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Abstract 

Background Osteosarcoma is one of the most common cancers worldwide. Intense efforts have been made 
to elucidate the pathogeny, but the mechanisms of osteosarcoma are still not well understood. We aimed to inves-
tigate the potential biomarker, allograft inflammatory factor-1 (AIF1), affecting the progression and prognosis 
of osteosarcoma.

Methods Three microarray datasets were downloaded from GEO datasets and one was obtained from the TCGA 
dataset. The differentially expressed genes (DEGs) were identified. GO and KEGG functional enrichment analyses 
of overlapped DEGs were performed. The PPI network of overlapped DEGs was constructed by STRING and visual-
ized with Cytoscape. Overall survival (OS) and Metastasis free survival (MFS) were analyzed from GSE21257. Finally, 
the effect of the most relevant core gene affecting the progression of osteosarcoma was examined in vitro.

Results One hundred twenty six DEGs were identified, consisting of 65 upregulated and 61 downregulated genes. 
Only AIF1 was significantly associated with OS and MFS. It was found that AIF1 could be enriched into the NF-κB 
signaling pathway. GSEA and ssGSEA analyses showed that AIF1 was associated with the immune invasion of tumors. 
Cell experiments showed that AIF1 was underexpressed in osteosarcoma cell lines, while the malignant propriety 
was attenuated after overexpressing the expression of AIF1. Moreover, AIF1 also affects the expression of the NF-κB 
pathway.

Conclusion In conclusion, DEGs and hub genes identified in the present study help us understand the molecular 
mechanisms underlying the carcinogenesis and progression of osteosarcoma, and provide candidate targets for diag-
nosis and treatment of osteosarcoma.
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Introduction
Osteosarcoma, derived from mesenchymal tissue, is the 
most common primary malignant bone tumor and usu-
ally occurs in adolescents with high malignancy and poor 
prognosis [1]. In the past few decades, the treatment of 
osteosarcoma has progressed from surgical resection 
to chemotherapy and limb salvage treatment. Thus the 
survival rate of patients has also been greatly improved. 
However, the latest studies found that patients with oste-
osarcoma have complicated chemotherapy resistance 
and lung metastases during treatment periods and the 
5-year survival rate is less than 20% [2–4]. The treatment 
of osteosarcoma encounters a bottleneck and brings huge 
pain and economic burden to patients. Thus, the mecha-
nisms of resistance and metastasis of osteosarcoma are 
supposed to be elucidated, further research is urgently 
needed to discover new treatment options.

The allograft inflammatory factor-1 (AIF1), located 
in the major histocompatibility complex (MHC) class 
III region on chromosome 6p21.3, is a 17 kDa calcium-
binding protein produced by monocytes, macrophages, 
and lymphocytes, which is induced by INF-γ [5]. Studies 
have demonstrated that AIF1 plays a chemoattractant for 
macrophages and modulates inflammatory processes [6]. 
Dysregulated expression of AIF1 was observed in several 
diseases, including endometriosis, breast cancer, rheu-
matoid arthritis, and fibrosis [5, 7–9]. In addition, AIF1 
may play a significant role in the pathophysiology and 
progression of gastric cancer, hepatocellular carcinoma 
as well as colorectal cancer [10–12]. However, it has not 
yet been reported whether AIF1 is also associated with 
the development of osteosarcoma.

In the present study, we explored a potential prog-
nostic biomarker, AIF1, of osteosarcoma. First, we used 
bioinformatics analysis to obtain differentially expressed 
genes (DEGs) between osteosarcoma tissues and normal 
osteoblasts, 3 mRNA microarray datasets from Gene 
Expression Omnibus (GEO) were downloaded and ana-
lyzed. Subsequently, key genes involved in the molecular 
mechanisms underlying carcinogenesis and progression 
of osteosarcoma were picked out using bioinformatics 
methods, such as Gene Ontology (GO), Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway enrich-
ment analysis and protein-protein interaction (PPI) 
network analysis. Following, the prognostic value of the 
genes was evaluated using survival analysis of another 
gene expression data from GEO, and we found only 
AIF1 was associated with overall survival and metas-
tases-free survival amongst these biomarkers. KEGG 
analysis showed that AIF1 was related to the NF-κB 
pathway. GSEA and ssGSEA analysis showed that AIF1 
affected the immune microenvironment of osteosarcoma 
and was correlated with immune checkpoints. So, we 

further performed in  vitro experiments to elaborate on 
the potential roles of AIF1 in proliferative and invasion 
ability and the influence in the NF-κB pathway of osteo-
sarcoma cells. In conclusion, we demonstrated that AIF1 
functions as a tumor suppressor, and loss of AIF1 expres-
sion may represent a novel indicator for the progression 
and prognosis of osteosarcoma.

Materials and methods
Microarray data
RNA sequencing data (RNA-seq) in fragment per kilo-
base method (FPKM) format, together with accom-
panying clinical information, was collected from The 
Cancer Genome Atlas (https:// portal. gdc. cancer. gov/) 
for a total of 88 patients diagnosed with osteosarcoma. 
The Gene Expression Omnibus (GEO) is a publicly acces-
sible repository for high-throughput gene expression 
data, including information on chips and microarrays. It 
can be accessed at the following URL: http:// www. ncbi. 
nlm. nih. gov/ geo. The following four gene expression 
datasets were downloaded: GSE33382 [13], GSE14359 
[14], GSE12865 [15], and GSE21257 [16]. The dataset 
GSE33382 utilized the Illumina human-6 v2.0 expres-
sion bead chip platform (GPL10295) to analyze gene 
expression in three osteoblast tissues and 84 osteosar-
coma samples. The dataset GSE14359 utilized the Affym-
etrix Human Genome U133A Array Platform (GPL96) to 
examine gene expression. It consisted of 18 osteosarcoma 
samples and 2 osteoblast samples. The GSE12865 dataset 
utilized the Affymetrix Human Gene 1.0 ST Array as its 
platform, encompassing 14 samples. This included 2 sam-
ples of osteoblasts and 12 samples of osteosarcoma. The 
GSE21257 dataset comprised 34 pre-chemotherapy biop-
sies obtained from osteosarcoma patients who exhibited 
metastatic progression throughout 5 years, alongside 19 
samples from patients who did not experience metasta-
sis. The dataset comprised clinical data about both over-
all survival and metastasis-free survival.

