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Identification of potential cell death-related 2
biomarkers for diagnosis and treatment
of osteoporosis

Mingliang Li', Xue Wang?, Mingbo Guo', Wenlong Zhang', Taotao Li" and Jinyang Zheng®”

Abstract
Background This study aimed to identify potential biomarkers for the diagnosis and treatment of osteoporosis (OP).

Methods Data sets were downloaded from the Gene Expression Omnibus database, and differentially programmed
cell death-related genes were screened. Functional analyses were performed to predict the biological processes
associated with these genes. Least absolute shrinkage and selection operator (LASSO), support vector machine
(SVM), and random forest (RF) machine learning algorithms were used to screen for characteristic genes, and
receiver operating characteristics were used to evaluate the diagnosis of disease characteristic gene values. Gene
set enrichment analysis (GSEA) and single-sample GSEA were conducted to analyze the correlation between
characteristic genes and immune infiltrates. Cytoscape and the Drug Gene Interaction Database (DGldb) were used
to construct the mitochondrial RNA-mRNA-transcription factor network and explore small-molecule drugs. Reverse
transcription real-time quantitative PCR (RT-gPCR) analysis was performed to evaluate the expression of biomarker
genes in clinical samples.

Results In total, 25 differential cell death genes were identified. Among these, two genes were screened using the
LASSO, SVM, and RF algorithms as characteristic genes, including BRSK2 and VPS35. In GSE56815, the area under the
receiver operating characteristic curve of BRSK2 was 0.761 and that of VPS35 was 0.789. In addition, immune cell
infiltration analysis showed that BRSK2 positively correlated with CD56dim natural killer cells and negatively correlated
with central memory CD4+T cells. Based on the data from DGldb, hesperadin was associated with BRSK2, and
melagatran was associated with VPS35. BRSK2 and VPS35 were expectably upregulated in OP group compared with
controls (all p<0.05).

Conclusions BRSK2 and VPS35 may be important diagnostic biomarkers of OP.

Keywords Osteoporosis, Programmed cell death-related genes, Diagnostic biomarkers, Immune cell infiltration,
Machine learning
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Background

Osteoporosis (OP) is a bone disease characterized by
bone tissue degeneration and reduced bone mass [1]. OP
has high morbidity worldwide, especially among older
adults [2]. Owing to increased bone fragility, approxi-
mately 9.0 million fractures occur annually [3], which
significantly increases the burden on families and the
quality of life. Senile and postmenopausal OP are the two
primary types of OP. Traditionally, postmenopausal OP
is characterized by excessive bone absorption [4], and
senile OP is associated with a low bone turnover state,
leading to impaired bone formation [5]. In clinical set-
tings, OP is asymptomatic during the early stages. Typi-
cally, this disease is not diagnosed until bone fragility
occurs. Thus, the early diagnosis of OP remains challeng-
ing. Currently, drug therapy with bisphosphonates, calci-
tonin, and fluorides is the primary treatment strategy for
OP. The current treatment strategy is helpful for improv-
ing clinical symptoms and bone loss [6, 7]. However, the
long-term clinical efficacy of these drugs remains limited.
Moreover, owing to drug side effects and poor drug toler-
ance [8], a safer and more effective treatment strategy is
urgently required.

