optimize and provide a cost-efficient
organization of resources that can benefit the medical
staff by reducing their workload and improving the qual-
ity of the arrangement of resources. Simultaneously, this
method can identify populations at risk for complica-
tions, a benefit that would help reduce the higher cost
of the procedure after TKA, making it possible to imple-
ment patient-specific payment plans benefitting both
patients and healthcare providers.

Going over the performances of the GBM model
analysed in different articles, we can observe how this
algortihm is simple and efficient, it has been validated to
improve both short- and long-term prognoses of TKA
patients. Ko et al. successfully used this AI model for
the prediction of the development of postoperative AKI
after TKA, which can not only increase LOS but also be
life-threatening [34]; while TreeNet GBM proved to be
the most successful method when applied for predictors
regarding patient satisfaction [18]. Additionally, GBM
showed great results when predicting the disposition of
patients at discharge [38], therefore the model’s imple-
mentation could improve the overall patient satisfaction
and recovery rate post-TKA, while also assuring patient-
specific peri-operative care is applied to prevent and
manage possible complications.

Looking at more novel models less implemented up
until recently in the healthcare settings, the following AI/
ML models: DL-TL-MT, SVM, Deep Surv, and Cox-PH,
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proved to be of great use to individuate the population
of patients at risk and develop patient-specific care. The
DL-TL-MT model successfully predicted the risk of OA
progression based on knee radiographs in patients that
previously underwent TKA [36]. Presenting the same
AUC level (of 0.87), the methods SVM, Deep Surv, and
Cox-PH were successfully employed to predict the risk
and time of TKA of an OA knee [27]. The implementa-
tion methods prove to be indispensable in predicting
the progression of OA, even at an early stage. This ML-
based model has great potential as a diagnostic tool for
physicians when determining the prognosis for patient at
all stages of OA, allowing for early intervention through
TKA where needed, therefore reducing the risk of com-
plications and of TKA revision.

The SVM predictor model showed also a very prom-
ising results when applied in the different settings, and
especially for the segmentation of the TUG test and
extraction of information from each subtask periopera-
tive to TKA, solving the problems regarding subjective-
ness and other biases [24, 64]. The benefits that come
with the usage of this AI model would be a more precise
segmentation and therefore data extraction, which results
in further understanding and classification of improve-
ments in patients, leading to the employment of patient-
specific treatments and rehabilitation models.

Looking at the results of the different articles involved
in the review, the emergence of ML models in the medi-
cal setting becomes an evident matter: most data cor-
roborates the idea that novel Al models present better
results and predictive powers, compared to traditional
models, when identifying predictors of TKA and analyz-
ing multiple outcomes simultaneously. In the prediction
of complications after primary TKA, Devana et al. prove
the superiority of AP, compared to traditional models,
regarding the discriminative ability and the capability to
suggest nonlinear relationships between variables in the
outcomes of TKA. Consequently, AP can be a versatile
tool that may be utilized for the identification of crucial
patient characteristics when predicting outcomes across
a variety of datasets, thereby improving the patient out-
comes [17]. Additionally, Harris et al. demonstrated how
Al can produce preoperative prediction models for one-
year improvement in pain and functioning after TKA;
and how the GBM model, which performs well in impor-
tant interactions, and the QDA model, which performs
better in nonlinear association, can be applied to produce
an easy-to-use predictive model able to achieve similar or
better accuracy with far fewer inputs in respect to tradi-
tional predictive models [22].

Lastly, the NLPM model presents great potential as a
newly emerging algorithm, in particular when applied in
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clinical settings for the interpretation of a text, which has
been applied in different studies for the classification of
patient satisfaction [14], knee revisions after TKA due
to preoperative opioid use [12], and for the processing
of clinical free text from electronic health records [46].
The strength of this ML-based model relies on its abil-
ity to automate the extraction of embedded informa-
tion in perioperative notes and patient-centered surveys,
decreasing the need for costly manual chart reviewing
and improving data quality while being less time-con-
suming. The use of this model would improve patient
feedback and perioperative notes to better patient-spe-
cific risk-based care resulting in higher patient satisfac-
tion and a reduction in costs for the healthcare system
due to possible lawsuits [65], together with the reduction
of the cost due to manual chart reviews [46].

Like both the Hinterwimmer et al. 2021, and the Lee
et al. 2022 review, this systematic review confirms the
great potential of AI/ML methods and their application
in orthopedics for cost predictions, diagnostic applica-
tions, and identification of risk factors, while also clear-
ing the doubts regarding the inaccuracy and lack of
sufficient evaluation of these models. In comparison, this
review analyzed 49 articles, including the publications
already examined in previous reviews. This more exten-
sive research concluded that not only is it possible to
implement these models in the prediction of TKA peri-
operative care, disease progression of OA, and distinct
outcomes applying specific data, but also the prediction
of more complex outcomes is now feasible through the
application of more novel AI/ML algorithms [13, 17, 21,
22, 27, 30]. Although, as mentioned in several studies,
further research may enhance the reliability of AI/ML
models and allow for their use in patient preoperative
and perioperative care (8, 11, 19, 21, 43, 50].

Limitations

The main limitation of this review derives from the pos-
sible bias of information regarding the performance of
the different Al models, which, as highlighted by the
MINORS table, results as the most at-risk parameter due
to the omission by several articles of either AUC score
or Accuracy score for the different predictive models
examined. Moreover, many of the studies included in
this review are retrospective studies obtaining the data,
regarding the patients for the testing of the AI/ML pre-
diction models, from national databases and electronic
health recordings; limitations by the lack of detailed
clinical information, potential misclassification of data,
and in many cases a small cohort of patients present-
ing limited characteristics from which to derive input
and compare outputs, which may lead to the results not
being generalizable to all patient populations [11, 19,
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21]. Validation of analyzed predictive models on larger
populations of patients is needed. Lastly, due to the het-
erogeneity between data, it was not possible to perform a
meta-analysis.

Conclusion

Regarding the implementation of AI/ML models in TKA,
the articles in this review mostly consider these predic-
tive models to be helpful and suggest that their applica-
tion in medical settings for perioperative TKA clinical
decision-making and prediction of the progression of OA
into TKA may result in an improvement of patient sat-
isfaction, risk managing, and cost efficiency. Among the
best qualities, for which the AI/ML models outperform
the traditional prediction models, frequently reported
higher accuracy, cost efficiency, simple application, lack
of subjectiveness, and overall reduction of time con-
sumption thanks to the automation of tasks. Therefore, it
is possible to conclude that, although the results of the
reviewed articles should be further validated by their
testing on larger cohorts of patients, the findings of these
articles highlight the great potentials that derive from the
inclusion of AI/ML predictive models in a further branch
of medicine.
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