Data processing
The GEO2R tool, available at http:// www. ncbi. nlm. 
nih. gov/ geo/ geo2r, was employed to perform differen-
tial gene expression analysis to filter the differentially 
expressed genes (DEGs) between osteosarcoma and oste-
oblast samples. The GEO2R web program enables users 
to do comparisons of multiple datasets within a GEO 
series to identify differentially expressed genes (DEGs) 
across different experimental conditions. To reconcile 
the limitations posed by false positives and the need to 
identify pertinent genes, the adjusted P-value (adj.P) 
and Benjamini methods were employed. Genes that pos-
sessed multiple probe sets or probe sets lacking corre-
sponding gene symbols were either averaged or excluded, 

https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo/geo2r
http://www.ncbi.nlm.nih.gov/geo/geo2r
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as appropriate. Statistical significance was operationally 
defined in this study as an adjusted p-value less than 0.05 
and an absolute logarithmic fold change greater than 1.

KEGG and GO enrichment analyses of DEGs
The Database for Annotation, Visualization, and Inte-
grated Discovery (DAVID; http:// david. nicif crf. gov) 
(version 6.8) offers a comprehensive assortment of func-
tional annotation tools. This web-based program aids 
researchers in interpreting the biological relevance of 
numerous genes and proteins [17, 18]. The KEGG data-
base resource facilitates the understanding of biological 
systems and their high-level functions through the utili-
zation of extensive molecular information generated by 
high-throughput experimental techniques [19]. Ontol-
ogy is a prevalent bioinformatics approach employed 
to provide comprehensive insights into the functional 
attributes of genetic products, with Gene Ontology (GO) 
being a prominent example [20]. The role of differentially 
expressed genes (DEGs) was examined through biologi-
cal investigations using the DAVID online database. The 
cut-off value was considered to be P < 0.05.

PPI network construction and module analysis
The Search Tool for the Retrieval of Interacting Genes 
(STRING; http:// string- db. org) (version 11.0) online 
database was utilized to predict the protein-protein 
interaction (PPI) network [21]. The investigation of the 
functional associations between proteins may yield valu-
able insights into the mechanisms behind the onset or 
advancement of diseases [22]. The construction of the 
protein-protein interaction (PPI) network for the present 
study was facilitated by utilizing the STRING database. 
An interaction was considered to be statistically signifi-
cant if its combined score exceeded 0.4. Cytoscape, an 
open-source software platform (version 3.7.2), can be 
employed for the visualization of intricate networks and 
their integration with diverse attribute data [23]. The 
Molecular Complex Detection (MCODE) application, 
namely version 1.5 or later, is a tool that may be utilized 
in conjunction with Cytoscape software. Its primary 
function is to identify densely connected regions within a 
given network by employing clustering algorithms based 
on the network’s topology [24]. The construction of pro-
tein-protein interaction (PPI) networks was facilitated by 
employing Cytoscape, while the identification of the most 
significant module within these networks was accom-
plished through the utilization of MCODE. The selection 
criteria included MCODE scores greater than 2, a degree 
cut-off of 2, a node score cut-off of 0.2, a maximum depth 
of 100, and a k-score of 2. The DAVID tool was subse-
quently employed to conduct KEGG and GO analyses on 
the genes encompassed within this module.

Hub genes selection and analysis
The selection of hub genes was made with a minimum 
threshold of 10. The investigation involved the analy-
sis of a network of genes and their co-expression genes 
using the web platform cBioportal (http:// cbiop ortal. 
org), which serves as a hub for this purpose [25, 26]. The 
selection of hub genes was performed with a minimum 
threshold of 10. The cBioportal web platform (http:// 
cbiop ortal. org) was utilized to investigate a network con-
sisting of genes and their co-expression genes.

Kaplan‑Meier survival analysis
The predictive relevance of the genes in the present study 
was validated using GraphPad Prism 5. This validation 
was conducted by Kaplan-Meier survival analysis, uti-
lizing clinical data obtained from the GSE21257 dataset. 
The patients were categorized into two groups for statis-
tical analysis based on their gene expression levels. The 
patients were stratified into two cohorts based on their 
respective levels of expression: individuals with val-
ues surpassing the median, and those with levels below 
it. The assessment of the predictive value of the genes 
was conducted utilizing the log-rank test, which is also 
referred to as the Mantel-Cox test.

Screening of differential genes between high and low 
expression groups of AIF1
The AIF1 expression levels of the TCGA cohort were 
divided into two categories based on high and low 
expression. By using the criteria of an absolute log2 fold 
change greater than 0.5 and a p-value less than 0.05, 
we successfully discerned the differentially expressed 
genes (DEGs) that exhibited distinct expression patterns 
between the two groups. Subsequently, a heatmap was 
generated to visually represent the expression patterns of 
the differentially expressed genes (DEGs) among the vari-
ous samples. The hub genes were identified by simulating 
the protein-protein interaction (PPI) network of the dif-
ferentially expressed genes between the two groups using 
the STRING web-based database (string-interaction.org).