In tissues, cell apoptosis acts as a defense mechanism
to prevent non-functional cell accumulation; however, if
mutations occur and cell apoptosis cannot be activated,
excessive cell death or evasion from apoptosis may cause
the development of various diseases [9]. Programmed cell
death is widely involved in skeletal repair, maintenance,
and development, and is closely related to the pathogene-
sis of osteoarthritis and OP [10]. Programmed cell death-
related genes (PCD) have been extensively explored in
many diseases. Different gene families, such as caspases,
the p53 gene, the superfamily of tumor necrosis factor
receptors, and the B cell lymphoma-2 family of genes,
are associated with apoptotic processes [9]. During bone
metabolism regulation, PCDs play critical roles by modu-
lating bone cell activity; hence, molecules targeting pro-
grammed cell death may be valuable biomarkers for OP
development. Various bone cell functions contribute to
bone formation and bone resorption [11]. When cells
cannot meet these requirements, the process of bone
resorption and formation is disrupted. Consequently,
bone remodeling may fail and OP may occur. In OP,
chondrocyte apoptosis is accepted as an important step
in endochondral ossification. The role of PCDs has been
explored previously. For example, in OP, upregulated
BCLXL inhibits osteoblast apoptosis and maintains nor-
mal bone structure [12]. Therefore, we believe that PCDs
may participate in the pathogenesis of OP and may serve
as biomarkers for OP treatment and diagnosis.

To explore the potential roles of PCDs in OP, the
GSE56815 and GSE7158 microarray datasets were
downloaded from Gene Expression Omnibus (GEO) as
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training and validation datasets, respectively. Differen-
tially expressed PCDs were screened and functional anal-
ysis was performed to predict the biological processes
enriched by these genes. After screening, a receiver oper-
ating characteristic (ROC) curve was used to evaluate
the diagnostic value of the characteristic genes. Further-
more, the correlation between the characteristic genes
and immune infiltrates was explored. The mitochondrial
RNA (miRNA)-mRNA-transcription factor (TF) network
was constructed, and small-molecule drugs related to
the characteristic genes were explored. Thus, BRSK2 and
VPS35 may be important diagnostic and treatment bio-
markers for OP.

Methods

Data resource

Two microarray datasets (accession numbers: GSE56815
and GSE7158) were downloaded from the GEO database
(https://www.ncbi.nlm.nih.gov/). GSE56815 included cir-
culating monocytes from 40 subjects each with extremely
high BMD (bone mineral density) and 40 subjects with
extremely low BMD according to the hip Z-score. The
dataset was used as the training set and analyzed based
on the GPL96 [HG-U133A] Affinometrix Human
Genome U133A array annotation platform. Peak bone
mass (PBM) is another important determinant of osteo-
porosis [13]. GSE7158, including circulating monocytes
from 14 subjects with extremely high Peak bone mass
(PBM) and 12 subjects with low PBM, were enrolled
as validation data, which were analyzed based on the
GPL570 [HG-U133-Plus_2] Affimatrix Human Genome
U133 Plus 2.0 Array annotation platform files.

Identification of differentially expressed genes (DEG)
Before DEG analysis, we performed Principle Compo-
nent Analysis at gene expression level to evaluate the
data quality. As shown in Supplementary Fig. 1, samples
in GSE56815 were assigned into two groups separately
and there was no outlier sample. Thus, the dataset could
be used for DEG analysis. The OP related DEGs between
high and low BMD groups in GSE56815 were analyzed
using the Limma package [14] in R. Benjamin, and the
Hochberg method [15] was used for multiple test correc-
tion. DEGs were visualized using Volcano map and heat-
map using R packages “ggplot2” and “pheatmap” in R. The
cutoff values were defined as an adjusted P-value <0.05.

Weighted gene co-expression network analysis (WGCNA)

WGCNA is a valuable tool for identifying modules of
highly correlated genes by clustering genes with simi-
lar expression levels, and can analyze the correlation
between modules and specific traits or phenotypes [16].
First, the samples were clustered to detect the outliers.
The weight value was calculated based on the Picksoft
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Threshold function of WGCNA. A thresholding power 3
value of 6 (scale-free R2=0.85) was determined for con-
structing a scale-free network. Gene co-expression net-
work was constructed and modules were clustered based
on dynamic tree cutting algorithm with a minimum size
of 70 genes. MEDissThres was set as 0.2 to combine the
similar modules. The relationship between modules and
clinical traits were analyzed by Pearson’s correlation coef-
ficient. Modules with a correlation of P value<0.05 and
a correlation coefficient>0.3 were selected as key mod-
ules, and genes within more than one key module were
defined as hub genes.

