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Abstract
Background  This study aimed to identify potential biomarkers for the diagnosis and treatment of osteoporosis (OP).

Methods  Data sets were downloaded from the Gene Expression Omnibus database, and differentially programmed 
cell death-related genes were screened. Functional analyses were performed to predict the biological processes 
associated with these genes. Least absolute shrinkage and selection operator (LASSO), support vector machine 
(SVM), and random forest (RF) machine learning algorithms were used to screen for characteristic genes, and 
receiver operating characteristics were used to evaluate the diagnosis of disease characteristic gene values. Gene 
set enrichment analysis (GSEA) and single-sample GSEA were conducted to analyze the correlation between 
characteristic genes and immune infiltrates. Cytoscape and the Drug Gene Interaction Database (DGIdb) were used 
to construct the mitochondrial RNA-mRNA-transcription factor network and explore small-molecule drugs. Reverse 
transcription real-time quantitative PCR (RT-qPCR) analysis was performed to evaluate the expression of biomarker 
genes in clinical samples.

Results  In total, 25 differential cell death genes were identified. Among these, two genes were screened using the 
LASSO, SVM, and RF algorithms as characteristic genes, including BRSK2 and VPS35. In GSE56815, the area under the 
receiver operating characteristic curve of BRSK2 was 0.761 and that of VPS35 was 0.789. In addition, immune cell 
infiltration analysis showed that BRSK2 positively correlated with CD56dim natural killer cells and negatively correlated 
with central memory CD4 + T cells. Based on the data from DGIdb, hesperadin was associated with BRSK2, and 
melagatran was associated with VPS35. BRSK2 and VPS35 were expectably upregulated in OP group compared with 
controls (all p < 0.05).

Conclusions  BRSK2 and VPS35 may be important diagnostic biomarkers of OP.
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Background
Osteoporosis (OP) is a bone disease characterized by 
bone tissue degeneration and reduced bone mass [1]. OP 
has high morbidity worldwide, especially among older 
adults [2]. Owing to increased bone fragility, approxi-
mately 9.0  million fractures occur annually [3], which 
significantly increases the burden on families and the 
quality of life. Senile and postmenopausal OP are the two 
primary types of OP. Traditionally, postmenopausal OP 
is characterized by excessive bone absorption [4], and 
senile OP is associated with a low bone turnover state, 
leading to impaired bone formation [5]. In clinical set-
tings, OP is asymptomatic during the early stages. Typi-
cally, this disease is not diagnosed until bone fragility 
occurs. Thus, the early diagnosis of OP remains challeng-
ing. Currently, drug therapy with bisphosphonates, calci-
tonin, and fluorides is the primary treatment strategy for 
OP. The current treatment strategy is helpful for improv-
ing clinical symptoms and bone loss [6, 7]. However, the 
long-term clinical efficacy of these drugs remains limited. 
Moreover, owing to drug side effects and poor drug toler-
ance [8], a safer and more effective treatment strategy is 
urgently required.

In tissues, cell apoptosis acts as a defense mechanism 
to prevent non-functional cell accumulation; however, if 
mutations occur and cell apoptosis cannot be activated, 
excessive cell death or evasion from apoptosis may cause 
the development of various diseases [9]. Programmed cell 
death is widely involved in skeletal repair, maintenance, 
and development, and is closely related to the pathogene-
sis of osteoarthritis and OP [10]. Programmed cell death-
related genes (PCD) have been extensively explored in 
many diseases. Different gene families, such as caspases, 
the p53 gene, the superfamily of tumor necrosis factor 
receptors, and the B cell lymphoma-2 family of genes, 
are associated with apoptotic processes [9]. During bone 
metabolism regulation, PCDs play critical roles by modu-
lating bone cell activity; hence, molecules targeting pro-
grammed cell death may be valuable biomarkers for OP 
development. Various bone cell functions contribute to 
bone formation and bone resorption [11]. When cells 
cannot meet these requirements, the process of bone 
resorption and formation is disrupted. Consequently, 
bone remodeling may fail and OP may occur. In OP, 
chondrocyte apoptosis is accepted as an important step 
in endochondral ossification. The role of PCDs has been 
explored previously. For example, in OP, upregulated 
BCLXL inhibits osteoblast apoptosis and maintains nor-
mal bone structure [12]. Therefore, we believe that PCDs 
may participate in the pathogenesis of OP and may serve 
as biomarkers for OP treatment and diagnosis.

