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Introduction
The metaverse [1] is a virtual environment that merges 
physical and virtual realities, empowering users and ava-
tars to interact within a technologically advanced ecosys-
tem [2]. This setting can harness immersive technologies 
like augmented reality (AR), virtual reality (VR), and arti-
ficial intelligence (AI) to provide realistic experiences to 
individuals across the globe in several different contexts 
[3].

Computer-driven approaches have been used in 
many fields of surgery, such as ophthalmology, urology, 
and general surgery, to assist the surgeon in improving 
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Abstract
Purpose  This systematic review aims to provide an overview of the current knowledge on the role of the metaverse, 
augmented reality, and virtual reality in reverse shoulder arthroplasty.

Methods  A systematic review was performed using the PRISMA guidelines. A comprehensive review of the 
applications of the metaverse, augmented reality, and virtual reality in in-vivo intraoperative navigation, in the training 
of orthopedic residents, and in the latest innovations proposed in ex-vivo studies was conducted.

Results  A total of 22 articles were included in the review. Data on navigated shoulder arthroplasty was extracted 
from 14 articles: seven hundred ninety-three patients treated with intraoperative navigated rTSA or aTSA were 
included. Also, three randomized control trials (RCTs) reported outcomes on a total of fifty-three orthopedics surgical 
residents and doctors receiving VR-based training for rTSA, which were also included in the review. Three studies 
reporting the latest VR and AR-based rTSA applications and two proof of concept studies were also included in the 
review.

Conclusions  The metaverse, augmented reality, and virtual reality present immense potential for the future of 
orthopedic surgery. As these technologies advance, it is crucial to conduct additional research, foster development, 
and seamlessly integrate them into surgical education to fully harness their capabilities and transform the field. This 
evolution promises enhanced accuracy, expanded training opportunities, and improved surgical planning capabilities.
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preoperative planning or perfecting surgical execu-
tion [4–6]. However, the role of Metaverse, AR, and VR 
in orthopedics is yet to be adequately elucidated, and 
their implementation in shoulder surgery is yet to be 
thoroughly investigated, particularly in the context of 
shoulder arthroplasty [7]. Several technological innova-
tions are routinely implemented in orthopedic surgery 
[8], such as robotic surgery, 3D-printed patient-specific 
instrumentation, and navigation tools with tracking visu-
alized on monitors [9].

The most recent advancement to improve intraop-
erative execution involves the utilization of computer-
assisted navigation instruments. This navigation system 
offers real-time visual feedback during surgery, enabling 
precise alignment of the surgeon’s instruments with the 
preoperative plan. This alignment is achieved by integrat-
ing a line-of-sight camera and trackers attached to the 
surgical instruments and the scapula [10].

While traditional navigation techniques have been 
extensively utilized in orthopedic procedures, including 
shoulder arthroplasty, the emerging technologies of AR 
and VR represent a significant advancement in the field. 
Notably, there is currently a dearth of studies investigat-
ing the application of AR and VR specifically within the 
context of shoulder arthroplasty, highlighting an area ripe 
for exploration.

The increasing interest in AR and VR in orthopedics 
and trauma comes as no surprise, given that orthopedic 
surgical procedures frequently demand visual data from 
pre- and intra-operative medical imaging. These proce-
dures involve mechanical actions like screw or implant 
placements, osteotomies, and deformity corrections, all 
of which can benefit from visualizing rigid relationships 
within AR environments. Advancements in haptic feed-
back, real-time imaging, and AI can further enhance 
surgical planning, precision, and patient outcomes. Col-
laborative virtual environments within the metaverse can 
foster interdisciplinary discussions and enable remote 
mentoring and guidance for orthopedic surgeons special-
izing in shoulder procedures [11]. Thus, such technical 
tasks appear to be predisposed to applications of AR and 
VR [12].

Also, revolutionary changes in medical education, 
surgical training, and interventional procedures occur 
within the metaverse [13]. In this domain, these technol-
ogies have the potential to significantly enhance the field 
of orthopedic surgery by providing a secure and readily 
accessible supplement to orthopedic surgical training, 
all without direct involvement of patients [14]. Surgical 
care and education are increasingly relying on VR, AR, 
and, ultimately, the newest metaverse applications. Nev-
ertheless, the technologies themselves need further 
development in this direction, and, at present, it remains 

challenging to ascertain the extent to which these skills 
effectively translate into the clinical setting.

The aim of this systematic review is to provide an 
overview of the current knowledge on the role of the 
metaverse, AR, and VR in the context of total shoulder 
arthroplasty.

A comprehensive review of the applications of the 
metaverse, augmented reality, and virtual reality in in-
vivo intraoperative navigation, in the training of ortho-
pedic residents, and the latest innovations proposed in 
ex-vivo studies was conducted.

Materials and methods
Search strategy
The initial search strategy was organized according to 
the PICO (Population, Intervention, Comparison, Out-
come) structure. Studies that reported outcomes of 
patients with indications (P) for reverse total shoulder 
arthroplasty (rTSA) or anatomical total shoulder arthro-
plasty (aTSA) (I) treated with a computer-assisted intra-
operative navigation system were included. Also, studies 
reporting on orthopedics residents (P) who received VR 
or AR-based training (I) were included. Cadaver or Com-
puter-based studies (P) reporting outcomes regarding the 
latest applications of AR or VR on total shoulder arthro-
plasty (I) were also considered.

Clinical and functional outcomes and questionnaires 
for each group were reported (C) to evaluate treatment 
outcomes after each intervention (O).

Two independent reviewers (A.N., A.L) performed 
article screening using the following research order: title 
and abstract followed by full article screening. The same 
reviewers then performed data extraction. In both cases, 
differences were reconciled by mutual agreement. In case 
of disagreement, a third reviewer (Longo UG) was con-
sulted for consensus.

Literature search
A systematic review was performed using the Preferred 
Reporting Items for Systematic Reviews and Meta-anal-
yses (PRISMA) guidelines. Medline, EMBASE, Scopus, 
and CINAHL bibliographic databases were searched 
using the following string: ((metaverse OR augmented 
reality OR virtual reality)) AND arthroplasty).

The search was performed by two authors (A.L., A.N.) 
from the inception of the database to August 2023. Addi-
tional studies were searched among reference lists of 
selected papers and systematic reviews.

