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Abstract
Background Although high tibial osteotomy (HTO) is an established treatment option for medial compartment 
osteoarthritis, predictive factors for HTO treatment success remain unclear. This study aimed to identify informative 
variables associated with HTO treatment success and to develop and internally validate machine learning algorithms 
to predict which patients will achieve HTO treatment success for medial compartmental osteoarthritis.

Methods This study retrospectively reviewed patients who underwent medial opening-wedge HTO (MOWHTO) at 
our center between March 2010 and December 2015. The primary outcomes were a lack of conversion to total knee 
arthroplasty (TKA) and achievement of a minimal clinically important difference of improvement in the Knee Injury 
and Osteoarthritis Outcome Score (KOOS) at a minimum of five years postoperatively. Recursive feature selection was 
used to identify the combination of variables from an initial pool of 25 features that optimized model performance. 
Five machine learning algorithms (XGBoost, multilayer perception, support vector machine, elastic-net penalized 
logistic regression, and random forest) were trained using five-fold cross-validation three times and applied to 
an independent test set of patients. The performance of the model was evaluated by the area under the receiver 
operating characteristic curve (AUC).

Results A total of 231 patients were included, and 200 patients (86.6%) achieved treatment success at the mean of 
9 years of follow-up. A combination of seven variables optimized algorithm performance, and the following specific 
cutoffs increased the likelihood of MOWHTO treatment success: body mass index (BMI) ≤ 26.8 kg/m2, preoperative 
KOOS for pain ≤ 46.0, preoperative KOOS for quality of life ≤ 33.0, preoperative International Knee Documentation 
Committee score ≤ 42.0, preoperative Short-Form 36 questionnaire (SF-36) score > 42.25, three-month postoperative 
hip-knee-ankle angle > 1.0°, and three-month postoperative medial proximal tibial angle (MPTA) > 91.5° and ≤ 94.7°. 
The random forest model demonstrated the best performance (F1 score: 0.93; AUC: 0.81) and was transformed into an 
online application as an educational tool to demonstrate the capabilities of machine learning.
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Background
Medial opening-wedge high tibial osteotomy 
(MOWHTO) is a reliable treatment option for medial 
compartment osteoarthritis of the knee with varus align-
ment in young patients [1]. The benefits of MOWHTO 
have been demonstrated in multiple studies showing 
satisfactory clinical results, slowed progression of knee 
osteoarthritis, and delayed conversion to total knee 
arthroplasty (TKA) [2–8].

Previous studies have shown various survival rates 
ranging from 74 to 92% after 10 years of follow-up [9–
12]. Several potential risk factors for failed MOWHTO 
have been identified: older age, higher body mass index 
(BMI), progressed stage of osteoarthritis, and under-
corrected alignment of the lower extremity appear to 
be related to poor outcomes or survival after HTO [11, 
13–16]. However, patients usually have multiple simulta-
neous risk factors, and due to the complex interactions 
and relationships between these factors, the ability to 
accurately predict and quantify the probability of failure 
of MOWTHO is challenging.

Machine learning is an artificial intelligence (AI) appli-
cation that can analyze complex big data and generate 
algorithms to predict an outcome [17]. There has been a 
growing need to understand machine learning in medi-
cine, and the influence of machine learning in orthopedic 
surgery has also recently attracted considerable interest 
[18–23]. If prognostic factors can be predicted preop-
eratively, appropriate preventive measures to delay the 
requirement for surgery can be performed to achieve 
successful postoperative outcomes in high-risk patients. 
Furthermore, factors that can allow clinicians to make an 
accurate prognosis and provide patients with customized 
risk predictions for outcomes are crucial.

To date, no study has developed a machine learn-
ing model to estimate the survival rates or success rates 
of MOWHTO based on predictive factors. Therefore, 
this study aimed to identify informative variables asso-
ciated with the success of MOWHTO and to develop 
and internally validate machine learning algorithms to 
predict which patients will achieve treatment success 
following MOWHTO for medial compartmental osteo-
arthritis. We examined several variables that have previ-
ously been identified as factors influencing the outcome 
of MOWHTO and developed a machine learning algo-
rithm based on them. Our hypothesis was that machine 

learning analysis could accurately predict patients who 
will achieve treatment success after MOWHTO for the 
follow-up duration.