GSEA
To provide a comprehensive understanding of the 
mechanisms underlying differential gene expression, 
we employed Gene Set Enrichment Analysis (GSEA) on 
the high- and low-expression cohorts. The objective of 
this study was to ascertain the potential involvement of 
these genes in certain biological pathways or activities. 
The GSEA algorithm was utilized to analyze the gene set 
database “c2.cp.kegg.v7.0.symbols.gmt”.

http://david.nicifcrf.gov
http://string-db.org
http://cbioportal.org
http://cbioportal.org
http://cbioportal.org
http://cbioportal.org
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Analysis of immune function between high‑ 
and low‑expression groups
The immunological scores, estimate scores, stromal 
scores, and tumor purity of osteosarcoma patients were 

quantified in two distinct expression groups to investi-
gate the impact of AIF1 on the tumor microenvironment 
(TME). The expression data of each sample was ana-
lyzed using the CIBERSORT approach to determine the 

Table 1 Summary of osteosarcoma microarray datasets from different gene expression omnibus dataset

Series Platform Affymetrix gene chip Sample Normal Osteosarcoma

1 GSE33382 GPL10295 Illumina human-6 v2.0 expression bead chip 87 3 84

2 GSE14359 GPL96 Affymetrix Human Genome U133A Array 20 2 18

3 GSE12865 GPL6244 Affymetrix Human Gene 1.0 ST Array 14 2 12

Fig. 1 Venn diagram and heatmap images. A DEGs were selected with a |log2FC|>1 and adj.P<0.05 among the mRNA expression profiling 
sets GSE33382, GSE14359, and GSE12865. The 3 datasets showed an overlap of 126 genes. B-D The heatmap images of DEGs of osteoblasts vs. 
osteosarcoma from 3 mRNA expression profiling sets GSE33382, GSE14359, and GSE12865, respectively. Upregulated genes were marked in red; 
downregulated genes were marked in green
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relative abundance of 22 distinct immune cell types. The 
differences in the quantity of immune cells between the 
two groups of gene expression were subsequently visual-
ized using R software tools. Additionally, an examination 
was conducted on the correlation between the infiltration 
of immune cells and the osteosarcoma samples. Further-
more, the TCGA dataset was utilized for conducting a 
single-sample gene set enrichment analysis (ssGSEA). 
This study elucidated the variations in immune function 
ratings and the expression of the 22 invading cell types 
between the high- and low-expression groups. Finally, 
we examined the correlation between the expression of 
immunological checkpoints in osteosarcoma and the 
expression of AIF1.

Cell culture and transfection
The 143B, MG63, HOS, and hFOB1.19 cell lines were 
donated by the Shanghai Institute of Biochemistry and 
Cell Biology, Chinese Academy of Sciences (Shanghai, 
China) to conduct the in vitro assays. The cells were cul-
tured in Dulbecco’s modified Eagle’s medium (Gibco-BRL 
Life Technologies, Grand Island, NY, USA), supple-
mented with 10% fetal bovine serum (Tianhang Biologi-
cal Technology, Hangzhou, China), 100 U/ml penicillin, 
and 100 μg/ml streptomycin. Each cell was maintained 
at a temperature of 37 °C within a controlled atmos-
phere containing 5% carbon dioxide (CO2). Lentiviruses 
obtained from OBiO (Shanghai, China) were employed 
to generate lentivirus transfection constructs to induce 

Table 2 GO enrichment analysis for the differentially expressed mRNAs

Category Term Description Count P‑value

GO BP GO:0002576 platelet degranulation 8 8.49E-06

GO BP GO:0071345 cellular response to cytokine stimulus 5 1.59E-05

GO BP GO:0008284 positive regulation of cell proliferation 14 2.64E-05

GO BP GO:0043066 negative regulation of the apoptotic process 13 9.35E-05

GO BP GO:0034446 substrate adhesion-dependent cell spreading 5 1.47E-04

GO BP GO:0022617 extracellular matrix disassembly 6 2.03E-04

GO BP GO:0050900 leukocyte migration 7 2.31E-04

GO BP GO:0045860 positive regulation of protein kinase activity 5 3.38E-04

GO CC GO:0070062 extracellular exosome 45 2.24E-08

GO CC GO:0005615 extracellular space 25 9.84E-06

GO CC GO:0031093 platelet alpha granule lumen 6 3.43E-05

GO CC GO:0005576 extracellular region 26 6.31E-05

GO CC GO:0005887 an integral component of the plasma membrane 22 4.90E-04

GO CC GO:0009986 cell surface 12 1.11E-03

GO CC GO:0009897 external side of the plasma membrane 7 3.25E-03

GO CC GO:0005829 cytosol 36 3.40E-03

GO CC GO:0031091 platelet alpha granule 3 3.90E-03

GO CC GO:0031012 extracellular matrix 8 3.97E-03

GO CC GO:0005886 plasma membrane 42 4.13E-03

GO CC GO:0005602 complement component C1 complex 2 1.35E-02

GO CC GO:0032045 guanyl-nucleotide exchange factor complex 2 4.63E-02

GO CC GO:0012507 ER to Golgi transport vesicle membrane 3 4.81E-02

GO CC GO:0005925 focal adhesion 7 4.94E-02

GO MF GO:0005102 receptor binding 10 9.42E-04

GO MF GO:0042802 identical protein binding 14 2.57E-03

GO MF GO:0000983 RNA polymerase II core promoter sequence-specific 3 3.16E-03

GO MF GO:0019955 cytokine binding 3 7.92E-03

GO MF GO:0005515 protein binding 77 8.04E-03

GO MF GO:0050840 extracellular matrix binding 3 1.46E-02

GO MF GO:0001786 phosphatidylserine binding 3 2.84E-02

GO MF GO:0002020 protease binding 4 3.53E-02

GO MF GO:0005178 integrin binding 4 3.89E-02

GO MF GO:0003779 actin binding 6 4.84E-02
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AIF1 overexpression (LV-AIF1) and serving as an empty 
control (LV-Control).