Eligibility criteria
The outcomes assessed for patients treated with intra-
operative computer-assisted rTSA or aTSA included: the 
mean number of screws and the mean screw length, the 
average surgical time, the number and type of augmented 
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baseplates that were exploited, the mean glenoid version 
and inclination (in its preoperative, planned and postop-
erative values and the deviation from planned to postop-
erative glenoid version and inclination. Complications 
and revisions were also reported.

The following parameters were extracted from the 
studies that reported on orthopedics residents training 
with AR or VR and from in-vitro studies: the aim of the 
study, sample size, the instrumentation design, the study 
results, and conclusions.

To report these variables, peer-reviewed articles of 
each level of evidence according to the Oxford classifica-
tion were included. Considering the authors’ proficiency 
in various languages, articles in English, Italian, French, 
and Spanish were screened.

Only studies utilizing either computer-assisted intra-
operative navigation for rTSA or aTSA were considered. 
Patients undergoing revision surgery or concomitant 
procedures were excluded. No exclusion criteria were set 
regarding the surgical indication or follow-up. Technical 
notes, letters to editors, and instructional courses were 
excluded.

Also, only studies reporting outcomes regarding VR- 
or AR-based training in total shoulder arthroplasty of 
orthopedic surgical residents were included. Even though 
they included AR- or VR-based protocols, studies focus-
ing on arthroscopic training were not considered.

Outcomes of interest
Data was extracted into predefined tables divided accord-
ing to intervention.

Tables for intraoperative navigated aTSA and rTSA 
include a demographics table (Table  1), and two out-
comes tables (Table 2 and 3.).

Data from studies focusing on orthopedic surgical resi-
dents are reported in Table 4.

Data from in-vitro studies reporting the most recent 
VR and AR applications in 3D models and cadaver speci-
mens are summarized in Table 5.

General study characteristics extracted were Author, 
Year of Publication, Type of Study, Level of Evidence 
(LOE), Intervention, Sample Size, Instrumentation 
Design, Implant Design, and Last Follow-up.

Outcome measures were extracted from the final 
follow-up. Mean values and standard deviations were 
extracted. Depending on the availability of this data from 
each included study, a selection of these outcomes was 
included in the tables.

Methodological quality assessment
The Risk of Bias (RoB 2) tool for Randomized Tri-
als, the Robins-I tool for case-control studies, and the 
Joanna Briggs Institute Critical Appraisal Tool for Case-
Series were used to assess the quality of each study. Two 

reviewers independently evaluated selected articles (A.L, 
B.G.) and reviewed by a third in case of disagreement 
(Longo UG).

Results
Study selection
The literature search identified 359 articles from scien-
tific databases and 27 from registers. Duplicate removal 
resulted in the exclusion of 114 studies, leaving 2 articles 
for screening.

At the final screening, 22 articles met the selection cri-
teria and were included in the review. The PRISMA flow-
chart of the literature search is reported in Fig. 1.

Study characteristics
The LOE of each of the included studies was: 4 level I 
Randomized Control Trials [15–18], 9 level III Retro-
spective Case-Control Studies [19–27], 4 level IV Ret-
rospective Case-Series Studies [28–31], 3 level V Basic 
Science cadaver studies [32–34] and 2 level V Proof of 
Concept studies [4, 35].

1701 patients treated with rTSA or aTSA from 14 stud-
ies [15, 19–31] were included in the review. 793 patients 
were treated with navigated rTSA or aTSA, while 908 
were treated with standard, non-navigated rTSA or 
aTSA.

Indications for rTSA and aTSA, whether navigated or 
non-navigated, included rotator cuff arthropathy, osteo-
arthritis, massive rotator cuff tears, proximal humeral 
fractures, osteonecrosis, inflammatory arthropathy, dis-
location arthropathy, rheumatoid arthritis, and post-
traumatic arthritis. Only one patient in a single study [28] 
underwent rTSA as a two-stage revision procedure.

The arthroplasty implants included the Equinoxe 
implant (Exactech, USA), the Eclipse anatomical implant 
(Arthrex, USA), the Aequalis Reverse implant (Wright 
Medical Group, USA), and the Delta Extend reverse 
implant (DePuy Orthopedics, ENG).

Fifty-three orthopedics surgical residents and doctors 
receiving VR-based training for rTSA were also included 
in the review. 46 were orthopedics residents from junior 
to senior years, and 7 were expert orthopedic surgeons. 
Twenty-seven (23 residents and 4 experts) received VR-
based training for rTSA, while 26 (23 residents and 3 
experts) were allocated to the cadaver-based training 
control groups. Data was collected from 3 RCTs [16–18].

In the three studies [32–34] reporting the latest VR 
and AR-based rTSA applications, 48 fresh-frozen human 
cadaver shoulders were implanted with the glenoid base-
plate via intraoperative navigation integrated with head-
mounted displays. Two studies focused on navigated 
rTSA coupled with a head-mounted display, while a 
third study exploited a novel robotic platform for glenoid 
guidewire placement.
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Two proof of concept studies [4, 35] reported out-
comes following navigated rTSA coupled with the Micro-
soft Hololens 1 and Hololens 2 devices, used in 19 3D 
phantom scapulae. The Wright Medical Group Aequalis 
Reversed Implant (Wright Medical Group, USA) and the 
BF Glenoid Trabecular Metal System (Zimmer Biomet, 
USA) were implanted, respectively.

Demographics of patients undergoing navigated and 
non-navigated rTSA and aTSA are reported in Table  1. 
Demographics for trainees receiving VR-based training 
and for in-vitro studies are reported in Tables  4 and 5, 
respectively.

Quality of evidence
All the included RCTs were judged as “low risk of bias.” 
Four RCCs were also identified as “low risk of bias,” the 
remaining three were judged as having a “moderate risk 
of bias.” CS studies were overall of good quality [36–52]. 
The Proof of Concept and Basic Science studies were also 
of adequate quality, even though it was not possible to 
comment directly on their methodological quality due to 
the absence of an objective quality assessment measure.

The risk of bias assessments for RCTs, CCs, and CSs 
are reported in Figs. 2 and 3, and 4, respectively.