Methods
Data and patients
This study was approved by the institutional review 
board of our institution, and all patients provided writ-
ten informed consent. We retrospectively identified 
all patients who underwent MOWHTO at our institu-
tion for knee osteoarthritis between March 2010 and 
December 2015. Patients who underwent MOWHTO for 
isolated medial compartment osteoarthritis (Kellgren–
Lawrence grad ≥ II) and who had varus malalignment 
with intact cruciate ligaments were included.

The exclusion criteria were as follows: (1) prior open 
knee procedures; (2) associated ligamentous insufficiency 
(anterior or posterior cruciate ligament) requiring recon-
struction; (3) knee range of motion < 120° and flexion 
contracture > 15°; (4) either patellofemoral or lateral com-
partment osteoarthritis (Kellgren–Lawrence grade ≥ II); 
(5) inflammatory arthritis or traumatic osteoarthritis; 
and (6) a follow-up period < 5 years.

Ultimately, 231 knees (231 patients) with a mean fol-
low-up period of 9 years (range, 5.0–11.5 years) were 
enrolled in the study.

Surgical techniques and postoperative management
The goal was to shift the weight-bearing line to the Fuji-
sawa point and to create 3–5° of postoperative mechani-
cal valgus [24]. All surgical procedures were performed 
by two experienced orthopedic surgeons. Arthroscopic 
examinations were performed regularly at the time of 
MOWHTO. Detected meniscal tears or articular car-
tilage injuries were treated with debridement or micro-
fracture based on the surgeon’s judgment. Following 
arthroscopy, MOWHTO was performed in a biplanar 
fashion according to the technique developed by the 
Arbeitsgemeinschaft für Osteosynthesefragen Interna-
tional Knee Expert group using a locking plate [25].

Primary outcomes and candidate variables
The primary outcomes were defined as the achievement 
of a minimal clinically important difference (MCID) 
in the Knee Injury and Osteoarthritis Outcome Score 
(KOOS) for pain and clinical survival at least five years 

Conclusions The random forest machine learning algorithm best predicted MOWHTO treatment success. Patients 
with a lower BMI, poor clinical status, slight valgus overcorrection, and postoperative MPTA < 94.7 more frequently 
achieved a greater likelihood of treatment success.

Level of evidence Level III, retrospective cohort study.
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after HTO [26]. The endpoint of survival was conversion 
to TKA. Moreover, we selected 25 variables that have 
already been demonstrated to be predictive factors in 
the recent literature and significantly impact HTO out-
comes and survival rates [11, 13–16, 27]. These included 
sex, age, BMI, meniscal status, cartilage status using the 
International Cartilage Repair Society (ICRS) grade, exis-
tence of kissing lesions, additional cartilage repair pro-
cedures, patient-reported outcome measures (PROMs) 
(KOOS, International Knee Documentation Commit-
tee [IKDC] score, Short-Form 36 [SF-36] questionnaire, 
Tegner activity scale score), and radiographic evaluations 
(mechanical hip-knee-ankle [HKA] angle), posterior tib-
ial slope, medial proximal tibial angle [MPTA], and Kell-
gren–Lawrence grading). All the outcomes were assessed 
by two independent investigators blinded to the surgical 
procedures and study aim.

Traditional statistical analysis
We defined clinical success as a well-functioning 
MOWHTO with a KOOS for pain that exceeded the 
MCID after a minimum follow-up of five years without 
conversion to TKA. An independent t-test and Pearson’s 
Chi-square test were used for continuous and categori-
cal variables, respectively. The odds ratio of each variable 
was calculated. Multivariate logistic regression analyses 
were performed to examine the effects of these variables 
on treatment success. Receiver operating characteristic 
(ROC) curves with area under the curve (AUC) analyses 
were performed to evaluate model sensitivity and speci-
ficity. All statistical analyses were performed using SPSS 
(version 25.0; SPSS, Chicago, IL, USA), and p < 0.05 was 
considered statistically significant.

