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Abstract
Background  Tenodesis of the long head of the biceps tendon is frequently performed in shoulder surgery, and 
all-suture anchors have become more popular as fixation methods. However, uncertainty still exists regarding the 
ultimate load to failure of all-suture anchors and the best insertion angle at a cortical humeral insertion point.

Purpose  The purpose of this study was to compare the biomechanical characteristics of three types of all-suture 
anchors frequently used for biceps tenodesis. In addition, the influence of two different insertion angles was observed 
in a porcine humeri model.

Methods  The ultimate load to failure and failure mode of three types of all-suture anchors (1.6 FiberTak®, 1.9 
FiberTak®, 2.6 FiberTak®, Arthrex®) applicable for subpectoral biceps tenodesis were evaluated at 90° and 45° insertion 
angles in 12 fresh-frozen porcine humeri. The anchors were inserted equally alternated in a randomized manner at 
three different insertion sites along the bicipital groove, and the suture tapes were knotted around a rod for pullout 
testing. In total, 36 anchors were evaluated in a universal testing machine (Zwick & Roell).

Results  The 2.6 FiberTak® shows higher ultimate loads to failure with a 90° insertion angle (944.0 N ± 169.7 N; 
537.0 N ± 308.8 N) compared to the 1.9 FiberTak® (677.8 N ± 57.7 N; 426.3 N ± 167.0 N, p-value: 0.0080) and 1.6 FiberTak® 
(733.0 N ± 67.6 N; 450.0 N ± 155.8 N, p-value: 0.0018). All anchor types show significantly higher ultimate loads to 
failure and smaller standard deviations at the 90° insertion angle than at the 45° insertion angle. The major failure 
mode was anchor pullout. Only the 2.6 FiberTak® anchors showed suture breakage as the major failure mode when 
placed with a 90° insertion angle.

Conclusions  All three all-suture anchors are suitable fixation methods for subpectoral biceps tenodesis. Regarding 
our data, we recommend 90° as the optimum insertion angle.

Clinical relevance  The influence of anchor size and insertion angle of an all-suture anchor should be known by the 
surgeon for optimizing ultimate loads to failure and for achieving a secure fixation.
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Background
Suprapectoral and subpectoral biceps tenodesis are the 
two most frequently used techniques to address anterior 
shoulder pain or biceps tendon injuries [1]. However, 
subpectoral tenodesis is reported to be more effective in 
long-lasting pain reduction and fewer revision rates [1]. 
As a fixation method, all-suture anchors (ASAs) have 
become more popular in recent years. Multiple studies 
have confirmed similar or slightly lower pullout strength 
for ASAs compared to conventional suture anchors 
(CSA) [2–8], button systems [8–10] or interference 
screws [8, 11–13]. In contrast to other fixation implants, 
ASAs preserve bone stock, reduce soft-tissue damage 
and torsional forces due to smaller drilling holes and 
therefore minimize fracture risk [9, 14, 15] and improve 
postoperative imaging [16–18]. There are still remain-
ing risks for failure with the suture-tendon interface as 
a critical side [8–10]. The most common failure mode 
is tendon tearing [9, 10, 13]. Studies regarding the ulti-
mate load to failure of different types of ASAs in varying 
insertion angles for subpectoral biceps tenodesis are cur-
rently lacking. Thus far, all published data regarding the 
optimal insertion angle for ASAs focus on RC (rotator 
cuff) repair and propose an optimal insertion angle of 90° 
to the bone surface [2, 19]. However, when performing 
minimally invasive subpectoral biceps tenodesis, the sur-
geon can be blocked by the pectoralis major when aiming 
for a perpendicular insertion of the anchor and therefore 
might rather aim for a 45° insertion angle. Since the cor-
tical thickness and the tendon traction angle play major 
roles in ASA fixation [18, 20], we expect different biome-
chanical properties in fixation strength in the bicipital 
groove with an approximately 3 mm cortex compared to 
the greater tuberosity with partially only 0.3 mm cortex 
[21].