Surgical outcomes
Five studies [19, 20, 23, 24, 30] reported the mean num-
ber of screws used in their cohorts, while four studies [20, 
21, 23, 28] reported the mean length of the screws used. 
The mean surgical time was reported by seven studies 
[15, 23, 25, 26, 28, 30, 31]: the longest time for the navi-
gated and non-navigated cohorts was found by Sasaki et 
al. [19–26, 29].

Nine articles also reported the number of augmented 
baseplates used [28].

Complications and revisions were also reported 
by six articles [19, 27–31]. Common complications 
included glenoid loosening, persistent pain unexplained 
by mechanical causes, infection, and intraoperative 
fractures.

Their preoperative, planned, and postoperative values 
also reported mean glenoid version and inclination. The 
mean deviation from the planned and executed glenoid 
version and inclination were also reported when present 
in the included articles.

Surgical outcomes for patients undergoing navigated 
and non-navigated rTSA and aTSA are reported in 
Table 2and 3.

VR-based training
One study [16] compared training outcomes for rTSA 
procedures with iVR platform (PrecisionOS, Canada) as 
compared with cadaver laboratories among junior ortho-
pedics residents. The VR platform was comprised of a 

3D visual tool, auditory cues and handheld controllers 
for haptic feedback and position tracking. Six residents 
received the VR-based training and six were enrolled in 
the control cadaver-based training group. They found no 
statistically significant differences in written knowledge 
score, Global Rating Scale (GRS) score, time to comple-
tion of assessment, or post-training written knowledge 
score after implantation of the Reverse Shoulder Aug-
mented Baseplate System (Zimmer Biomet, USA).

A second RCT [18] aimed at determining whether VR 
training would lead to improved surgical skills in per-
forming rTSA compared to an instructional video in 
orthopedic surgery residents. Nine residents received 
the VR-based training and nine were enrolled in the con-
trol cadaver-based training group. They found that the 
VR-trained group had significantly improved Objective 
structured assessment of technical skill (OSATS) scores 
as well as higher verbal questioning scores after a single 
training session.

A third study [17] involved 12 VR-trained residents and 
surgical experts and 11 residents and experts as controls. 
They utilized the Glenoid Exposure Model (PrecisionOS, 
Canada) coupled with a head-mounted display and with 
haptics tools and found that the immersive VR group 
completed the cadaveric glenoid exposure task faster as 
well as demonstrating superior OSATS instrument han-
dling scores compared with the control group.

The outcomes from studies focusing on VR-based 
training are reported in Table 4.

In-vitro studies
Two proof of concept studies [4, 35] involving phantom 
3D scapular models were included. They aimed to dem-
onstrate a proof-of-concept solution for delivering AR 
guidance during the placement of k-wires to position the 
glenoid component in reversed shoulder arthroplasty, 
employing the Microsoft HoloLens 1 and HoloLens 
2 systems. The first one [4] reported that the average 
standard deviation (SD) ± error between the planned 
and achieved entry point was 2.4 ± 0.7 mm. The average 
SD ± error between the planned k-wire orientation was 
3.9° ± 2.4°. The other study [35] showed that the mean 3D 
deviation angle of the ten placed wires measured 2.7° ± 
1.3° and that the mean deviation to the entry point of the 
ten placed target wires measured 2.3 mm ± 1.1 mm.

Three cadaver studies [32–34] were included. They 
involved twelve, twelve, and twenty-four fresh-frozen 
shoulders, respectively. They showed that AR-based sys-
tems demonstrate accuracy levels consistent with the 
technology platforms currently employed in shoulder 
arthroplasty when evaluated in a simulated cadaveric 
trial.

Outcomes from in-vitro cadaveric and proof of concept 
studies are reported in Table 5.
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Table 2  Navigated total shoulder arthroplasty: outcomes
AUTHOR AND 
YEAR

INTERVENTION FOL-
LOW-UP 
(Mean, 
Months)

SCREWS MEAN SURGI-
CAL TIME 
(Min (Range))

AUGMENTED 
BASEPLATES

COMPLICATIONS REVI-
SIONSN° 

(Mean)
Lenght 
(Mean, 
mm)

Giorgini et al. 
2021

Navigated RSA NR NR 33.5 ± 4.2 92 ± 12 
(75–110)

10 Superior
8 Posterior

Coracoid Fracture (1) None

Holzgrefe et al. 
2023

Navigated RSA 30.7 ± 7.7 3 (3–4) NR NR 108 Glenosphere dissociation 
(1), Intraop. Humeral Calcar 
Fracture (1)

1

Non-Navigated RSA 34.9 ± 9.5 4 (4–4) 57 Infection (1), Loosening (1), 
Persistent Pain (1), Scapular 
Fracture, Acromial Fracture 
(1), Implant Dissociation (1)

4

Hones et al. 
2021

Navigated RSA NR 3.4 35.0 NR 0 NR NR
Non-Navigated RSA 4.1 32.6 2

Kida et al. 
2022

Navigated RSA NR 4 NR NR Posterior 15
Superior 5

NR

Non-Navigated RSA 4 6 Posterior
3 Superior

Kircher et al. 
2009

Navigated RSA 1.4 NR 169.5 ± 15.2 NR None None
Non-Navigated RSA 138 ± 15.4

Moreschini et 
al. 2020

Navigated RSA NR NR 35.5 ± 4.4 NR 13 NR
Non-Navigated RSA 29.9 ± 3.6 4

Nashikkar et 
al. 2019

Navigated RSA or 
aTSA

1.4 NR NR 15 NR

Non-Navigated RSA 
or atSA

6

Rosenthal et 
al. 2020

Navigated RSA or 
aTSA

NR NR 117.9 ± 18.7 54 NR

Non-Navigated RSA 
or atSA

106.44 ± 15.23 15

Sasaki et al. 
2019

Navigated RSA 12 NR 192 ± 16.0 
(156–214)

NR None None

Non-Navigated RSA 164.6 ± 21.0 
(128–191)

Sprowls et al. 
2022

Navigated RSA NR 2.5 ± 0.7 36.7 98.6 ± 19.5 39 NR
Non-Navigated RSA 2.8 ± 1 30 85.8 ± 18.7 12

Tarallo et al. 
2023

Navigated RSA 24 NR NR Posterior 15
Superior 8

Intra-op. Coracoid Fracture 
(2), GPS Failure (1), Traumat-
ic Dislocations of Implant 
(2), Infections (2)