Algorithm development
A binary classifier model that predicts the possibility of 
treatment success based on 25 variables was developed 
and constructed using Python. An 80:20 random sam-
ple split was used to partition the study population into 
training (n = 184) and independent test (n = 47) sets for 
algorithm development and internal validation, respec-
tively. Five-fold cross-validation with five iterations of 
training using the training set was used to develop five 
unique machine learning algorithms: extreme gradient 
boosting (XGBoost), multi-layer perception (MLP), sup-
port vector machine (SVC), random forest (RF), and elas-
tic-net penalized logistic regression (ENPLR).

Model performance assessment
We evaluated the performance of the models using inde-
pendent test sets that were not used for model training 
and measured their performance using the Brier score 
and AUC. These metrics were used to identify the best-
performing model. An ROC curve plots the probability of 

correctly identifying positive cases against the probability 
of falsely identifying positive cases at different threshold 
settings. The AUC score assigns a score of 1 to a perfect 
predictor and 0.5 to a predictor with random guesses. 
The Brier score is calculated by averaging the squared 
difference between the outcome and model prediction 
probabilities to provide an overall performance measure. 
Lower Brier scores indicate better model performance. 
We used the Brier score obtained from a traditional logis-
tic regression as a null model, and models with better 
performance than this null model were considered ade-
quate. Finally, the optimal model was selected based on 
the lowest Brier score.

Model fidelity and application development
It is important to understand individual predictions made 
by classifiers. The explanation of individual predictions 
allows informed decision-making about how much pre-
dictions can be trusted and provides insight to improve 
the model. Ribeir et al. [28] introduced LIME, which 
explains individual predictions using locally interpretable 
surrogate models. In this study, LIME provides quanti-
tative data and visual representations of patient-specific 
predictions, enabling determination of what specific 
combinations of factors support or contradict the predic-
tion that a specific patient will achieve treatment success 
with MOWHTO. We developed a web application that 
provides individualized prediction through the R pack-
ages ‘lime’ by Pedersen et al. [29] and ‘shiny’ by Chang 
et al. [30] However, in their current form, these predic-
tions represent a proof-of-concept for machine learning 
in orthopedics and should not be used until additional 
validation studies are performed.

Results
A total of 231 patients were included, and 200 patients 
(86.6%) achieved treatment success at a mean of 9 years 
of follow-up. The demographic characteristics and clini-
cal data are summarized in Table 1.

Traditional analysis − logistic regression analysis
Based on the multivariate regression analysis, the preop-
erative KOOS for pain, preoperative SF-36 Physical Com-
ponent Summary (PCS) score, and preoperative MPTA 
influenced treatment success after MOWHTO (Table 2). 
The AUC of this regression model was 0.66 (95% confi-
dence interval (CI), 0.420–0.890).

Assessment of algorithm performance
The relative algorithm performances of the five algo-
rithms are described in Table  3. The best-performing 
algorithm was the random forest model with an AUC of 
0.81 (95% CI, 0.771–0.849) (Fig. 1). The Brier score was 
0.09 (95% CI, 0.089–0.099). The null-model Brier score 
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was 0.107 (95% CI 0.101–0.114), indicating that this algo-
rithm appropriately calibrated predictions.

Importance of the features
We evaluated the importance ranks that indicated the 
importance of the input features for the random for-
est algorithm. The performance of the algorithm was 
optimized by combining seven variables: BMI, pre-
operative IKDC score, preoperative KOOS for pain, 
preoperative KOOS for quality of life (QOL), preop-
erative SF-36 PCS score, postoperative HKA angle, and 
postoperative MPTA (Fig.  2). We created 56 unique 
cases of LIME with 5,000 permutations to determine 

the relative contribution of these features to the overall 
predictions. This allowed us to determine the levels of 
each feature and ranges of values that either supported 
or contradicted treatment success for categorical and 
continuous variables. A BMI ≤ 26.8  kg/m2, preoperative 
IKDC score ≤ 42.0, preoperative KOOS for pain ≤ 46.0, 
preoperative KOOS for QOL ≤ 33.0, preoperative SF-36 
PCS score > 42.25, postoperative HKA angle > 1.0°, and 
a postoperative MPTA > 91.5° and ≤ 94.7° were associ-
ated with treatment success for patients undergoing 
MOWHTO for medial compartmental osteoarthritis.