Cell growth assay
Cell proliferation was determined by measuring the 
number of viable cells at various time points following 
transfection. This was accomplished using a colorimetric 
water-soluble tetrazolium salt assay, specifically the Cell 
Counting Kit-8 from Dojingdo Laboratories in Kuma-
moto, Japan.

Scratch migration assay
LV-AIF1 cells, an empty control, and a control were 
transfected in a 6-well plate. The cells were collected 
48 hours post-transfection by gently scraping them using 
the tiny tip of a 10-μl pipette, marking the starting time as 
0. Following many washes of the plates with phosphate-
buffered saline (PBS) to remove any cells that were not 
adherent, the entire growth medium was subsequently 
introduced and subjected to incubation. Cell migration 
into the damaged region was observed and recorded on 
camera after 36 hours.

Transwell invasion assay
The invasion tests were conducted using Matrigel 
(Corning, USA) and transwell chambers (Corning, 
USA). A volume of 500 μl (μL) of medium containing 
20% fetal bovine serum (FBS) was added to the lower 
chamber. An 80 μL mixture was prepared by com-
bining Matrigel and a medium in a ratio of 1:8, which 
was subsequently added to the top chamber. After the 

solidification of the mixture, the upper chamber was 
filled with 200 μL of medium containing 1 × 105 cells. 
The upper chamber was treated with a 4% paraform-
aldehyde solution and stained using a 1% crystal vio-
let solution following a 48-hour incubation period at a 
temperature of 37 °C with a 5% concentration of CO2. 
The invading cells in the top chamber were measured 
and analyzed using an Olympus inverted microscope 
manufactured in Japan. The analysis was conducted 
using the ImageJ program.

Western blotting
Total proteins were extracted from osteosarcoma cells 
and tissues. The protein concentration was measured 
using a BCA kit (Servicebio Technology, Wuhan, China). 
Following separation on a 10% or 12% sodium dode-
cyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE), approximately 10–25 μg of total protein were 
subsequently deposited onto a polyvinylidene fluoride 
membrane. After the blocking step, the membrane was 
subjected to be incubated with primary antibodies over-
night at 4 °C, while concurrently being washed with TBST 
(tris-buffered saline with tween). Subsequently, the mem-
brane was subjected to a rinsing procedure using TBST 
and subsequently left at ambient temperature for 1 hour, 
during which the secondary antibodies were incubated. 
Subsequently, the bands were seen using an ECL kit man-
ufactured by Thermo Fisher Scientific. The primary anti-
bodies utilized in this study consisted of a monoclonal 
mouse anti-tubulin antibody (diluted at 1:3000, obtained 
from Servicebio, Wuhan, China) and a polyclonal rabbit 

Table 3 KEGG pathway enrichment analysis for the differentially expressed mRNAs

Category Term Description Count P‑value

pathway hsa04380 Osteoclast differentiation 8 3.13E-04

pathway hsa04610 Complement and coagulation cascades 6 6.00E-04

pathway hsa05150 Staphylococcus aureus infection 5 2.01E-03

pathway hsa04115 p53 signaling pathway 5 4.42E-03

pathway hsa04940 Type I diabetes mellitus 4 8.38E-03

pathway hsa04611 Platelet activation 6 9.55E-03

pathway hsa05322 Systemic lupus erythematosus 6 1.08E-02

pathway hsa04512 ECM-receptor interaction 5 1.11E-02

pathway hsa04672 Intestinal immune network for IgA production 4 1.14E-02

pathway hsa05200 Pathways in cancer 10 1.60E-02

pathway hsa04151 PI3K-Akt signaling pathway 9 2.14E-02

pathway hsa05145 Toxoplasmosis 5 2.42E-02

pathway hsa05202 Transcriptional misregulation in cancer 6 2.56E-02

pathway hsa05140 Leishmaniasis 4 3.40E-02

pathway hsa05310 Asthma 3 3.60E-02

pathway hsa05332 Graft-versus-host disease 3 4.29E-02

pathway hsa05020 Prion diseases 3 4.53E-02
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anti-AIF1 antibody (diluted at 1:1000, obtained from 
Bioss, Beijing, China).

Statistical analysis
The Fisher’s exact test was employed to evaluate the 
association between AIF1 expression and clinicopatho-
logical indicators. The study adopted the Kaplan-Meier 
technique to assess the probability of variations in oste-
osarcoma over time. Additionally, a log-rank test was 
utilized to estimate the statistical significance of these 
variations. The statistical analyses were conducted using 
SPSS 16.0 software (SPSS, Inc., Chicago, IL, USA). A 
statistically significant difference was operationally 
defined as a difference with a P-value below the thresh-
old of 0.05.

Results
Identification of DEGs in osteosarcoma
After standardization (with |log2FC|>1 and adj.P<0.05 as 
the cut-off point) of the microarray results, DEGs(737 in 
GSE33382，1126 in GSE14359 and 3667 in GSE12865) 
were identified (Table 1). The overlap among the 3 data-
sets contained 126 genes as shown in the Venn diagram 
(Fig.  1A), consisting of 65 upregulated genes and 61 
downregulated genes between osteosarcoma tissues and 
normal osteoblasts (Fig. 1B-D).