4

Theopold et al. 
2019

Navigated RSA 10–12 NR 126 (104–159) NR Intra-op. Coracoid Tracker 
Malfunctioning (1), Intra-op. 
Coracoid Tracker Failure (1)

NR

Wang et al. 
2019

Navigated RSA NR 3–4 NR 77.3 ± 11.8 NR None 0

Youderian et 
al. 2023

Navigated RSA 30.9 ± 8.4 NR NR NR Intra-op. Humeral fracture 
(1), Intra-op. unreported (2), 
Glenoid loosening (5), RCT 
(1), Pain (2)

4

Non-Navigated RSA 
or atSA

31.3 ± 8.5 Unreported Intra-op. (2), 
Pain (5), Glenoid Loosening 
(11), Humeral Loosening (1), 
RCT (9), Infection (2), Nerve 
Injury (1)

17

Abbreviations:

rTSA: Reverse Total Shoulder Arthroplasty

aTSA: Anatomical Total Shoulder Arthroplasty

NR: Not Reported
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AU-
THOR 
AND 
YEAR

STUDY; 
LOE

AIM SAMPLE 
SIZE

INSTRUMENTATION DESIGN RESULTS CONCLUSIONS

Brust 
et al. 
2021

Proof Of 
Concept 
Study; 
IV

To Present a proof-
of-concept system 
to provide AR 
guidance during 
k-wire placement for 
glenoid compo-
nent positioning in 
reversed shoulder 
arthroplasty, using 
the Microsoft Holo-
Lens 2 system.

9 Phantom 
3D Scapular 
Models

Microsoft Hololens 2 Device
Tornier Aequalis Perform Reversed 
Implant (Wright Medical Group, 
USA)
Blueprint CT Protocol with Canon 
Aquilion 64 Scanner
mediCAD 3D Shoulder Software 
(mediCAD Hectec GmbH, GER)
mediCAD MR App
Stratasys Polyjet 3D Printer (Stratasys, 
USA)
3D Scanner (Artec Space Spyder, 
LUX)

The average SD ± error 
between the planned and 
achieved entry point was 
2.4 ± 0.7 mm. The average 
SD ± error between the 
planned k-wire orientation 
was 3.9 ± 2.4°.

The feasibility of rep-
licating the preopera-
tive CT-based plan 
was positively dem-
ostrated. The use of 
the high-resolution 
scanner introduced 
minimal noise to the 
measurement of the 
discrepancy between 
the planned and 
achieved position 
and orientation of 
the guide wire.

Dar-
wood 
et al. 
2021

Basic 
Science 
Cadav-
eric 
Study; 
IV

To assess the ac-
curacy and precision 
of our novel robotic 
platform for glenoid 
guidewire place-
ment in the context 
of total shoulder 
arthoplasty.

24 Fresh-
Frozen 
Human 
Cadaver 
Shoulders

Tableside Robotics Platform: 2-Axis 
CNC Gimbal + 3-Axis Drill
Sterile Disposables: Sterile Guide 
Blanks
Optical 3D Scanner
Planning Software (DeSoutter Medi-
cal Ltd.)

The first experimental phase 
achieved end-to-end wire 
placement accuracy of 1.6° 
± 2.4° inclination, 2.2° ± 2.6 
version, and 1.2 ± 0.3 mm of 
wire insertion point accuracy. 
The second phase achieved 
end-to-end wire placement 
accuracy of 1.9° ±1.3° ver-
sion, 1.2 ± 0.7° inclination, 
and 1.1 mm ± 0.7 mm of 
wire insertion accuracy.

This system is able 
to achieve accuracy 
levels in keeping with 
existing technology 
platforms currently 
being used in shoul-
der arthroplasty 
when assessed in a 
benchtop cadaver 
trial.

Kriech-
ling et 
al. 2020

Proof Of 
Concept 
Study; 
IV

To improve and 
enhance the surgi-
cal planning and 
execution technol-
ogy using AR and 
head-mounted 
display in form of a 
first feasibility study.

10 3D 
Phantom 
Scapular 
Models

Microsoft Hololens 1 (Microsoft 
Corp. USA)
BF Glenoid Trabecular Metal System 
(Zimmer Biomet, USA)
CT Scan (Siemens Somotom Edge 
Plus, GER)
3D Printer EOS Formiga P100 (EOS 
GmbH, GER)
CASPA Planning Software (Balgrist 
CARD, SWI)
Unity Software (Unity Technologies, 
USA)
Microsoft Visual Studio (Microsoft 
Corp. USA)

The mean 3D deviation 
angle of the ten placed 
wires measured 2.7° ± 1.3°. 
The mean deviation to the 
entry point of the ten placed 
target wires measured 
2.3 mm ± 1.1 mm.

Navigation of the 
guidewire position-
ing for the later 
placement of glenoid 
components using 
AR is feasible and 
accurate.

Table 3  Navigated total shoulder arthroplasty: outcomes
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Discussion
The main finding of this systematic review is that intraop-
erative computer-assisted navigation can attain accuracy 
levels consistent with the standard technology platforms 
employed in shoulder arthroplasty. Furthermore, this 
review shows that VR-based training in rTSA results in 
comparable if not improved outcomes in surgical skill 
acquisition in orthopedics residents compared to tra-
ditional training protocols. Also, the included cadaveric 
and proof of concept studies demonstrated that utilizing 
a navigated AR system through a head-mounted display 
results in minimal deviation between planned and post-
operative values. Furthermore, this system offers precise 
data regarding the variance between intraoperative and 
postoperative values.

The integration of emerging technologies such as vir-
tual reality, augmented reality, and the metaverse has 
ushered in a transformative era in the field of orthope-
dic surgery [53]. These innovative approaches are shaping 
the landscape of surgical education and hold substantial 

clinical relevance within orthopedics, particularly in 
shoulder surgery [54].

At present, VR is widely recognized for its capacity to 
develop surgical training simulators and aid in preopera-
tive planning, while AR appears to be a more promising 
tool for intraoperative purposes [55].

AR use was described as early as 2007 when Ortega et 
al., who assessed the effects and potential advantages of a 
heads-up device in spine surgery [56]. Since then, it has 
been demonstrated that AR could be applied to a wide 
spectrum of orthopedic procedures, such as tumor resec-
tion, fracture fixation, and components alignment in total 
joint arthroplasty [57].