Customized prediction application
We deployed the optimal algorithm as a web-based appli-
cation (https://ailab.shinyapps.io/betterhto/). When the 
seven studied features are input into the algorithm, the 
probability of treatment success following MOWHTO 

Table 1 Baseline Demographic Characteristics and Clinical Data*
Value

Sex
Male 181 (78.4%)
Female 50 (21.6%)
Age 56.4 ± 6.1
BMI 25.6 ± 3.0
Meniscal status
Intact 144 (62.3)
<1/3 resected 75 (32.5)
>1/3 resected 12 (5.2)
Initial cartilage status†
MFC 3.3 ± 0.7
MTP 3.0 ± 0.8
Kissing lesion 55 (23.8%)
Cartilage repair procedure 126 (54.5%)
Preoperative ROM 138.6 ± 9.1
Preoperative KOOS
Pain 41.8 ± 6.5
Symptoms 50.3 ± 6.9
Activities of daily living 52.7 ± 5.6
Sports and recreation 25.2 ± 4.9
Quality of life 29.2 ± 5.7
Preoperative IKDC 39.2 ± 5.0
Preoperative SF-36 PCS 42.7 ± 6.3
Preoperative tegner activity scale score 2.0 ± 0.4
Preoperative Kellgren-Lawrence grade 2.7 ± 0.5
Preoperative HKA 6.8 ± 2.6
Preoperative MPTA 85.8 ± 2.8
Preoperative posterior tibial slope 7.4 ± 3.8
Postoperative 3months HKA 2.6 ± 2.6
Postoperative 3months MPTA 93.1 ± 2.8
Postoperative 3months posterior tibial slope 9.3 ± 3.4
Achievement of treatment success for MOWHTO 200 (86.5%)
*Values are presented as the mean ± standard deviations or n (%)

†Initial cartilage status was graded at the time of initial high tibial osteotomy 
according to the International Cartilage Repair Society grading system

BMI, body mass index; MFC, medial femoral condyle; MTP, medial tibial plateau; 
ROM, range of motion; KOOS Knee Injury and Osteoarthritis Outcome Score; 
IKDC International Knee Documentation Committee; SF-36 PCS Short Form-36 
Physical Component Summary; HKA hip–knee–ankle; MPTA medial proximal 
tibial angle; MOWHTO, medial opening-wedge high tibial osteotomy

Table 2 Multiple Logistic Regression Analysis for Predictors of 
MOWHTO Treatment Success

Multivariate Analysis
Estimate (95% CI) P 

Value*
Sex (female vs. male) 0.409 (− 0.870 to 1.851) 0.549
Age −0.022 (− 0.106 to 0.059) 0.588
BMI 0.045 (− 0.118 to 0.228) 0.603
Meniscal status −0.021 (− 0.937 to 0.945) 0.963
Initial cartilage status (MFC) 0.535 (− 0.313 to 1.363) 0.201
Initial cartilage status (MTP) −0.624 (− 1.599 to 0.281) 0.186
Kissing lesion −0.865 (− 2.478 to 0.729) 0.285
Cartilage repair procedure −0.436 (− 1.603 to 0.662) 0.445
Preoperative ROM −0.263 (− 0.710 to 0.036) 0.185
Preoperative KOOS
Pain −0.143 (− 0.259 to − 0.036) 0.010
Symptoms 0.072 (− 0.042 to 0.190) 0.217
Activities of daily living −0.055 (− 0.183 to 0.070) 0.390
Sports and recreation 0.076 (− 0.038 to 0.191) 0.191
Quality of life −0.035 (− 0.133 to 0.057) 0.458
Preoperative IKDC 0.118 (− 0.037 to 0.258) 0.109
Preoperative SF-36 PCS 0.092 (0.020 to 0.167) 0.012
Preoperative Tegner activity scale 
score