Selection of differentially expressed PCDs and function
enrichment analysis

Twelve types of PCDs were obtained from Zou et al. [17],
and 1254 PCDs were obtained after deduplication (Sup-
plementary file 1). The online tool jvenn (http://jvenn.
toulouse.sra.fr/app/example. html) was used to detect the
intersection of DEGs, PCDs, and hub genes as differen-
tially expressed PCDs. To understand the biological role
of the intersecting genes, Gene Ontology (GO) enrich-
ment analysis was performed using R package “cluster
Profiler” [18] and the results were visualized by R pack-
age “ggplot2” [19]. Genes of interest were annotated in
three categories of biological process (BP), molecular
functions (MF), and cellular components (CC) [20]. A P
value <0.05 was defined as the significance threshold.

Protein-protein interaction (PPI) network construction
Given that PPI networks are involved in various stages
of processes such as biological signal transduction, gene
expression regulation, and cell cycle regulation [21],
PPI network is crucial for the investigation of disease
occurrence and development. STRING database (http://
stringdb.org/) [22] was employed to generate a PPI net-
work of differentially expressed PCDs. The protein pairs
with confidence level of 0.4 were collected for further
analysis. In the present study, PPI network was visualized
using Cytoscape [23], in which the nodes represented
proteins and edges indicated protein-protein interaction.
The CytoNCA plugin was used to analyze the connectiv-
ity of PPI network.

Machine learning methods for screening biomarkers

The biomarker genes were further filtered by three
machine learning methods, including Least absolute
shrinkage and selection operator (LASSO), Support Vec-
tor Machines (SVM) and Random forest (RF).

LASSO regression is a contraction estimation method
that minimizes the sum of squared residuals under con-
straints [24]. Based on the expression values of the differ-
entially expressed PCDs and the grouping information of
the samples in GSE56815, a LASSO regression prediction
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sample classification was constructed. To reduce the fea-
ture dimension, parameters of the R software “glmnet”
package (version 4.0-2) were set as: family="binary, type.
measure="class,” nfold=10.

SVM is a supervised learning method that uses a train-
ing dataset to build a classification model and a validation
dataset to validate the model [25]. The intersecting genes
were sorted using linear and non-linear SVMs using the
“e1071” R package. Recursive feature elimination was
used to analyze the importance and ranking of each gene
as well as the error rate and accuracy of each iterative
combination [26]. The lowest error rate was selected as
the optimal combination and the corresponding gene
was defined as the characteristic gene. RF is a composite
supervised learning method, which is also an extension
of decision trees [27]. The RF method in the R package
was used to analyze the intersecting genes for RF analy-
sis to screen for characteristic genes. The genes obtained
from the RF algorithm were ranked by “Mean Decrease-
Accuracy” and “Mean DecreaseGini” respectively. Finally,
characteristic genes screened using LASSO, SVM, and
RF were intersected using the jVenn tool.

Diagnostic value analysis and differential expression of
biomarkers

To evaluate the diagnostic value of each biomarker, ROC
curves based on differentially expressed PCDs were
constructed in the dataset GSE56815. Briefly, the gene
expression value in each sample was extracted. R pack-
age “pROC” was utilized to conduct ROC curve analysis
by taking samples grouping as outcome variable and the
gene expression value as the independent variable. Fur-
thermore, ROC curves based on selected biomarkers in
GSE7158 were also constructed to verify the diagnostic
value of selected genes. Subsequently, the expression lev-
els of differentially expressed PCDs from the GSE56815
dataset and GSE7158 validation set were extracted, and
the expression levels of the biomarkers were compared
between OP and controls using the wilcox.test method in
R package “ggplot2 [19]”