The purpose of this study was to compare the biome-
chanical characteristics of three available sizes of ASAs 
(1.6 FiberTak®, 1.9 FiberTak®, 2.6 FiberTak®, Arthrex 
GmbH, Munich, Germany) used for biceps tenodesis and 
the influence of two different insertion angles in a por-
cine humeri model. We hypothesize that all anchor types 
show similar pullout strength with a decreased ultimate 
load to failure at a 45° insertion angle compared to a 90° 
insertion angle.

Methods
A total of 12 paired porcine cadaveric humeri were used 
in this study and randomly divided into two groups. All 
specimens were six months of age and obtained from a 
local butcher. The humeri were carefully dissected of soft 
tissue, stored in a plastic bag, and kept in a freezer at a 
constant temperature of -20 °C. One day prior to biome-
chanical testing, they were thawed at room temperature 
for 24 h. All humeri were transected at the mid-diaphysis 

level with a band saw to enable suture traction along the 
physiological pull direction of the biceps tendon. The 
humeri were then potted in a specially designed jig and 
fixed by a slowly hardening epoxy resin.

All-suture anchors
Three types of ASAs from the manufacturer Arthrex® 
were selected for testing: 1.6  mm FiberTak Suture 
Anchor®, 1.9  mm FiberTak Biceps Implant System® 
and 2.6 mm FiberTak Anchor DR®. All ASAs were dou-
ble-loaded with 1.3  mm suture tapes, had the same 
deployment mechanism and formed a suture ball when 
tightened. The anchors were inserted into the porcine 
humeri following the manufacturer’s instructions as fol-
lows: A pilot hole was drilled with the associated drill 
through a custom-made 3D printed drill guide at 90° 
and 45° angles directed to the bone surface of the bicipi-
tal groove (Fig.  1). The anchors were inserted equally 
alternated in a randomized manner at three different 
insertion sites to minimize the influence of position and 
cortex characteristics at the insertion site. The insertion 
sites were placed at a 1.5 cm distance along the bicipital 
groove, which has been previously described to be a dis-
tance without biomechanical impact [22].

Suture strands were pulled for deployment, and anchor 
slippage occurred until the anchor was locked to the 
intramedullary cortex. In total, we tested 6 ASAs for each 
position and insertion angle in 12 porcine humeri (Fig. 1). 
Institutional review board approval was not needed for 
this study.

Biomechanical testing
Pullout tests were performed using a universal testing 
machine type Z010 (ZwickRoell GmbH & Co. KG, Ulm, 
Germany). Each strand of the suture tapes was winded 
thrice around a rod and hand tied with knots. The rod 
was attached to the load cell, with the interval between 
the ASA and rod standardized to 12  cm. Suture tapes 
were pulled transverse to the surface of the humerus, 
resembling the physiologic traction of the biceps mus-
cle (Fig. 2). The anchor was preloaded to 100 N with an 
extension rate of 1  mm/s to ensure full engagement of 
the anchor to the bone. Then, the anchor was pulled at 
a crosshead speed of 1 mm/s according to previous stud-
ies [23, 24]. The load prior to sudden testing cessation or 
gradual load decrease caused by complete anchor pull-
out or suture tape breakage was recorded as the ultimate 
load to failure. The failure mode for each specimen was 
documented.

Statistical analysis
MP® version 4.3 (SAS Institute Inc., Cary, NC, USA) was 
used for the statistical analysis of the results. The Shap-
iro-Wilk test was conducted to determine the normality 



Page 3 of 6Alt et al. BMC Musculoskeletal Disorders          (2024) 25:408 

of the distribution (Shapiro and Wilk, 1965), while Lev-
ene’s test was used to determine the homoscedasticity 
(Levene, 1960).

Three-way analysis of variance (ANOVA) was car-
ried out to compare the Fmax of positions, number of 
anchors, insertion angle and the interaction between 
these factors. Since there were no interaction effects, a 
one-way ANOVA was performed for each factor. Means 

were compared with the Tukey post-hoc (HSD) test and 
Student’s t-test with P < 0.05 respectively.