KEGG and GO enrichment analysis of DEGs
To analyze the biological classification of DEGs, functional 
and pathway enrichment analyses were performed using 
DAVID. GO functional and KEGG pathways of which 

Fig. 2 GO and KEGG enrichment analysis of DEGs. A Biological process, B Cellular components, C Molecular functions, D KEGG pathway
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P<0.05 were selected as significant results (Tables 2 and 3).
GO analysis results showed that changes in biological pro-
cesses (BP) of DEGs were significantly enriched in platelet 
degranulation, positive regulation of cell proliferation, and 
negative regulation of apoptotic process (Fig. 2A). Changes 
in molecular function (MF) were mainly enriched in recep-
tor binding， identical protein binding, and protein bind-
ing (Fig.  2B). Changes in cell component (CC) of DEGs 
were mainly enriched in extracellular exosome extracellu-
lar space， extracellular region， an integral component 
of the plasma membrane， cytosol, and plasma mem-
brane (Fig. 2C). KEGG pathway analysis revealed that the 
DEGs were mainly enriched in Osteoclast differentiation, 
Complement and coagulation cascades, and Staphylococ-
cus (Fig. 2D) with detailed information in Table 3.

PPI network construction and module analysis
The PPI network of DEGs was constructed (Fig. 3A) and 
the most significant module was obtained using a Cys-
toscope (Fig.  3B). Among them, we have identified that 
AIF1, ARHGDIB and IGSF6 were up-regulated in DEG 
analysis, however, in which IGFBP4 was down-regulated. 
The functional analyses of genes involved in this module 
were analyzed using DAVID. Results showed that genes 
in this module were mainly enriched in Osteoclast dif-
ferentiation, integrin-mediated signaling pathway, and 
Staphylococcus aureus infection (Table 4).

Hub gene selection and analysis
A total of 4 genes were identified as hub genes with 
degrees ≥10. The names, abbreviations, and functions 

Fig. 3 PPI network, the most significant module of DEGs and clinical association of hub genes. A The PPI network of DEGs was selected using 
Cytoscape. B The most significant module was obtained from the PPI network with 13 nodes and 76 edges. Upregulated genes were marked 
in red; downregulated genes were marked in green. C Overall survival curves for genes associated with the hub genes (D) Metastasis-free survival 
for genes associated with the hub genes
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for these hub genes are shown in Table 5. Subsequently, 
the overall survival and metastasis-free survival analysis 
of the hub genes obtained from GSE21257 datasets were 
performed using the Kaplan-Meier curve. As shown in 
Fig.  3C and D, osteosarcoma patients with high expres-
sion of AIF1 alteration showed better overall survival 
and metastasis-free survival; while the other hub genes 
showed no significance with either overall survival or 
metastasis-free survival of osteosarcoma patients. The 
univariate Cox regression analysis showed that AIF1 is an 
independent risk factor (Supplementary Fig. S1). Taking 
the phenomenon above, we suspected that activation of 
AIF1 is associated with a better prognosis in osteosar-
coma patients.

DEGs and PPI network analyses in two expression groups
In the TCGA cohort, we performed an analysis of dif-
ferentially expressed genes between the high- and 
low-expression groups. A volcano map (Fig.  4A) was 

generated, revealing 748 differential genes. Among 
these, 397 genes were upregulated and 351 genes were 
downregulated in the high-expression group. A heat-
map depicting the expression of these differential genes 
in each sample was created for subsequent analysis 
(Fig.  4B). Using the STRING online database and hub 
gene analysis, we investigated the expression patterns of 
the differential genes between the two expression groups 
(Fig. 4C-D). The result identified CD8A, VEGFA, CCR5, 
and FCGR3A as hub genes, indicating their significant 
interaction correlation.

GO, KEGG, and GSEA analyses
Functional analyses were conducted on the differen-
tial genes, encompassing GO and KEGG analysis. The 
results of the GO enrichment analysis were presented 
in Fig. 5A-C, indicating significant findings. Biological 
process (BP) analysis highlighted immune response. 
Cellular component (CC) analysis revealed the external 

Table 4 GO and KEGG pathway enrichment analysis of DEGs in the most significant module

Pathway ID Pathway Description Count P‑value

GO:0007229 integrin-mediated signaling pathway 3 9.56E-04

GO:0002283 neutrophil activation is involved in the immune response 2 2.89E-03

GO:0045576 mast cell activation 2 3.61E-03

GO:0046488 phosphatidylinositol metabolic process 2 5.77E-03

GO:0031529 ruffle organization 2 7.93E-03

GO:0006911 phagocytosis, engulfment 2 8.65E-03

GO:0045087 innate immune response 3 1.11E-02

GO:0006958 complement activation, classical pathway 2 1.15E-02

GO:0042102 positive regulation of T cell proliferation 2 2.86E-02

GO:0032587 ruffle membrane 2 3.06E-02

GO:0005581 collagen trimer 2 3.63E-02

GO:0007169 transmembrane receptor protein tyrosine kinase signaling pathway 2 4.54E-02

bta04380 Osteoclast differentiation 4 2.87E-04

bta05150 Staphylococcus aureus infection 3 1.63E-03

bta04650 Natural killer cell-mediated cytotoxicity 3 6.27E-03

bta05322 Systemic lupus erythematosus 3 1.41E-02

bta05020 Prion diseases 2 3.34E-02

Table 5 Functional roles of 5 hub genes with degree ≥10

No. Gene symbol Full name Function

1 AIF1 Allograft inflammatory factor 1 Actin-binding protein that enhances membrane ruffling and RAC activation. Plays 
a role in RAC signaling and phagocytosis.