Construction of column line diagram model

In order to further verify the diagnostic ability of differ-
entially expressed PCDs, the “RMS” package was used to
build the nomogram model of biomarkers based on the
sample grouping information and the expression of bio-
markers. Furthermore, the predictive value of the column
chart model was evaluated by drawing a calibration curve
using the calibrate function in the “RMS” package, and
the column chart model ROC curve was drawn using the
“pROC” package [28].
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Gene set enrichment analysis (GSEA)

The enriched pathways of the selected genes were ana-
lyzed using GSEA software (V4.0.3) based on the expres-
sion values of the two biomarkers. The parameters were
set as follows: gene set database, c2.cp.kegg.v7.5.1. sym-
bols.gmt; gene sets database, c5.go.bp.v7.5.1.symbols.
gmt. Pearson correlation coefficients for each gene and
biomarker were calculated, and the correlation coeffi-
cients between each biomarker and the other genes were
sorted in descending order (metric for ranking genes:
Pearson, gene list sorting mode: real, gene list ordering
mode: descending). The above gene set was set as the
background gene, and the pathways enriched by these
genes with [NES| > 1 and NOM P value<0.05 were
defined as enriched pathways.

Immune cell infiltration analysis

The infiltration abundance of 28 immune cells in all sam-
ples in the training set was analyzed using the R package
“GSVA” [29] and single-sample GSEA algorithm [30].
The Spearman correlation between all immune cells and
differentially expressed PCDs was calculated using the
R package “coreplot” Immune cells significantly related
with OP were screened by drawing a box plot using the
wilcox.test method in R package “ggplot2 [19]”

Construction of miRNA-mRNA-TF network

The MiRwalk database contains the predicted and experi-
mentally validated miRNA-gene interaction pairs [31]. In
the present study, we used miRwalk3.0 database to screen
experimentally validated miRNA-biomarker interactions
based on the 3’ untranslated region binding site position,
and the threshold was set as binding probability>0.95.
The NetworkAnalyst database was used to predict the
TF for the selected biomarkers. The parameters were set
as follows: Specify organization, H. sapiens; set ID type,
official gene symbol; and TF gene interaction database,
ENCODE. Finally, the miRNA-mRNA-TF regulatory
network was constructed using Cytoscape software [32].
Finally, small-molecule drugs related to the biomark-
ers were selected using the DGIdb [33](https://dgidb.
genome.wustl.edu/).

Table 1 Primer sequence for RT-gPCR

Gene Forward Reverse

symbol

BRSK2 5'-ACATCCGCATCGCAGACT 5'-CGCAAGTTGTCATCGTC
TT-3' GAAG-3'

VPS35 5’-CCGCTCGAGATGCCTACAAC  5'-CGGGAATTCTTAAAGGA
ACAGCAGTCCC-3’ TGAGACCTTCATAAATT-3’

GAPDH  5-ATGGGGAAGGTGAAGGT-3"  5-AAGCTTCCCGTTCTC

AG-3'
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Reverse transcription real-time quantitative PCR (RT-qPCR)
analysis

Ten subjects aged 45-55 years old were recruited from
the Weifang Sunshine Union Hospital. The hip BMD was
measured by a dual-energy X-ray bone densitometer.
Then, BMD was transformed into a Z score as previous
description [34, 35]. Subjects were assigned into high
BMD (control, n=10) and low BMD (OP, n=10) group.
The whole blood samples were collected from all the
included individuals with informed consent. Ethics Com-
mittee of our hospital approved this study and all the
procedures were conducted complied with the rules and
guidelines of Declaration of Helsinki.

Peripheral blood monocytes (PBMs) were isolated from
whole blood samples using the commercial monocyte
isolation kit (Miltenyi Biotec Inc, Auburn, CA). Total
RNA extraction was performed with the application of
Trizol reagent. cDNA was prepared using the Super-
Script VILO ¢DNA synthesis kit (Invitrogen) per the
manufacturer’s protocols. Genes were amplified under
the Applied Biosystems 7000 sequence detection system,
following the conditions of 30 s at 95°C, 45 cycles of 95C
for 10s and 60°C for 30s. GAPDH was used as the refer-
ence gene. The PCR primers were summarized in Table 1.