Results
A comparison of the three ASAs regardless of the inser-
tion angle reveals a higher ultimate load to failure of the 
2.6 FiberTak® than the 1.9 FiberTak® (p-value: 0,01384) 
but not the 1.6 FiberTak® (Table 1). The difference in the 

Fig. 2  Anchor Positioning and Biomechanical Testing (a) Potted porcine humerus and alternated anchor positioning in the bicipital groove (b) Biome-
chanical setup with a universal testing machine (ZwickRoell type Z010)

 

Fig. 1  Insertion and traction angle (a) 90° Insertion angle and traction along the physiological biceps contraction direction = 5° (b) 45° Insertion angle 
and traction along the physiological biceps contraction direction = 5°
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mean ultimate load to failure of the 2.6 FiberTak® com-
pared to the 1.9 FiberTak® at 90° is significantly higher 
(p-value: 0.0080) than that of the 1.6 FiberTak® at 90° 
(p-value: 0.0018). Other individual comparisons between 
anchor types associated with the insertion angle revealed 
no further significant differences. However, all anchor 
types show significantly higher ultimate loads to failure 
and smaller standard deviations in the 90° insertion angle 
than in the 45° insertion angle (p-value: 0.0407, Table 1; 
Fig. 3).

Two different failure modes were observed. All but 
one ASA of the 1.6 FiberTak® and 1.9 FiberTak® failed by 
anchor pullout at 90° and 45° insertion angles. The 2.6 
FiberTak® failed in 5 out of 6 cases at a 90° insertion angle 
by suture breakage, whereas at a 45° insertion angle, the 
2.6 FiberTak® failed only in 2 out of 6 cases by suture 
breakage and in 4 cases by anchor pullout (Table 2).

Discussion
The main findings of this study were that [1] the 2.6 
FiberTak® shows a significantly higher ultimate load to 
failure than the 1.9 FiberTak® (p-value: 0.0080) and 1.6 

FiberTak® (p-value 0.0018) at a 90° insertion angle [2]. 
The ultimate load to failure decreases with a 45° insertion 
angle for all three anchor types (p-value: 0.0407), and the 
standard deviation increases [3]. The major failure mode 
is anchor pullout in all groups of the 1.9 FiberTak® and 
1.6 FiberTak®, whereas suture breakage occurred in 5 out 
of 6 cases in 90° inserted 2.6 FiberTak®, but only twice 
in 45° inserted 2.6 FiberTak® as these failed by pull-out. 
All ASAs can be regarded as suitable fixation methods 
for subpectoral biceps tenodesis since all ultimate loads 
to failure exceed estimated necessary forces of 110 N for 
daily activities, which is the force to hold 1 kg in 90° of 
elbow flexion [10, 25]. Therefore, we recommend a 90° 
insertion angle to maximize pullout strength.

There are multiple possible influences on the ultimate 
load to failure of ASAs. Comparisons between studies are 
difficult since these vary in suture anchor design, bone 
material, bone density, insertion sites, traction angle, 
insertion angles and testing protocols as well as biome-
chanical interpretation. In our study, we found higher 
ultimate loads to failure in all tested anchors compared 
to prior biomechanical studies, which presented mean 

Table 1  Descriptive data of ultimate load to failure according to 
the anchor type and insertion angle in Newtons (N)

1.6 FiberTak® 
(n = 12)

1.9 FiberTak® 
(n = 12)

2.6 Fiber-
Tak® (n = 12)

90° Insertion 733.0 ± 67.6 
(652–851)

677.8 ± 57.7 
(591–753)

944.0 ± 169.7 
(643–1174)

45° Insertion 450.0 ± 155.8 
(245–615)

426.3 ± 167.0 
(197–753)

537.0 ± 308.8 
(145–947)