−0.177 (− 1.587 to 1.235) 0.803

Preoperative HKA −0.116 (− 0.346 to 0.104) 0.305
Preoperative MPTA −0.292 (− 0.517 to − 0.088) 0.006
Preoperative posterior tibial slope −0.019 (− 0.147 to 0.113) 0.766
Postoperative 3months HKA −0.174 (− 0.040 to 0.394) 0.110
Postoperative 3months MPTA −0.067 (− 0.210 to 0.074) 0.352
Postoperative 3months posterior 
tibial slope

0.084 (− 0.139 to 0.313) 0.461

*Bold indicates a P value < 0.05 (statistically significant difference)

†Initial cartilage status was graded at the time of initial high tibial osteotomy 
according to the International Cartilage Repair Society grading system

BMI, body mass index; MFC, medial femoral condyle; MTP, medial tibial plateau; 
ROM, range of motion; KOOS Knee Injury and Osteoarthritis Outcome Score; 
IKDC International Knee Documentation Committee; SF-36 PCS Short Form-36 
Physical Component Summary; HKA hip–knee–ankle; MPTA medial proximal 
tibial angle

https://ailab.shinyapps.io/betterhto/
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is expressed as a percentage, and the importance of each 
feature used in the decision-making process is displayed 
in a graph (Fig. 3).

Discussion
This study’s principal finding was that the random for-
est machine learning-based model demonstrated the 
best performance for predicting treatment success of 
MOWHTO at a mean of nine years postoperatively. The 
algorithm required only seven factors to predict treat-
ment success: BMI, preoperative IKDC score, preop-
erative KOOS for pain, preoperative KOOS for QOL, 
preoperative SF-36 PCS score, postoperative HKA angle, 
and postoperative MPTA. The AUC to predict treatment 
success was 0.81, which exceeds the threshold for good 
performance of ≥ 0.8 [20], and this study enabled individ-
ualized prediction of treatment success after MOWHTO 
using a web-based system. Our results demonstrate 
that machine learning algorithms are promising new 
approaches in clinical situations wherein several variables 
must be comprehensively assessed, such as in predicting 
treatment success of MOWHTO in patients with medial 
compartmental osteoarthritis.

This is the first study to predict the patient-spe-
cific treatment success of MOWHTO by applying a 
machine learning model. Predicting treatment success 
of MOWHTO is challenging due to the heterogeneity 
and diversity of associated variables; discriminating fac-
tors must be identified to guide treatment decisions, and 
accurately quantifying this risk is difficult [15]. Our seven 
identified variables are simple and intuitive and can guide 
the patient-specific discussion regarding surgical options 
and realistic outcome goals.

Predictors of MOWHTO treatment success must be 
identified to reduce the risk of failure requiring TKA, 
and numerous predictors have been described to iden-
tify ideal candidates for MOWHTO [5, 11, 13–16, 31]. 
Bonasia et al. [11] identified positive (Ahlback grade 0 
arthritis of the medial compartment and a good preop-
erative Knee Society score) and negative prognostic fac-
tors (age > 56 years and postoperative knee flexion < 120°) 
associated with MOWHTO outcomes in a case series of 
140 patients. Jin et al. [16] analyzed the risk factors for 
survival after MOWHTO, and the main failure criteria 
were conversion to TKA and inferior PROMs. They pre-
sented a regression analysis showing that age ≥ 65 years, 
grade 4 cartilage damage in the medial compartment, 
and grade ≥ 2 cartilage damage in the lateral compart-
ment negatively influenced outcomes after MOWHTO. 
Bouguennec et al. [13] demonstrated that survival factors 
reducing the risk of MOWHTO failure included female 
sex, age < 54 years, BMI < 25  kg/m2, Ahlback grade 1 or 
2, varus articular component < 0.9°, HKA angle correc-
tion > 180°, and absence of a hinge fracture. Patients usu-
ally have multiple simultaneous risk factors, and some 
studies did not address the confounding effects of other 
variables, which should be controlled for accurate analy-
sis of the true effects on postoperative outcomes.