Results

DEGs selection

In this study, a total of 399 DEGs were identified as OP
related genes (Supplementary file 2). Compared with
control group, 286 genes were upregulated and 113 were
downregulated in OP group (Fig. 1A). Samples were
clearly distinguished based on their differential expres-
sion profiles (Fig. 1B).

WGCNA network construction

Sample cluster analysis was first conducted to investi-
gate the difference in samples in GSE56815 dataset. The
sample clustering dendrograms shows that GSM1369791
sample is different from others (Fig. 2A). After remov-
ing the outlier sample GSM1369791, the association
between the modules and the clinical characteristics of
the samples was analyzed. All DEGs were grouped into
modules based on similar expression patterns (Fig. 2B). A
soft threshold of six was selected to satisfy the scale-free
topology with R?=0.85 (Fig. 3A).

Key module identification and hub genes collection

Subsequently, a MEDissThres of 0.2 was used to merge
similar modules and 13 modules were obtained (Fig. 3B).
The characteristics of the samples were sorted and added
to the clustering graph to construct a sample cluster-
ing and clinical trait heatmap (Fig. 3C). The correla-
tion between different modules is shown in Fig. 3D. As
shown in Fig. 3E, MEgreen (R?=0.41, P=1e-04) showed
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Fig. 1 Volcano plot and heatmap of differentially expressed genes (DEGs). A: Volcano plot of DEGs; Horizontal axis represents difference multiple, and
vertical axis represents - 1og10 (adj. P. Value). Each point in the graph represents a gene, and the blue and red dots represent DEGs. The red dots indicate
upregulated genes, the blue dots indicate downregulated genes, and the gray dots indicate genes with non-significant difference. B: Each small square
represents each gene, and its color represents the expression level of the gene. The darker the color represents the higher expression level. Each row
represents the expression level of each gene in different samples, and each column represents the expression level of all differential genes in each sample.
The left tree graph represents the clustering analysis results of different genes from different samples

the highest negative association with the Gleason score,
whereas MEmagenta (R*=0.33, P=0.003) showed the
highest positive correlation with the Gleason score. Thus,
the green module containing 911 genes and magenta
module containing 138 genes were the most significant
modules. The Supplementary file 3 shows the correla-
tions of genes in significant modules. Finally, a total of
1049 hub genes were collected for further analysis.

Differentially expressed PCDs, functional analysis, and PPI
network

Total 25 differentially expressed PCDs were obtained by
intersecting 399 DEGs, 1049 hub genes and 1254 PCDs
(Fig. 4A), which were used for GO analysis. The top 10
significant GO terms ranked by p values were visualized.
The results showed that these genes were significantly
enriched in the regulation of autophagy, regulation of the
apoptotic signaling pathway, and negative regulation of
the apoptotic signaling pathway related GO BP (Fig. 4B).
For CC, the differentially expressed PCDs were mainly
enriched in tubular endosome, retromer complex, and
lysosomal lumen (Fig. 4C) and in MF category, the genes
were closely associated with ferroxidase activity, oxido-
reductase activity, acting on metal ions, and oxygen as
acceptors (Fig. 4D). As shown in Fig. 4E, a PPI network of
the 25 PCDs was constructed comprising nine edges con-
necting 12 nodes. In the PPI network, FASLG exhibited

the highest connectivity, followed by CP, RIPK2, FOXO1,
and CASP10 (Fig. 4F).