By projecting 3D models of anatomical structures onto 
the surgeon’s field of vision, AR can aid in preoperative 
planning, implant positioning, and intraoperative navi-
gation. Surgeons can visualize patient-specific anatomi-
cal landmarks and instrumental paths, ensuring precise 
alignment during joint replacements and spinal surgeries 
[58]. AR also enables real-time feedback and guidance, 

AU-
THOR 
AND 
YEAR

STUDY; 
LOE

AIM SAMPLE 
SIZE

INSTRUMENTATION DESIGN RESULTS CONCLUSIONS

Kriech-
ling et 
al. 2023

Basic 
Science 
Cadav-
eric 
Study; 
IV

To investigate the 
feasibility of AR 
navi- gation through 
HMD to guide the 
RSA baseplate 
positioning in a 
cadaveric study.

12 Fresh-
Frozen 
Human 
Cadaver 
Shoulders

Microsoft Hololens 1 (Microsoft 
Corp. USA)
CT Scan (Siemens Somotom Edge 
Plus, GER)
CASPA Planning Software (Balgrist 
CARD, SWI)
Unity Software (Unity Technologies, 
USA)
Microsoft Visual Studio (Microsoft 
Corp. USA)

The mean deviation from 
the planned entry point was 
3.5 mm ± 1.7 mm. The mean 
deviation from the planned 
trajectory was 3.8° ± 1.7°. No 
adverse event occurred.

The use of AR naviga-
tion to position the 
glenoid baseplate 
component in RSA 
is feasible and can 
achieve good ac-
curacy in a cadaveric 
setting.

Rojas 
et al. 
2023

Basic 
Science 
Cadav-
eric 
Study; 
IV

To evaluate the 
glenoid component 
placement assisted 
by AR through an 
head-mounted dis-
play during RSA in 
cadaveric specimens 
by analyzing the de-
viation between the 
preoperative plan 
and the postopera-
tive outcomes.

12 Fresh-
Frozen 
Human 
Cadaver 
Shoulders

NextAR Navigated Shoulder System 
(MedActa Internation, SWI)
AR Head-Mounted Display
MedActa Shoulder Implant System 
(MedActa International, SWI)
CT Scan (Toshiba Aquilion Lightning, 
JAP)
SolidWorks 2016 Software (Dessault 
Systemes, USA)

The deviations between 
planned and postoperative 
values were 1.0° ± 0.7° for 
inclination, 1.8° ± 1.3° for 
retroversion, 1.1 ± 0.4 mm 
for entry point, 0.7 ± 0.6 mm 
for depth, and 1.7° ± 1.6° 
for rotation. The deviation 
between intra- and postop-
erative measurements were 
0.6°± 0.4° for angular mea-
surements and 0.6 ± 0.5 mm 
for distance measurements. 
The maximum deviation val-
ues between intra- and post-
operative mea- surements 
were 1.5° for inclination and 
retroversion and 1.6 mm for 
entry point

The use of a navi-
gated AR system via 
HMD leads to low 
deviation between 
planned and 
postoperative values 
in terms of glenoid 
inclination, retrover-
sion, entry point, 
depth, and rotation. 
Additionally, this spe-
cific system provides 
accurate information 
about the deviation 
between intraopera-
tive and postopera-
tive values.

Abbreviations:

rTSA: Reverse Total Arthroplasty

aTSA: Anatomical Total Shoulder Arthroplasty

NR: Not Reported

Table 3  (continued) 
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AUTHOR 
AND 
YEAR

INTERVENTION TYPE 
OF 
STUDY

LOE SAM-
PLE 
SIZE

MEAN 
AGE

INDICATIONS INSTRUMENTATION DESIGN TSA 
SYSTEM

Gior-
gini et al. 
2021

Navigated rTSA RCS IV 18 75 (62–87) RCA (7), Concentric Arthritis 
(4) RA (3), Post Traumatic 
Arthritis (2) Revision (1), PHF 
(1), Posterior Luxation (1)

Orthoblue Software 
Intraoperative GPS

Equinoxe 
(Exactech, 
USA)

Holzgrefe 
et al. 
2023

Navigated rTSA RCC III 113 70.7 ± 7.8 RCA (39), OA (67), mRCT (22) Intraoperative Exactech GPS
Equinoxe Planning App

Equinoxe 
(Exactech, 
USA)Non-Navigated 

rTSA
113 7.6 ± 8.1 RCA (45), OA (55), mRCT (33) None

Hones et 
al. 2021

Navigated rTSA RCC III 100 69.7 
(28–87)

OA (51), RCA (43), mRCT (1), 
Inflammatory Arthropathy 
(1), Post-Traumatic Arthritis 
(1), Dislocation Arthropathy 
(3)

Intraoperative Exactech GPS Equinoxe 
(Exactech, 
USA)

Non-Navigated 
rTSA

100 69.3 
(49–87)

OA (44), RCA (39), AVN (2), 
mRCT (1), Inflammatory 
Arthorpathy (5), Post-Trau-
matic Arthritis (4), PHF (3), 
Dislocation Arthropathy (2)

None

Kida et al. 
2022

Navigated rTSA RCC III 33 75.2 ± 6.4 RCA (NR), mRCT (NR) Equinoxe Planning App
Intraoperative GPS

Equinoxe 
(Exactech, 
USA)Non-Navigated 

rTSA
31 75.5 ± 6.1 None

Kircher et 
al. 2009

Navigated aTSA RCT I 10 NR Osteoarthritis (NR) Nano Station Optical Tracking 
System (Praxim, France)

Eclipse 
(Arthrex, 
USA)Non-Navigated 

aTSA
10 None

More-
schini et 
al. 2020

Navigated rTSA RCC III 20 75 ± 5.9 
(58–84)

Osteoarthritis (NR), RCA (NR) Exactech Guided Personalized 
Surgery Software
ExactechGPS, BlueOrtho (FRA)

Equinoxe 
(Exactech, 
USA)

Non-Navigated 
rTSA

20 72 ± 4.9 
(64–80)

None

Nashik-
kar et al. 
2019

Navigated rTSA or 
aTSA

RCC III 33 71.2 
(68–74)