To explore the potential roles of PCDs in OP, the 
GSE56815 and GSE7158 microarray datasets were 
downloaded from Gene Expression Omnibus (GEO) as 

training and validation datasets, respectively. Differen-
tially expressed PCDs were screened and functional anal-
ysis was performed to predict the biological processes 
enriched by these genes. After screening, a receiver oper-
ating characteristic (ROC) curve was used to evaluate 
the diagnostic value of the characteristic genes. Further-
more, the correlation between the characteristic genes 
and immune infiltrates was explored. The mitochondrial 
RNA (miRNA)-mRNA-transcription factor (TF) network 
was constructed, and small-molecule drugs related to 
the characteristic genes were explored. Thus, BRSK2 and 
VPS35 may be important diagnostic and treatment bio-
markers for OP.

Methods
Data resource
Two microarray datasets (accession numbers: GSE56815 
and GSE7158) were downloaded from the GEO database 
(https://www.ncbi.nlm.nih.gov/). GSE56815 included cir-
culating monocytes from 40 subjects each with extremely 
high BMD (bone mineral density) and 40 subjects with 
extremely low BMD according to the hip Z-score. The 
dataset was used as the training set and analyzed based 
on the GPL96 [HG-U133A] Affinometrix Human 
Genome U133A array annotation platform. Peak bone 
mass (PBM) is another important determinant of osteo-
porosis [13]. GSE7158, including circulating monocytes 
from 14 subjects with extremely high Peak bone mass 
(PBM) and 12 subjects with low PBM, were enrolled 
as validation data, which were analyzed based on the 
GPL570 [HG-U133-Plus_2] Affimatrix Human Genome 
U133 Plus 2.0 Array annotation platform files.

Identification of differentially expressed genes (DEG)
Before DEG analysis, we performed Principle Compo-
nent Analysis at gene expression level to evaluate the 
data quality. As shown in Supplementary Fig. 1, samples 
in GSE56815 were assigned into two groups separately 
and there was no outlier sample. Thus, the dataset could 
be used for DEG analysis. The OP related DEGs between 
high and low BMD groups in GSE56815 were analyzed 
using the Limma package [14] in R. Benjamin, and the 
Hochberg method [15] was used for multiple test correc-
tion. DEGs were visualized using Volcano map and heat-
map using R packages “ggplot2” and “pheatmap” in R. The 
cutoff values were defined as an adjusted P-value < 0.05.

Weighted gene co-expression network analysis (WGCNA)
WGCNA is a valuable tool for identifying modules of 
highly correlated genes by clustering genes with simi-
lar expression levels, and can analyze the correlation 
between modules and specific traits or phenotypes [16]. 
First, the samples were clustered to detect the outliers. 
The weight value was calculated based on the Picksoft 

https://www.ncbi.nlm.nih.gov/
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Threshold function of WGCNA. A thresholding power β 
value of 6 (scale-free R2 = 0.85) was determined for con-
structing a scale-free network. Gene co-expression net-
work was constructed and modules were clustered based 
on dynamic tree cutting algorithm with a minimum size 
of 70 genes. MEDissThres was set as 0.2 to combine the 
similar modules. The relationship between modules and 
clinical traits were analyzed by Pearson’s correlation coef-
ficient. Modules with a correlation of P value < 0.05 and 
a correlation coefficient ≥ 0.3 were selected as key mod-
ules, and genes within more than one key module were 
defined as hub genes.

Selection of differentially expressed PCDs and function 
enrichment analysis
Twelve types of PCDs were obtained from Zou et al. [17], 
and 1254 PCDs were obtained after deduplication (Sup-
plementary file 1). The online tool jvenn (http://jvenn.
toulouse.sra.fr/app/example. html) was used to detect the 
intersection of DEGs, PCDs, and hub genes as differen-
tially expressed PCDs. To understand the biological role 
of the intersecting genes, Gene Ontology (GO) enrich-
ment analysis was performed using R package “cluster 
Profiler” [18] and the results were visualized by R pack-
age “ggplot2” [19]. Genes of interest were annotated in 
three categories of biological process (BP), molecular 
functions (MF), and cellular components (CC) [20]. A P 
value < 0.05 was defined as the significance threshold.