2 IGFBP4 Insulin-like growth factor binding protein 4 IGF-binding proteins prolong the half-life of the IGFs and have been shown 
to either inhibit or stimulate the growth-promoting effects of the IGFs on cell 
culture.

3 ARHGDIB Rho GDP dissociation inhibitor beta Regulates the GDP/GTP exchange reaction of the Rho proteins; regulates reorgani-
zation of the actin cytoskeleton mediated by Rho family members

4 IGSF6 Immunoglobulin superfamily member 6 It is coded entirely within the intron of METTL9 which is transcribed in the opposite 
strand of the DNA.



Page 10 of 18Liu et al. BMC Musculoskeletal Disorders          (2024) 25:233 

side of the plasma membrane. Molecular function 
(MF) analysis emphasized protein binding and trans-
membrane signaling receptor activity. Additionally, 
KEGG analyzed enrichment in the B cell receptor 
signaling pathway, NF-kappa B signaling pathway, 
and T cell receptor signaling pathway (Fig. 5D). These 
functional enrichment results further confirm the key 
role of AIF1 in the immunity of osteosarcoma. Then 
a GSEA analysis was performed, and the top 10 func-
tions and signaling pathways were presented (Fig. 5E). 
These pathways included various immune-related 
signaling pathways that exhibited differential expres-
sion between the high- and low-expression groups. 
Notably, antigen processing and presentation (Fig. 5F), 
natural killer cell mediated cytotoxicity (Fig.  5G), 
complement and coagulation cascades (Fig.  5H), 
and B cell receptor signaling pathway (Fig.  5I) were 
upregulated in the low-risk group. These enrichment 
results suggest that AIF1 can regulate the immune 

microenvironment of osteosarcoma patients, and 
thus play an important role in the development of 
osteosarcoma.

Differences in immune microenvironment
To explore the impact of the AIF1 on the immune 
microenvironment, we employed the estimation algo-
rithm to calculate the immunological scores, estimate 
scores, stromal scores, and tumor purity for each sam-
ple in the TCGA cohort. The findings indicated that 
low-expression AIF1 exhibited significantly lower 
immunological scores, estimate scores, stromal scores, 
and higher tumor purity (Fig. 6A-D).

Differences in immune infiltration and ssGSEA
To investigate the relationship between AIF1 and 
immune infiltration in osteosarcoma, CIBERSORT 
was utilized to calculate the proportion of immune 

Fig. 4 Gene differential analysis. A The volcano plot. B A heatmap was conducted. C PPI network. D The PPI network’s hub genes
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cell infiltration. A bar graph was generated to compare 
the immune cell proportions between the two expres-
sion groups (Fig. 7A). The analysis revealed that Mac-
rophages M2, Macrophages M0, and Macrophages M1 
were the most abundant immune cells in the osteo-
sarcoma immune microenvironment. Additionally, 

an immune infiltration analysis was conducted to 
compare the expression differences of immune cells 
between the two expression groups (Fig.  7B). The 
study results indicated distinct proportions of immune 
cells in the immunological microenvironment of the 
osteosarcoma patients from the two expression groups. 

Fig. 5 Functional enrichment and GSEA analysis. A-D GO and KEGG enrichment analysis. E GSEA analysis. F Antigen processing and presentation. G 
Natural killer cell mediated cytotoxicity. H Complement and coagulation cascades. I B cell receptor signaling pathway
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Using ssGSEA, we examined differences in immune 
function scores and immune cell enrichment scores 
between the two groups. Notably, the high-expression 
group exhibited higher proportions of Th2 cells and 
TIL cells (Fig.  8A). Furthermore, the high-expression 
group displayed elevated immune cell concentra-
tions, particularly in DCs, Th1 cells, and Neutrophils. 
Additionally, higher CCR and checkpoint scores were 
observed in the high-expression group (Fig. 8B). AIF1 
was positively correlated with Macrophages M1, Mac-
rophages M2, and T cells CD8 expression and nega-
tively correlated with Macrophages M0 and B cells 
naive expression (Fig.  8C-G). In summary, AIF1 can 
affect the immune cells and immune microenviron-
ment of osteosarcoma patients, and then affect the 
occurrence and development of osteosarcoma and the 
prognosis of osteosarcoma patients. Therefore, the 
study of AIF1 may bring progress in the treatment of 
osteosarcoma patients.

Activation of established cancer immune checkpoint 
inhibitors is positively correlated with high AIF1 expression
To explore the association between AIF1 and inhibitory 
immune checkpoints, we examined their relationship 
in the TCGA databases (Fig.  9A). AIF1 demonstrated a 
significant positive correlation with inhibitory immune 
checkpoints, such as HVEM, TIM-3, TIGIT, CD200R1, 
and CTLA4 (Fig.  9B-F). This correlation indicates the 
potential involvement of AIF1 in tumor immunosup-
pression, leading to the inhibition of immune responses 
against gliomas.