Osteoarthritis (NR), RCA (NR) Exactech Planning App 
Exactech GPS

Equinoxe 
(Exactech, 
USA)Non-Navigated 

rTSA or aTSA
29 67.4 

(64–71)
None

Rosenthal 
et al. 
2020

Navigated rTSA or 
aTSA

RCC III 100 69.1 ± 10.1 RCA (NR), Osteoarthritis 
(NR), RA (NR), mRCT (NR), 
Osteonecrosis (NR)

Equinoxe Planning App (Ex-
actech, BlueOrtho, FRA)
ExactechGPS Total Shoulder 
Application (Exactech, BlueOrtho, 
FRA)

Equinoxe 
(Exactech, 
USA)

Non-Navigated 
rTSA or aTSA

100 68.5 ± 9.1 None

Sasaki et 
al. 2019

Navigated rTSA RCC III 15 77.4 ± 3.2 
(71–81)

RCA (8), mRCT (2), RA (3), 
PHF (2)

Synapse Vincent Image Software 
(Fujifilm, JAP)
StrealthStation S7 Navigation 
System (Medtronic, USA)

Aequa-
lis Reverse 
(Tornier, 
USA)

Non-Navigated 
rTSA

10 79.6 ± 7.1 
(65–91)

RCA (5), mRCT (2), RA 
(1), PHF (2), Dislocation 
Arthropathy (1)

None

Sprowls 
et al. 
2022

Navigated rTSA RCC III 51 NR RCA (106), PHF (3), Hardware 
Complication (4), Disloca-
tion Arthropathy (1)

Equinoxe Planning App
Exactech GPS

Equinoxe 
(Exactech, 
USA)Non-Navigated 

rTSA
63 None

Tarallo et 
al. 2023

Navigated rTSA RCS IV 50 73.6 
(51–87)

Osteoarthritis (30), mRCT 
(20)

Orthoblue Software (Exactech, 
USA)
Intraoperative GPS

Equinoxe 
(Exactech, 
USA)

Table 4  Augmented reality-based training
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reducing the risk of errors and improving surgical out-
comes. Furthermore, AR-based remote collaboration 
allows experienced surgeons to guide and support less 
experienced colleagues, enhancing surgical training and 
fostering interdisciplinary collaboration.

From a technical perspective, the main challenge that 
must be tackled to make AR a practical instrument for 
surgery is ensuring the precision of calibration between 
the virtual content shown by the headset and the actual 
surroundings. In the context of shoulder replacement, the 
accurate positioning of the glenoid component has been 
revealed to be one of the most relevant causes of early 
revision surgery [15, 21, 23, 30, 59]. To decrease the risk 
of postoperative aseptic glenoid loosening, understand-
ing the morphology and orientation of the glenoid is a 
key issue that surgeons must face. Numerous factors have 
been considered when assessing glenoid stability, includ-
ing bone density, glenoid morphology, baseplate position, 
screw length, quantity of peripheral screws, screw angu-
lar orientation, and central peg length [60, 61].

The introduction of CT-based preoperative planning 
software has arguably transformed the mindset of sur-
geons. Numerous authors have demonstrated that such 
software enhances a surgeon’s ability to achieve the 
desired positioning of the glenoid component [28]. How-
ever, relying on preoperative 2D analyses has been ques-
tioned in terms of accuracy [62–64].

With navigation, the central component of computer-
assisted orthopedic surgery systems empowers orthope-
dic surgeons to precisely monitor and intuitively visualize 
surgical instruments in real-time within the context of 
anatomical structures. The human-machine interface, 
an essential element of image-guided orthopedic naviga-
tion systems, is a platform for merging preoperative and 
intraoperative images from various modalities and three-
dimensional models, streamlining operative planning 
and navigation. The surgeon’s control over the baseplate’s 
position in terms of version, inclination, rotational align-
ment, and height is key to enhancing baseplate stability 

on the native glenoid. Nevertheless, aside from baseplate 
orientation and bone factors, the number and length of 
peripheral screws used for primary fixation also play a 
crucial role in long-term stability [65–68].

A recent systematic review showed that the navigation 
system increased efficiency in reducing the number of 
screws necessary for fixation per patient. However, the 
system’s ultimate clinical and economic impact could not 
be determined in their study [60].

It has been demonstrated that computer-assisted 
navigation reduces the deviation of the postoperative 
component position from the preoperative blueprint 
in cadaveric studies and in the clinical setting [15, 22, 
69–72].

However, while intraoperative navigation has demon-
strated enhanced accuracy and precision in glenoid base-
plate implantation, there is currently no evidence in the 
literature to confirm whether these improvements have 
resulted in better clinical outcomes and reduced compli-
cation rates [29, 73]. A recent study showed lower rates of 
complications and revisions in the navigation group com-
pared to the standard non-navigated procedures. How-
ever, it failed to identify increased improvement in range 
of motion and functional outcome scores compared to 
the navigated cohort [19].

Another significant factor in glenoid fixation is the 
number and length of baseplate screws. Before the advent 
of computer navigation, the capacity to accurately posi-
tion longer screws was hindered by the difficulty of visu-
alizing the screw’s trajectory due to the absence of clear 
visual bony reference points. Studies have indicated that 
increasing the number of screws reduces the likelihood 
of baseplate displacement, while extending the length of 
screws may also serve as an effective alternative [20, 65]. 
A retrospective case-control study showed that computer 
navigation results in the use of fewer and longer base-
plate screws, suggesting that these results may decrease 
scapular spine stresses and allow for maintained bone 
stock [20].

AUTHOR 
AND 
YEAR

INTERVENTION TYPE 
OF 
STUDY

LOE SAM-
PLE 
SIZE

MEAN 
AGE

INDICATIONS INSTRUMENTATION DESIGN TSA 
SYSTEM

Theopold 
et al. 
2019

Navigated rTSA RCS IV 10 NR PHF (10) VectorVision Navigation System 
(BrainLab AG, GER)

Delta Ex-
tend (DePuy 
Orthope-
dics, ENG)

Wang et 
al. 2019

Navigated rTSA RCS IV 24 73.9 
(65–80)

RCA (8) OA (15), Inflamma-
tory Arthritis (1)

BlueOrtho Software (La Tronche, 
FRA)
Exactech GPS

Equinoxe 
(Exactech, 
USA)

Youde-
rian et al. 
2023

Navigated rTSA or 
aTSA

RCC III 216 65.5 ± 7.0 RCA (NR), OA (NR), mRCT 
(NR)

Equinoxe Planning App
Exactech GPS

Equinoxe 
(Exactech, 
USA)Non-Navigated 

rTSA or aTSA
432 66.0 ± 8.3 None

Table 4  (continued) 
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AU-
THOR 
AND 
YEAR

STUDY; 
LOE

AIM SAMPLE 
SIZE

INSTRUMENTATION DESIGN RESULTS CONCLUSIONS

Brust 
et al. 
2021

Proof Of 
Concept 
Study; 
IV

To Present a proof-
of-concept system 
to provide AR 
guidance during 
k-wire placement for 
glenoid compo-
nent positioning in 
reversed shoulder 
arthroplasty, using 
the Microsoft Holo-
Lens 2 system.