Machine learning involves techniques that model com-
plex relationships between variables to predict an out-
come. Applications of predictive machine learning have 
broadly impacted the medical field, especially in ortho-
pedic surgery, and facilitate surgeon decision-making 
[20–23, 32–38]. Batailler et al. [39] recently determined 
the main predictive factors for long-term HTO survival 
and proposed a predictive score that includes age, BMI, 
and the presence or absence of a joint line and is par-
ticularly useful in borderline cases for decision-making 
regarding potential HTO surgery. However, this is not a 
true prediction, and a machine learning model may be a 
helpful decision aid in daily practice to determine HTO 
indications. Martin et al. [21] performed a machine 
learning analysis of the Norwegian Knee Ligament Reg-
ister (NKLR), identified important risk factors related 
to subsequent revision of primary anterior cruciate liga-
ment (ACL) reconstruction, and developed a clinically 
meaningful calculator for predicting revision of primary 

Table 3 Performance of Each Machine Learning Algorithm in 
the Independent Test Set of Patients*

XGBoost Multi-Layer
Perception

Support 
Vector
Machine

Elastic Net
Logistic 
Regression

Ran-
dom 
Forest

Ac-
cu-
racy

0.86 (0.84 
to 0.87)

0.86 (0.85 to 
0.87)

0.86 (0.86 
to 0.87)

0.86 (0.86 to 
0.87)

0.88 
(0.87 
to 
0.89)

Sen-
sitiv-
ity

0.16 (0.10 
to 0.21)

0.0 (0.0 to 0.0) 0.0 (0.0 to 
0.0)

0.11 (0.06 to 
0.16)

0.17 
(0.11 
to 
0.24)

Spec-
ificity

0.96 (0.95 
to 0.98)

0.99 (0.99 to 
1.0)

1.0 (1.0 to 
1.0)

0.98 (0.97 to 
0.99)

0.98 
(0.98 
to 
0.99)

Preci-
sion

0.42 (0.27 
to 0.58)

0.0 (0.0 to 0.0) 0.0 (0.0 to 
0.0)

0.36 (0.21 to 
0.51)

0.59 
(0.41 
to 
0.77)

F1 
Score

0.21 (0.14 
to 0.28)

0.0 (0.0 to 0.0) 0.0 (0.0 to 
0.0)

0.18 (0.10 to 
0.26)

0.25 
(0.17 
to 
0.33)

Brier 
Score

0.10 (0.09 
to 0.11)

0.12 (0.11 to 
0.12)

0.11 (0.11 
to 0.11)

0.10 (0.09 to 
0.11)

0.10 
(0.09 
to 
0.10)

AUC 0.76 (0.73 
to 0.80)

0.66 (0.60 to 
0.73)

0.69 (0.64 
to 0.74)

0.69 (0.63 to 
0.75)

0.81 
(0.77 
to 
0.85)

*Values are presented as means and 95% confidence intervals
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ACL reconstruction. Kunze et al. [23] developed machine 
learning algorithms capable of providing patient-specific 
predictions of which athletes will achieve clinically rel-
evant improvement in sports-specific function after hip 
arthroscopy for femoroacetabular impingement syn-
dromes. Their machine learning algorithms demon-
strated excellent performance in predicting achievement 
of an MCID in clinical scores. Using this framework, 
orthopedic surgeons may consider various treatment 
options preoperatively according to the patients’ individ-
ual risk profiles.

Notably, the random forest machine learning model 
identified seven variables that differed from those high-
lighted in traditional regression analyses as crucial for 
predicting MOWHTO treatment success. This discrep-
ancy may be due to the distinct methodologies applied. 
Traditional regression highlighted only three param-
eters as significant in a multivariate analysis, emphasiz-
ing the reliance on statistical significance (P values) for 
variable selection. However, the random forest model 
employs a feature importance mechanism and ranks 
variables based on their contribution to model accuracy 
rather than based on statistical significance alone. This 
approach led to the identification of variables such as 