AIF1 overexpression inhibits osteosarcoma progression 
in vitro
To testify to what we have analyzed from datasets, we per-
formed several experiments in osteosarcoma cells. We first 
detected the expression of the protein of AIF1 in 143B, 
MG63, HOS, and hFOB1.19 (osteoblasts cells). The results 

Fig. 6 Analysis of immune-related scores. A The Stromal Score. B The Immune Score. C The Tumor Purity. D The estimated score
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showed that the expression of AIF1 in these osteosarcoma 
cells was significantly decreased (Fig.  10A, B). Then we 
chose 143B and U2OS for further research. To study the 
effect of AIF1 on the proliferation of osteosarcoma cells, 
we increased the expression of AIF1 in 143B and U2OS 
cells. The transfection efficiency was evaluated by west-
ern blot (Fig. 10C, D). The 143B and U20S cells were then 
divided into LV-Control and LV-AIF1 groups. Cell prolif-
eration assay revealed that LV-AIF1 strongly inhibited the 
growth of 143B and U2OS cells (Fig.  10E, F). We further 
performed a set of cell function experiments to investi-
gate whether AIF1 overexpression can inhibit the migra-
tion and invasion of osteosarcoma. Wound-healing assay 
showed that the motility of LV-AIF1 143B and U2OS cells 
was dramatically reduced compared with LV-Control 
(Fig. 10G, H). In the transwell assay, AIF1 overexpression 
significantly decreased the invasive ability of osteosarcoma 
cells (Fig. 10J, K). Moreover, IHC results suggested a higher 
AIF1 level in the normal tissue than that in the osteosar-
coma tissue (Fig. 10L, M). We further identified the effect 

of AIF1 on the NF-κB pathway by detecting the expression 
levels of NF-κB, p-NF-κB, BCL-2, and BAX using western 
blotting (Fig. 10N-P), and found that the expression levels 
of p-NF-κB and BCL-2 were significantly decreased, while 
that of BAX was increased. Thus, these results show that 
AIF1 negatively regulates the NF-κB pathway in osteo-
sarcoma cells. Taken together, we can conclude that the 
NF-κB pathway plays an important role in AIF1-mediated 
proliferation, migration, and invasion of osteosarcoma 
cells. Taken together, our results suggested that overexpres-
sion of AIF1 restrained the proliferation, migration, and 
invasion of osteosarcoma cells.

Discussion
Osteosarcoma is the most common primary malignant 
bone tumor, with an initial peak in the late adolescent 
and young adult period [27]. Despite significant advance-
ments in the diagnosis and treatment of osteosarcoma 
to date, overall survival has remained relatively con-
stant for the last 4 decades, especially for those patients 

Fig. 7 Comparison of immune cell infiltration. A The relative quantity of immunocyte infiltration. B The proportion of 22 immune cell types
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who are diagnosed with metastatic disease and have a 
poorer prognosis [28, 29]. Several genetic risk factors 
for the development of osteosarcoma are well estab-
lished and such dysregulation may represent a potent 
sign of new targets [21, 30, 31]. However, the molecular 
mechanisms of osteosarcoma remain poorly understood. 
Microarray technology enables us to explore the genetic 
alterations in osteosarcoma and has been proven to be a 
useful approach to identifying new biomarkers in other 
diseases.

Bioinformatics is an important frontier subject for 
the storage, retrieval, and analysis of biological infor-
mation, usually genetic components (DNA and protein 
sequences) [32]. During the last decades, microarray 
technology and bioinformatics analysis have been widely 
used to screen genetic alterations at the genome level, 
which have helped us identify the differentially expressed 
genes (DEGs) and functional pathways involved in the 

carcinogenesis and progression of osteosarcoma [33–35]. 
Gene profile, as one of the bioinformatical technolo-
gies used for several decades, can quickly select suitable 
DEGs from The Cancer Genome Atlas (TCGA) and Gene 
Expression Omnibus (GEO), international public data-
bases where most of the data have been deposited and 
stored [36].

In the present study, 3 mRNA microarray datasets 
and the TCGA dataset were analyzed to obtain DEGs 
between osteosarcoma tissues and normal osteoblasts 
tissues. A total of 126 DEGs were identified among the 
3 datasets, including 65 upregulated genes and 61 down-
regulated genes. GO and KEGG enrichment analyses 
were performed to explore interactions among DEGs. 
GO enrichment analysis revealed that the DEGs mainly 
enriched in the platelet degranulation and extracellu-
lar exosome; while KEGG pathway analysis showed that 
DEGs were mainly enriched in Osteoclast differentiation, 

Fig. 8 Comparison of immune cell infiltration and immune function. A Box plots exhibiting enrichment scores of immunocyte. B Box plots 
exhibiting enrichment scores of the related immune function. (C-G) Correlation analysis of AIF1 and immune cells. C Macrophages M0. D 
Macrophages M1. E Macrophages M2. F T cells CD8. G B cells naive



Page 15 of 18Liu et al. BMC Musculoskeletal Disorders          (2024) 25:233  

complete, and coagulation cascades. Previous stud-
ies have reported that activated platelets (activated by 
thyroid hormone as L-thyroxine, then promotes plate-
let aggregation and degranulation) may contribute to 
the metastatic behavior of tumor cells [37]. In addition, 
recent studies have revealed that exosomes have activi-
ties as diverse as remodeling the extracellular matrix 
and may play important roles in human cancers [38]. 
Moreover, several researchers have brought forward a 

tumor-promoting role for osteoclast differentiation [39–
41]. In a word, all these theories are consistent with our 
results. Likewise, module analysis showed that genes in 
this module were mainly enriched in osteoclast differen-
tiation, integrin-mediated signaling pathway, and Staphy-
lococcus aureus infection.