9 Phantom 
3D Scapular 
Models

Microsoft Hololens 2 Device
Tornier Aequalis Perform Reversed 
Implant (Wright Medical Group, 
USA)
Blueprint CT Protocol with Canon 
Aquilion 64 Scanner
mediCAD 3D Shoulder Software 
(mediCAD Hectec GmbH, GER)
mediCAD MR App
Stratasys Polyjet 3D Printer (Stratasys, 
USA)
3D Scanner (Artec Space Spyder, 
LUX)

The average SD ± error 
between the planned and 
achieved entry point was 
2.4 ± 0.7 mm. The average 
SD ± error between the 
planned k-wire orientation 
was 3.9 ± 2.4°.

The feasibility of rep-
licating the preopera-
tive CT-based plan 
was positively dem-
ostrated. The use of 
the high-resolution 
scanner introduced 
minimal noise to the 
measurement of the 
discrepancy between 
the planned and 
achieved position 
and orientation of 
the guide wire.

Dar-
wood 
et al. 
2021

Basic 
Science 
Cadav-
eric 
Study; 
IV

To assess the ac-
curacy and precision 
of our novel robotic 
platform for glenoid 
guidewire place-
ment in the context 
of total shoulder 
arthoplasty.

24 Fresh-
Frozen 
Human 
Cadaver 
Shoulders

Tableside Robotics Platform: 2-Axis 
CNC Gimbal + 3-Axis Drill
Sterile Disposables: Sterile Guide 
Blanks
Optical 3D Scanner
Planning Software (DeSoutter Medi-
cal Ltd.)

The first experimental phase 
achieved end-to-end wire 
placement accuracy of 1.6° 
± 2.4° inclination, 2.2° ± 2.6 
version, and 1.2 ± 0.3 mm of 
wire insertion point accuracy. 
The second phase achieved 
end-to-end wire placement 
accuracy of 1.9° ±1.3° ver-
sion, 1.2 ± 0.7° inclination, 
and 1.1 mm ± 0.7 mm of 
wire insertion accuracy.

This system is able 
to achieve accuracy 
levels in keeping with 
existing technology 
platforms currently 
being used in shoul-
der arthroplasty 
when assessed in a 
benchtop cadaver 
trial.

Kriech-
ling et 
al. 2020

Proof Of 
Concept 
Study; 
IV

To improve and 
enhance the surgi-
cal planning and 
execution technol-
ogy using AR and 
head-mounted 
display in form of a 
first feasibility study.

10 3D 
Phantom 
Scapular 
Models

Microsoft Hololens 1 (Microsoft 
Corp. USA)
BF Glenoid Trabecular Metal System 
(Zimmer Biomet, USA)
CT Scan (Siemens Somotom Edge 
Plus, GER)
3D Printer EOS Formiga P100 (EOS 
GmbH, GER)
CASPA Planning Software (Balgrist 
CARD, SWI)
Unity Software (Unity Technologies, 
USA)
Microsoft Visual Studio (Microsoft 
Corp. USA)

The mean 3D deviation 
angle of the ten placed 
wires measured 2.7° ± 1.3°. 
The mean deviation to the 
entry point of the ten placed 
target wires measured 2.3 
mm ± 1.1 mm.

Navigation of the 
guidewire position-
ing for the later 
placement of glenoid 
components using 
AR is feasible and 
accurate.

Kriech-
ling et 
al. 2023

Basic 
Science 
Cadav-
eric 
Study; 
IV

To investigate the 
feasibility of AR 
navi- gation through 
HMD to guide the 
RSA baseplate 
positioning in a 
cadaveric study.

12 Fresh-
Frozen 
Human 
Cadaver 
Shoulders

Microsoft Hololens 1 (Microsoft 
Corp. USA)
CT Scan (Siemens Somotom Edge 
Plus, GER)
CASPA Planning Software (Balgrist 
CARD, SWI)
Unity Software (Unity Technologies, 
USA)
Microsoft Visual Studio (Microsoft 
Corp. USA)

The mean deviation from 
the planned entry point was 
3.5 mm ± 1.7 mm. The mean 
deviation from the planned 
trajectory was 3.8° ± 1.7°. No 
adverse event occurred.

The use of AR naviga-
tion to position the 
glenoid baseplate 
component in RSA 
is feasible and can 
achieve good ac-
curacy in a cadaveric 
setting.

Table 5  In vitro studies
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While traditional navigation methods have been foun-
dational in guiding surgical procedures, there is a grow-
ing recognition of the potential of AR and VR to further 
enhance surgical precision and improve patient out-
comes. Indeed, AR and VR may represent the next evo-
lutionary step beyond traditional navigation techniques. 
However, it is important to acknowledge that the tran-
sition from navigation to AR/VR is not linear, and each 
technology offers unique advantages and challenges.

AR can combine the advantages of preoperative plan-
ning and intraoperative navigation at a low-cost [54]. 
Following preoperative planning and data transfer to 
the head-mounted device, the only required intraop-
erative step is the registration using an optical tracking 
marker. This surface tracking method eliminates the need 
for intraoperative imaging, thereby reducing radiation 
exposure. Kriechling et al. were the first to assess the 
accuracy and feasibility of guidewire positioning for the 
placement of glenoid components using AR [35]. The ini-
tial outcomes following AR implementation to shoulder 
replacement surgery were also confirmed by Ponce et al. 
[74]. Recently, it has been shown that guidewire position-
ing navigation for placing glenoid components using AR 
is viable and precise in both cadaver specimens and 3D 
phantom models [4, 32, 33, 75].