BMI, preoperative IKDC score, preoperative KOOS for 
pain, preoperative KOOS for QOL, preoperative SF-36 
PCS score, postoperative HKA angle, and postopera-
tive MPTA as important predictors. We identified two 
types of predictive factors: preoperative variables and 
postoperative variables at three months after the initial 
surgery. A low BMI and poor clinical status except for 
the preoperative SF-36 PCS score were important pre-
operative variables associated with MOWHTO treat-
ment success. A BMI ≤ 26.8  kg/m2 was associated with 
MOWHTO treatment success using LIME analysis, 
which is in agreement with the findings of previous stud-
ies (25.0–27.5  kg/m2) [39, 40]. Overweight patients put 
excessive stress on the knee joint, which may accelerate 
degenerative changes and surgical outcomes. Bouguen-
nec et al. [13] reported that a BMI < 25 kg/m2 was asso-
ciated with reduced HTO failure, and Howells et al. [41] 
showed inferior PROMs at 5 years after HTO in patients 
with a BMI > 30  kg/m2. Patients with more inferior 
PROMs preoperatively showed a better prognosis than 
those with less inferior PROMs. A more severe clini-
cal status for osteoarthritic knees may create an oppor-
tunity for improvement with MOWHTO. Preoperative 
features are dynamic and may be optimized following a 

Fig. 1 Receiver operating characteristic (ROC) curve for the random forest machine learning model. AUC = area under the ROC curve
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trial of nonsurgical management. These findings are quite 
similar to those of previous reports in that significantly 
more patients with more severe disease before TKA are 
satisfied with their procedure than those with less severe 
degenerative changes [42, 43].

The ideal degree of correction has been extensively 
evaluated, and correction from neutral up to extreme val-
gus corrections is recommended [10, 44–46]. Our results 
showed that an HKA angle ≥ 1° was a positive factor for 
MOWHTO treatment success, which is consistent with 
the literature [13, 39], and undercorrection is generally 
associated with worse results [1, 47]. Thus, achieving 
adequate operative correction to a relevant angle is nec-
essary for good long-term outcomes after MOWHTO 
[48, 49]. Furthermore, our findings suggest that unload-
ing effects of MOWHTO led to clinical success, with no 
association with meniscal/chondral status or additional 
cartilage repair procedures and postoperative clinical 
outcomes.

Although the association between excessive joint line 
obliquity (JLO) and inferior outcomes after HTO has not 
yet been demonstrated, considering JLO for HTO is cru-
cial [50–52]. In their biomechanical study, Nakayama et 

al. reported that an MPTA > 95° was unacceptable [53]. 
Schuster et al. [52] retrospectively reviewed 79 patients 
with medial knee osteoarthritis and demonstrated that an 
overcorrected MPTA (> 95°) was related to inferior clini-
cal outcomes during long-term follow-up. Kim et al. [50] 
also assessed the influence of the MPTA on HTO out-
comes at a minimum four-year follow-up using a propen-
sity score matching analysis and suggested that although 
an excessively increased MPTA after HTO had no signifi-
cant effects on clinical outcomes and cartilage deterio-
ration in the lateral compartment, lateral compartment 
pain was experienced significantly more frequently. Thus, 
our findings of a postoperative MPTA ≤ 94.70° by LIME 
analysis are clinically relevant, and concerns about the 
potential side effects of a certain extent of overcorrection 
of MPTA should be understood cautiously for the ortho-
pedic surgeons.

The random forest machine learning algorithm demon-
strated excellent performance for predicting MOWHTO 
treatment success in patients with medial compart-
mental osteoarthritis compared with the conventional 
logistic regression model based on the AUC. The con-
ventional logistic regression model is prone to overfitting 