We selected 4 DEGs as hub genes with degrees ≥10 
and assessed the expression of these genes about overall 
and metastasis-free survival using the online GSE21257 

Fig. 9 The correlation between AIF1 expression and checkpoint inhibitors in the TCGA database. A Pearson correlation between AIF1 and inhibitory 
immune checkpoints. B HVEM. C TIGIT. D CD200R1. E CTLA4. F TIM-3
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dataset. Among these hub genes, only AIF1 showed a 
statistical difference between patients who developed 
metastasis within 5 years and those who didn’t. To be 
specifically elucidated, osteosarcoma patients with high 
expression of AIF1 alteration showed better overall sur-
vival and metastasis-free survival. This finding led us to 
guess whether AIF1 could be a regulator of osteosarcoma. 
In the previous literature, we know that AIF1 plays a role 
as an actin-binding protein that enhances membrane 
ruffling and RAC activation. In addition, it plays a role 

in RAC signaling and phagocytosis. AIF1 also has such 
functions: 1) may play a role in macrophage activation 
and function; 2) promotes the proliferation of vascular 
smooth muscle cells and of T-lymphocytes; 3) enhances 
lymphocyte migration; 4) plays a role in vascular inflam-
mation [1, 5, 8]. Surprisingly, scientists have discovered 
the role of AIF1 in regulating cancer in recent years. Yang 
provided evidence that the level of AIF-1 expression 
may serve as a protective prognostic indicator for gas-
tric cancer by regulating β-catenin [10]. Ferial suggested 

Fig. 10 AIF1 suppressed osteosarcoma progression in vitro. A-B Western blot result showing down-regulated AIF1 expression in 143B, MG63, U2OS 
cell lines compared with hFOB1.19 (osteoblasts cells). C-D The protein expression level of AIF1 after transfected with sh-AIF1 or not was detected 
by western blot assays. E-F Growth curves were analyzed by cell proliferation assay. G-I Wound-healing assay showed the motility ability. J-K The 
invasive ability of stable overexpression of RILP in osteosarcoma cells was detected by transwell assay. L-M Immunohistochemical analysis of AIF1 
in normal and tumors. Scale bar: 50 μm. N-P Western blot assay was performed to detect the protein expression level of NF-κB, p-NF-κB, BCL-2, 
and BAX in osteosarcoma cells stably overexpressing AIF1. (**P < 0.01, ***P < 0.001, ****P < 0.0001)
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that AIF1v1 as much as AIF1v3 plays a major role in the 
crosstalk between breast cancer and infiltrating immune 
cells mediating tumor progression, implying their high 
potential as target molecules for breast cancer diagno-
sis, prognostication, and treatment [7]. Zhang revealed 
that AIF1 was upregulated in hepatocellular carcinoma. 
Silencing of AIF1 expression resulted in a reduction in 
cell proliferation and migration in human hepatocellular 
carcinoma cells [11]. In addition, Ai-founded AIF1 plays 
the role of a tumor suppressor in colorectal cancer cells 
by inhibiting cell proliferation, suppressing cell migra-
tion, and inducing cell apoptosis. AIF-1 overexpression 
promoted the apoptosis of colorectal cancer cells by acti-
vating the p38 MAPK pathway [12]. Combining these 
studies and our results, we found that AIF1 may be an 
osteosarcoma guardian gene and may serve as a protec-
tive prognostic indicator.

Therefore, we investigated the AIF1 gene again. 
According to the expression level of AIF1, osteosar-
coma patients in TCGA were divided into high- and 
low-expression groups, and then differential genes 
between the two groups could be obtained. GO and 
KEGG enrichment analysis of differential genes showed 
that AIF1 was closely related to the immune and NF-
kappa B signaling pathways of osteosarcoma. To verify 
the relationship between AIF1 and immunity, we con-
ducted GSEA and ssGSEA analyses and found that AIF1 
acts on many immune-related pathways, such as antigen 
processing and presentation, natural killer cell mediated 
cytotoxicity, complement and coagulation cascades, and 
B cell receptor signaling pathway. AIF1 is also related to 
tumor microenvironment score, such as the high-expres-
sion AIF1 exhibited significantly higher immunological 
scores, estimate scores, stromal scores, and lower tumor 
purity. Analysis of immune infiltration in patients with 
osteosarcoma showed that AIF1 can affect the expression 
of many immune cells and immune functions. Finally, 
we analyzed the relationship between AIF1 and known 
immune checkpoints and found that AIF1 is associated 
with some immune checkpoints such as HVEM, TIM-3, 
TIGIT, CD200R1, and CTLA4. Finally, we carried out a 
series of cell experiments. First, we found that AIF1 was 
lowly expressed in osteosarcoma cell lines, especially in 
143B and U2OS cells. So we chose 143B and U2OS cells 
for the following experiments. We first constructed an 
AIF1-overexpressing cell line in 143B and U2OS cells 
with a recombinant lentivirus. We then found that the 
proliferation rate, invasion rate, and mobility of LV-AIF1 
osteosarcoma cells were significantly inhibited, while 
apoptotic protein expression was increased and apopto-
sis was increased. These results are similar to the effects 
produced by knocking down AIF1 expression in gastric 
cancer [10]. We subsequently found that AIF1 can inhibit 

the expression of the NF-kappa B pathway and affect the 
expression of proteins in the NF-kappa B signaling path-
way. In summary, we found that AIF1 is related to the 
immunity of osteosarcoma, affects the immune-related 
pathway, and inhibits the occurrence and development 
of osteosarcoma by inhibiting the NF-kappa B signaling 
pathway.

This is the first study to report the association 
between AIF1 expression and the clinical pathologi-
cal features of osteosarcoma. Our data demonstrated 
that AIF1 functions as a tumor suppressor, and loss of 
AIF1 expression may represent a novel indicator for the 
progression and prognosis of osteosarcoma. However, 
the specific mechanisms by which AIF1 inhibits tumor 
action by inhibiting the NF-kappa B signaling pathway, 
and whether AIF1 is beneficial as a future prevention 
and treatment target for osteosarcoma, remain to be 
further investigated.
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