Screening of OP signature genes by machine learning
analysis

The OP-associated biomarkers were further filtered by
three machine learning methods. Based on the LASSO
model, graphs of gene coefficients and error plots of
cross-validation were constructed (Fig. 5A and B). Six
characteristic genes were screened: BRSK2, NKX3-1,
SLC7A11, SNX5, TMEM161A, and VPS3S. To verify the
accuracy of the SVM model under different features,
we used a 5-fold cross validation to calculate the accu-
racy of the different feature combination models. The
model achieved the highest accuracy after incorporat-
ing the first 15 features (Fig. 5C). Fifteen feature genes
were identified. The RF results showed an order accord-
ing to the mean decrease accuracy of the enrolled genes
(Fig. 5D). The top ten genes included BRSK?2, SST, VPS35,
POLB, DAP3, SLC25AS5, PHLDA3, RIPK2, CP, and FXN
(Fig. 5E). Finally, two genes (BRSK2 and VPS35) were
screened by intersecting the LASSO, SVM, and RF
results (Fig. 5F) and were used for further analysis.

Diagnostic value of BRSK2 and VPS35 in OP

In GSE56815 cohort, the area under the receiver operat-
ing characteristic curve (AUC) of BRSK2 was 0.761 and
that of VPS35 was 0.789, suggesting that both BRSK2
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Fig. 2 Cluster analysis of dataset samples, data Sample Clustering, and Phenotypic Information. A: cluster analysis of dataset samples; the branches in the
figure represent samples, and the ordinate represents the height of hierarchical clustering. B: Data Sample Clustering and Phenotypic Information; the

upper half of the figure shows the clustering situation, the lower half shows

and VPS35 have the ability to distinguish between OP
and healthy controls (Fig. 6A). In GSE7158, the AUC of
the two genes were more than 0.8 (BRSK2 AUC: 0.804;
VPS35 AUC: 0.804), verifying the valuable diagnos-
tic ability (Fig. 6B). Figure 6C and D show upregulated
BRSK2 and VPS35 in OP compared with that in the con-
trol in both GSE56815 and GSE7158 (P<0.01).

the phenotype, and the red represents the corresponding phenotypic traits

Nomograph model

The nomograph model is constructed to verify the pre-
dictive power of the two biomarker genes (Fig. 7A). The
calibration curve showed that the error between the
actual disease risk and the predicted risk of the calibra-
tion curve was very small, indicating that the column
chart model had high prediction accuracy for OP diseases
(Fig. 7B). The ROC curve showed that the AUC value of
the column chart model was greater than 0.85, indicating



Li et al. BMC Musculoskeletal Disorders (2024) 25:235

Page 7 of 14

Cluster Dendrogram

A B °
Scale independence Mean connectivity
N o
< - 1
x o1 3
- 37 o
[} o
S : &
w0 ©
= o 5 16 17 18 19 20 2> °
% 141 2 § i g’
g 1 8 - O~
= o | £ T o
5 °© 8 gl
S g - g
Q o °
e v | = 2
g 7 g o
Iy 2|
@ 3
® o
o - o - 567 8 91011121314 15 16 17 18 19 20 i
2B Dynamic
! T T T T T T T T Tree cut
5 10 15 20 5 10 15 20 Merged
Soft Threshold (power) Soft Threshold (power) dynamic

Clustering of module eigengenes

c
. N

08

~
o | E
.o 8
5 | = g 5‘5..
5 | = = 2 2
2. 2 — g 3
S & s < = @
3] 8 S 4
> BT =
o~ |-|-|§ gEm
S o s = 3 B
2 el S o =
8 o w 2 3
2 Y 3§ = S =
34 = g S 3
i) T o
g 2 o 5 4
e 2 i}
3 = = .
Q.
g =
=

i 1 MEpink 1
. MEblue
L0.8 MEmagenta

. MEgreenyellow 0.5

MEbrown
+0.6

MEpurple

MEgreen

+0.4 MEturquoise
MEyellow

MEsalmon

MEblack .

MEtan

+0.2

MEgrey
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that the column chart model had the predictive ability to
distinguish OP from normal samples (Fig. 7C).