One question is whether AR can replace or improve 
computer-assisted navigation or robotic-assisted total 
joint arthroplasty in everyday clinical settings [34]. 
According to the authors, these novel processes have 
great potential for transferability to other orthope-
dic applications in arthroplasty and beyond. As of now, 
there are no documented clinical applications of AR 

specifically in shoulder arthroplasty. This underscores the 
pioneering nature of research in this area and the need 
for further investigation to explore the potential benefits 
of AR and VR technologies in improving surgical out-
comes in shoulder arthroplasty.

Orthopedic surgical training is also undergoing a 
paradigm shift [76]. In orthopedic surgical training, the 
metaverse can provide a collaborative and immersive 
environment where surgeons, residents, and experts 
worldwide can interact and learn together [77]. Train-
ees can participate in virtual surgical conferences, attend 
live-streamed surgeries, and engage in multidisciplinary 
discussions. The metaverse offers opportunities for net-
working, sharing knowledge, and accessing a vast reposi-
tory of surgical resources. Additionally, the metaverse 
can facilitate the development of AI-driven surgical assis-
tants, allowing trainees to practice complex procedures 
with virtual colleagues or receive real-time guidance 
from virtual mentors [18]. The next logical step would 
be to systematically employ metaverse, AR, and VR in a 
training setting. By enabling precise hand-eye coordina-
tion, VR fosters the development of surgical skills and 
has been shown to improve performance in orthopedic 
procedures such as joint replacements, fracture fixations, 
and arthroscopic surgeries.

Results have shown that VR-based training significantly 
reduces surgical errors and enhances surgical proficiency 
among trainees [78]. Additionally, VR-based simulators 
offer objective performance metrics, enabling trainees to 
track their progress and identify areas for improvement.

In a recent investigation, the utilization of AR 
was assessed for instructing medical students in the 

AU-
THOR 
AND 
YEAR

STUDY; 
LOE

AIM SAMPLE 
SIZE

INSTRUMENTATION DESIGN RESULTS CONCLUSIONS

Rojas 
et al. 
2023

Basic 
Science 
Cadav-
eric 
Study; 
IV

To evaluate the 
glenoid component 
placement assisted 
by AR through an 
head-mounted dis-
play during RSA in 
cadaveric specimens 
by analyzing the de-
viation between the 
preoperative plan 
and the postopera-
tive outcomes.

12 Fresh-
Frozen 
Human 
Cadaver 
Shoulders

NextAR Navigated Shoulder System 
(MedActa Internation, SWI)
AR Head-Mounted Display
MedActa Shoulder Implant System 
(MedActa International, SWI)
CT Scan (Toshiba Aquilion Lightning, 
JAP)
SolidWorks 2016 Software (Dessault 
Systemes, USA)

The deviations between 
planned and postoperative 
values were 1.0° ± 0.7° for 
inclination, 1.8° ± 1.3° for 
retroversion, 1.1 ± 0.4 mm 
for entry point, 0.7 ± 0.6 mm 
for depth, and 1.7° ± 1.6° 
for rotation. The deviation 
between intra- and post-
operative measurements 
were 0.6°± 0.4° for angular 
measurements and 0.6 ± 0.5 
mm for distance measure-
ments. The maximum 
deviation values between 
intra- and postoperative 
mea- surements were 1.5° for 
inclination and retroversion 
and 1.6 mm for entry point

The use of a navi-
gated AR system via 
HMD leads to low 
deviation between 
planned and 
postoperative values 
in terms of glenoid 
inclination, retrover-
sion, entry point, 
depth, and rotation. 
Additionally, this spe-
cific system provides 
accurate information 
about the deviation 
between intraopera-
tive and postopera-
tive values.

Table 5  (continued) 
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placement of acetabular cups for total hip arthroplasty, 
using a phantom pelvis as the training model [79]. The 
study revealed that participants exhibited comparable 
levels of accuracy in their training, whether instructed 
by an expert surgeon or through AR. Consequently, 
the authors concluded that the AR approach could be 
a valuable educational tool, highlighting that certain 
arthroplasty skills can be acquired without direct super-
vision [80]. . A recent systematic review [81] has shown 
that VR-trained residents performed surgery faster 
and with fewer errors than those trained traditionally. 

Nonetheless, it has also been shown that VR training 
significantly improves surgical performance and reduces 
errors [78].

While it has been demonstrated that AR could offer 
advantages in training orthopedic residents, it would be 
intriguing to explore the extent to which AR could truly 
enhance the learning experience for orthopedic train-
ees. Furthermore, investigating the learning curve in this 
context appears to be a promising avenue that warrants 
further research [82]. However, the training-based appli-
cation of VR is yet to be fully validated.

Fig. 1  PRISMA flowchart
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The strengths of the present systematic review lie in 
its novelty: to the authors’ knowledge, this is the first 
study that provides a comprehensive review of the lit-
erature focusing on the applications of AR and VR, as 
intraoperative computer-assisted navigation, and on the 
future endeavors that lie in the educational field and 

technological advancements such as head-mounted dis-
plays. Additionally, as per the intraoperative navigation, 
only primary rTSA or aTSA were included to provide 
homogeneity of the cohort and improve outcome vali-
dation. This review also benefits from using numerous 

Fig. 3  Risk of bias assessment for case-control studies

 

Fig. 2  Risk of bias assessment for randomized control trials
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RCTs and including studies with low or moderate risk of 
bias.

However, there are also limitations associated with the 
work, including the lack of a meta-analysis, which was 
not performed given data heterogeneity. Furthermore, 
indications for total shoulder arthroplasty were not set as 
exclusion criteria, nor was a minimum follow-up. These 
limit the validity of the results, particularly on the long-
term assessment. Also, the sample size of the VR-based 
training and cadaveric studies is limited, leaving room for 
future validation.

Conclusions
Virtual reality, augmented reality, and the metaverse are 
transforming the landscape of orthopedic surgery. These 
technologies provide immersive and interactive plat-
forms that enhance surgical training, improve precision, 
and advance patient care. By offering realistic simula-
tions, objective feedback, and remote collaboration, vir-
tual reality, augmented reality, and the metaverse hold 
great promise for the future of orthopedic surgery. As 
these technologies evolve, further research, development, 
and integration into surgical education are essential to 
maximize their potential and revolutionize the field.
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