NOTE: Data are presented as the mean ± standard deviation of the mean

Table 2  Failure mode according to the anchor type and 
insertion angle

1.6 Fiber-
Tak® (n = 12)

1.9 
FiberTak® 
(n = 12)

2.6 Fib-
erTak® 
(n = 12)

90° 
Insertion

Pullout
Suture breakage

5/6
1/6

6/6
0/6

1/6
5/6

45° 
Insertion

Pullout
Suture breakage

6/6
0/6

6/6
0/6

4/6
2/6

Fig. 3  Ultimate load to failure according to the anchor type and insertion angle in N (Newton), presented as the mean ± standard deviation of the mean
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ultimate loads to failure for different types of ASAs rang-
ing between 104 and 618 N [5, 18–20, 26–28]. Our results 
may exceed the results from preexisting studies due to 
the consistently stronger bone quality of young porcine 
specimens [5, 26, 29, 30], insertion site along the bicipi-
tal groove with thicker cortical bone [30], double-loaded 
ASAs [28] and traction in the physiologic direction of the 
biceps force vector instead of the anchor insertion direc-
tion [10, 19].

Additionally, other influences must be considered. In 
a biomechanical study, Noorazizi et al. revealed greater 
cortical destruction due to microfractures around angled 
drilling holes compared to perpendicular drilling holes 
[31], causing an overall greater drilling hole size. Euler 
et al. reported that eccentric placement of a drilling hole 
resulted in a 25% reduction in humeral shaft strength 
against a compressive load compared with a concentri-
cally placed hole [32]. Frank correlated a greater drilling 
hole with higher torsional fracture risk [33]. Both may 
influence fracture risk even after implant healing. Ntalos 
et al. reported greater cortical destruction in 45° than in 
90° inserted ASAs after anchor pullout [18]. Lacheta et 
al. pointed out that imbalanced loading of suture strands 
causes higher anchor displacement and decreased ulti-
mate loads to failure [16], which is seen more often in 45° 
than in 90° inserted anchors. The latter can also explain 
the observed higher number of suture breakage in 90° 
than in 45° inserted 2.6 FiberTak® anchors (5/6 com-
pared to 2/6) as the failure mode. Along with Barber 
and Herbert, we see significant differences in ultimate 
loads to failure and failure modes between anchor types 
[28], although we do not expect them to have clinical 
relevance.

With respect to the special insertion site of the bicipi-
tal groove, Otto, Lacheta and Chiang evaluated a range 
of ultimate loads to failure between 170 and 290  N for 
subpectoral LHB tenodesis with ASAs [9–11]. However, 
these studies were performed on human cadaveric bones 
with tendons attached. The major failure mode in these 
studies was tendon rupture first and suture breakage at 
the suture-tendon interface second. Therefore, all three 
tested anchors in our study can be regarded as suitable 
fixation methods for subpectoral biceps tenodesis, show-
ing higher ultimate loads to failure overall. Tendon qual-
ity and suture parameters are possibly more important 
than the fixation method in determining ultimate failure 
loads. Interestingly, the standard deviation doubled in the 
45° insertion angle in our study, and the lowest values in 
the 45° anchor series were 245 N for 1.6 FiberTak®, 197 N 
for 1.9 FiberTak® and 145  N for 2.6 FiberTak®. Hence, 
the anchor-bone interface might turn into the critical 
site of anchor failure when withstanding lower ultimate 
loads to failure than the suture-tendon interface. There-
fore, we can only recommend that surgeons be aware of 

these facts and use a 90° insertion angle for secure ASA 
fixation.

Limitations
This study still has limitations. First, the study was con-
ducted on porcine humeri with higher bone density and 
cortical thickness; therefore, the results cannot be trans-
ferred to human humeri in all aspects. Second, the study 
protocol consisted of a quasi-static testing protocol. 
Cyclic loading and cyclic elongation were not assessed. 
Cyclic testing protocols may show different data. Finally, 
the study is a time-zero cadaveric study, and healing pro-
cesses of the long biceps tendon to the bone as well as 
cyst formation cannot be depicted. Therefore, the exter-
nal validity of the study is limited.

Conclusion
All three suture anchors are suitable fixation methods for 
subpectoral biceps tenodesis. Regarding our data, we rec-
ommend 90° as the optimum insertion angle.

Clinical relevance
All-suture anchors are a popular fixation method in 
biceps tenodesis. The influence of anchor size and inser-
tion angle should be known by the surgeon for optimiz-
ing ultimate loads to failure and for achieving a secure 
fixation.
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