Functional role of BRSK2 and VPS35 in OP

To gain the insight of the involvement of biomarker genes
in OP, GSEA was employed to analyze OP related bio-
logical process and pathways. The results showed that
BRSK2 was mainly enriched in BPs, such as the apop-
totic process involved in morphogenesis and microtubule
organizing center localization, and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways such as ether
lipid metabolism. VPS35 was mainly enriched in BPs,
such as regulation of glycoprotein metabolic processes
and poly a plus mRNA export from the nucleus, and
KEGG pathways, such as dilated cardiomyopathy and
RNA degradation (Supplementary Fig. 2).

Correlation of biomarkers and immune cells in OP

The correlation between the biomarkers and immune
cells was investigated and the heatmap of the correlation
is shown in Fig. 8A. Significant differences were observed
in three types of immune cells between OP and control

groups, including activated dendritic cells, CD56dim
natural killer cells, and central memory CD4+T cells
(Fig. 8B). A bubble chart of the correlation between bio-
markers and differential immune cells shows that BRSK2
is positively correlated with CD56dim natural killer cells
and negatively correlated with central memory CD4 T
cells, whereas VPS3S5 is negatively correlated with acti-
vated dendritic cells (Fig. 8C).

The miRNA-mRNA-TF network and small molecule drugs
MiRNAs and TFs play key roles in regulating gene
expression and functions of gene encoding proteins. As
shown in Fig. 9 and 406 interaction pairs were identi-
fied in the miRNA-mRNA-TF network, which included
21 miRNAs, two mRNAs, and 31 TFs. Based on the data
from DGIdb, hesperadin was associated with BRSK2, and
melagatran was associated with VPS35.

RT-qPCR confirmation

To confirm the significantly differential expression of
the biomarker genes in clinical samples, RT-gPCR analy-
sis was performed. Consistent with the bioinformatics



Li et al. BMC Musculoskeletal Disorders

(2024) 25:235

Page 8 of 14

A GO-BP Go-cC
DEGs PCDs regulation of autophagy | tubular endosome
regulation of apoptotic signaling retromer complex
pathway |
negative regulation of apoptotic i
174 signaling pathway | [ } lysosomal lumen ®
positive regulation of autophagy - [ ] mitochondrial matrix 4
regulation of macroautophagy -| ® vacuolar lumen -
45 intrinsic apoptotic signaling pathway -| [ pvalue lysosomal membrane - pvalue
i Iytic vacuole membrane |
apoptotic mitochondrial changes 0000010 vt 0001
cellular response to oxidative 0.000020 vacuolar membrane
stress | ° - 0002
880 positive regulation of cysteine-type | 0.000030 L-cysteine desulfurase complex 0.003
endopeptidase activity 0000040
regulation of mitochondrion | o 1-alkyl-2-acetylglycerophosphocholine.| g
- organization esterase complex
Hub.Genes ’ : r r T T T T T
4 5 6 7 1 2 3 4 5
Count Count
GO-MF
ferroxidase activity - .
oxidoreductase activity, acting on | . FASLG
metal ions, oxygen as acceptor cP
oxidoreductase activity, acting on | Y RIPK2
metal ions . o P4 cP
tumor necrosis factor receptor | . FOXxo1
binding CASP10
solute:anion antiporter activity - . FXN § NKX3-1
5
tumor necrosis factor receptor v.s o GLA
superfamily binding | pvalue NKX3-1 RIPK2 MANEA
alpha-galactosidase activity | 0.001 BMP4
d t brane t rt PN
adenine transmembrane transporter | 0002 FASLG
activiy | @ MANBA SNX5 VPS35
0.003
iron chaperone activity | ® SNX5
0.004
sulfur-containing amino acid secondary v y v y y y y
active transmembrane transporter { @ 00 05 10 15 20 25 30
activity Degree
T

T T T
10 12 14 16
Count

T T
18 20

Fig. 4 Immune-related programmed cell death genes (PCDs) and functional analysis. A: Venn diagram for selecting Immune-related PCDs; B: Bubble
Chart of TOP10 GO biological process enrichment; B: Bubble Chart of TOP10 GO cellular component enrichment; C: Bubble Chart of TOP10 GO molecular
function enrichment; The vertical axis represents the enriched GO descriptions, the horizontal axis represents the number of genes enriched by the path-
way, the color represents the p value. The size of the bubble represents the number of intersecting genes contained in the description, and the larger the

bubble represents the more genes it contains; D: diagram of protein-protein interaction network; E: Bar chart of PPl Network node connectivity

analysis in GSE56815 and GSE7158 datasets, BRSK 2 and
VPS35 were expectably upregulated in OP patients com-
pared with controls (all p<0.05, Fig. 10).