Fig. 2 Feature importance plot for the random forest model based on the independent test set. Each predictive weight of each variable is compared 
among the other seven variables chosen from recursive feature elimination with cross-validation. KOOS = Knee Injury and Osteoarthritis Outcome Score, 
SF-36 PCS = Short-Form 36 questionnaire Physical Component Summary, IKDC = International Knee Documentation Committee, HKA = hip–knee–ankle, 
QOL = quality of life, BMI = body mass index, and MPTA = medial proximal tibial angle
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of training data when used as a prediction model [54], 
often resulting in poorer performance when presented 
with new data, which makes it difficult to use clinically. 
The random forest model achieved a 12% relative Brier 
score reduction over the traditional logistic regression 
analysis. However, random forest classifiers may require 
more training data to produce robust results and may 
also contain unnecessary predictors; thus, further study 
of model optimization through feature selection of input 
variables and data augmentation is necessary. LIME was 
used to explain the individual predictions of our model. It 
applies to any predictive model and has no assumptions 
about the model. This is advantageous, especially when 
the model is trained to be noninterpretable. However, 
the results may vary at each execution because the data 
points are sampled without considering the correlation 
between variables. Alvarez-Melis et al. [55] reported that 
the explanations of two close points are very different 
from each other, indicating that there is instability in the 
explanation; thus, it sometimes can be difficult to trust.

Our study has certain limitations. First, this was a 
retrospective nonrandomized study, and relatively few 
patients were recruited. Further large-sample studies may 
improve the machine learning model performance. Sec-
ond, although we considered a variety of machine learn-
ing methods, a model that was not considered might have 
had superior performance. Third, there are other possible 

predictors associated with MOWHTO treatment success 
that inherently vary depending on institutional proto-
cols and surgeon preference that we could not evaluate 
in the present study. Fourth, for each of the five unique 
machine learning algorithms, we evaluated their perfor-
mance using a training dataset through five-fold cross-
validation with five iterations. However, developing a 
meta-algorithm, which was not used in the present study, 
would be better to explore the integration and improve 
the performance of the model. Fifth, the machine learn-
ing algorithms developed in this study were internally 
validated using an independent test set. However, exter-
nal validation using data from other centers would 
strengthen the robustness of the algorithms. As this 
study recruited patients from a single center, observer or 
selection biases cannot be eliminated. Sixth, there might 
have been selection bias among the included patients. 
In Asian populations, MOWHTO tends to be more fre-
quently performed in females than in males. Our findings 
might have been biased by the disproportionate female 
sex predominance [56–59]. Seventh, this study was based 
on a retrospective analysis performed at a single institu-
tion, which may restrict the generalizability of the results. 
Finally, it is possible that there are other important vari-
ables, including pre- to postoperative (delta) posterior 
tibial slope or contralateral ICRS grade, that could have 
been evaluated and may have led to alternative results. 

Fig. 3 Demonstration of the possible clinical influence of the clinical decision-making tool derived from the random forest model. The probability of 
achieving treatment success following MOWHTO is 98.0% (left) and 42.0% (right). Factors marked in blue positively affected this patient’s ability to achieve 
treatment success. Factors marked in red had a negative impact. KOOS = Knee Injury and Osteoarthritis Outcome Score, SF-36 PCS = Short-Form 36 ques-
tionnaire Physical Component Summary, IKDC = International Knee Documentation Committee, HKA = hip–knee–ankle, QOL = quality of life, BMI = body 
mass index, MPTA = medial proximal tibial angle, and MOWHTO = medial opening-wedge high tibial osteotomy
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Furthermore, it could be more practical to include these 
variables with only one PROM because time-consuming 
PROM assessments are not routinely conducted in daily 
clinical practice. The addition of a slimmed web-based 
algorithm would allow the clinicians to reduce the num-
ber of input factors and thus facilitate obtaining infor-
mation more quickly; however, it will likely have limited 
statistical significance. Further studies with larger sample 
sizes and additional crucial variables as well as collabora-
tions with multiple centers are necessary to validate our 
findings.

Conclusion
The correct indications are necessary to achieve 
MOWHTO treatment success. The random forest 
machine learning-based model used to evaluate patients 
who underwent MOWHTO showed demonstrated 
the best performance for predicting MOWHTO treat-
ment success. According to our findings, patients with 
a lower BMI, poor clinical status, slight valgus overcor-
rection, and postoperative MPTA < 94.7° more frequently 
achieved a greater probability of treatment success. Our 
findings are clinically relevant and would allow patient 
and surgical information to guide shared clinical deci-
sion-making for patient-specific management.
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