Discussion

OP is a complex bone disease characterized by deteriora-
tion of bone tissue microarchitecture and reduced bone
mass. PCDs plays a critical role in the regulation of bone
metabolism. Thus, we aimed to explore the valuable
PCDs that contribute to OP development.

Here, BRSK2 and VPS35, selected as the differentially
expressed PCDs are vital for OP diagnosis. Programmed
cell death is a cell death process that maintains homeo-
stasis in the internal environment and is induced by a
certain signal. The critical role of PCDs in regulating
bone metabolism has been well demonstrated, and drugs
targeting specific regulatory molecules in PCDs play
valuable roles in preventing OP [11]. VPS3S is critical for
transmembrane proteins [36], is upregulated in osteo-
blasts and osteoclasts, and is activated by deregulating
RANK signaling to prevent OP deficits [37]. The study
by Raychaudhuri et al. demonstrated the roles of VPS35
in osteoclast and osteoblast activity regulation in OP and
put forward that VPS35 may be a potential diagnostic
biomarker of osteoporosis [38]. A similar conclusion was
supported by Xia et al. based on data from GSE56815 and

GSE56814 [39]. In the current study, we also identified a
potential diagnostic role for VPS35.

In the present study, BRSK2 was selected as a critical
biomarker of OP. It is well known that BRSK2 is impor-
tant in cell cycle regulation, neuronal and axonogenic
polarization, and insulin secretion. Although few studies
have demonstrated the regulatory role of BRSK2 in OP,
the function of senescent and differentiated cells in age-
related pathologies, including OP, has been well reported
[40]. In addition, we showed that the level of BRSK2 posi-
tively correlated with CD56dim natural killer cells and
negatively correlated with central memory CD4+T cells
in OP. Natural killer cells are innate immune cells that act
as the first responders to immunological processes [41,
42] and have been accepted as important regulators of
senescent cell immune surveillance [43].

Several studies have demonstrated the association
between the number and distribution of natural killer cell
subsets and age-related diseases [44]. Collectively, the
data in the present study showed a valuable diagnostic
role for BRSK2, and the levels of this gene were related
to the number of CD56dim natural killer cells, suggesting
that BRSK2 may be important for the OP process.

Based on data from DGIdb, hesperadin and melagatran
were selected as potential treatment drugs for OP by tar-
geting BRSK2 and VPS35, respectively. Hesperadin is an
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inhibitor of human Aurora kinase, which is widely used
to inhibit tumor growth and ameliorate cardiac reperfu-
sion injury [45]. Moreover, the inhibitory role of mela-
gatran in osteoblasts and its pronounced influence on
cellular metabolism has been demonstrated [46]. Taken
together, the treatment efficiency of hesperadin and mel-
agatran should be further investigated clinically.

This study had some limitations. First, this study was
based on the gene expression profiles of PBMs, which
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are not equal to those of osteoclasts. Second, in vivo and
in vitro studies are warranted to dissect the functions of
these biomarkers. Third, the use of biomarkers for diag-
nosis and treatment requires long-term clinical studies.

Conclusion

In conclusion, the data in the present study showed that
BRSK2 and VPS35 may be important diagnostic bio-
markers for OP. Moreover, hesperidin and melagatran
may be valuable OP treatment drugs that target BRSK2
and VPS35. However, further studies are required to elu-
cidate the relationship between these genes and OP.
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