Protein-protein interaction (PPI) network construction
Given that PPI networks are involved in various stages 
of processes such as biological signal transduction, gene 
expression regulation, and cell cycle regulation [21], 
PPI network is crucial for the investigation of disease 
occurrence and development. STRING database (http://
stringdb.org/) [22] was employed to generate a PPI net-
work of differentially expressed PCDs. The protein pairs 
with confidence level of 0.4 were collected for further 
analysis. In the present study, PPI network was visualized 
using Cytoscape [23], in which the nodes represented 
proteins and edges indicated protein-protein interaction. 
The CytoNCA plugin was used to analyze the connectiv-
ity of PPI network.

Machine learning methods for screening biomarkers
The biomarker genes were further filtered by three 
machine learning methods, including Least absolute 
shrinkage and selection operator (LASSO), Support Vec-
tor Machines (SVM) and Random forest (RF).

LASSO regression is a contraction estimation method 
that minimizes the sum of squared residuals under con-
straints [24]. Based on the expression values of the differ-
entially expressed PCDs and the grouping information of 
the samples in GSE56815, a LASSO regression prediction 

sample classification was constructed. To reduce the fea-
ture dimension, parameters of the R software “glmnet” 
package (version 4.0–2) were set as: family="binary,” type. 
measure="class,” nfold = 10.

SVM is a supervised learning method that uses a train-
ing dataset to build a classification model and a validation 
dataset to validate the model [25]. The intersecting genes 
were sorted using linear and non-linear SVMs using the 
“e1071” R package. Recursive feature elimination was 
used to analyze the importance and ranking of each gene 
as well as the error rate and accuracy of each iterative 
combination [26]. The lowest error rate was selected as 
the optimal combination and the corresponding gene 
was defined as the characteristic gene. RF is a composite 
supervised learning method, which is also an extension 
of decision trees [27]. The RF method in the R package 
was used to analyze the intersecting genes for RF analy-
sis to screen for characteristic genes. The genes obtained 
from the RF algorithm were ranked by “Mean Decrease-
Accuracy” and “Mean DecreaseGini” respectively. Finally, 
characteristic genes screened using LASSO, SVM, and 
RF were intersected using the jVenn tool.

Diagnostic value analysis and differential expression of 
biomarkers
To evaluate the diagnostic value of each biomarker, ROC 
curves based on differentially expressed PCDs were 
constructed in the dataset GSE56815. Briefly, the gene 
expression value in each sample was extracted. R pack-
age “pROC” was utilized to conduct ROC curve analysis 
by taking samples grouping as outcome variable and the 
gene expression value as the independent variable. Fur-
thermore, ROC curves based on selected biomarkers in 
GSE7158 were also constructed to verify the diagnostic 
value of selected genes. Subsequently, the expression lev-
els of differentially expressed PCDs from the GSE56815 
dataset and GSE7158 validation set were extracted, and 
the expression levels of the biomarkers were compared 
between OP and controls using the wilcox.test method in 
R package “ggplot2 [19].”

Construction of column line diagram model
In order to further verify the diagnostic ability of differ-
entially expressed PCDs, the “RMS” package was used to 
build the nomogram model of biomarkers based on the 
sample grouping information and the expression of bio-
markers. Furthermore, the predictive value of the column 
chart model was evaluated by drawing a calibration curve 
using the calibrate function in the “RMS” package, and 
the column chart model ROC curve was drawn using the 
“pROC” package [28].

http://jvenn.toulouse.sra.fr/app/example
http://jvenn.toulouse.sra.fr/app/example
http://stringdb.org/
http://stringdb.org/
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Gene set enrichment analysis (GSEA)
The enriched pathways of the selected genes were ana-
lyzed using GSEA software (V4.0.3) based on the expres-
sion values of the two biomarkers. The parameters were 
set as follows: gene set database, c2.cp.kegg.v7.5.1. sym-
bols.gmt; gene sets database, c5.go.bp.v7.5.1.symbols.
gmt. Pearson correlation coefficients for each gene and 
biomarker were calculated, and the correlation coeffi-
cients between each biomarker and the other genes were 
sorted in descending order (metric for ranking genes: 
Pearson, gene list sorting mode: real, gene list ordering 
mode: descending). The above gene set was set as the 
background gene, and the pathways enriched by these 
genes with |NES| > 1 and NOM P value < 0.05 were 
defined as enriched pathways.

Immune cell infiltration analysis
The infiltration abundance of 28 immune cells in all sam-
ples in the training set was analyzed using the R package 
“GSVA” [29] and single-sample GSEA algorithm [30]. 
The Spearman correlation between all immune cells and 
differentially expressed PCDs was calculated using the 
R package “coreplot.” Immune cells significantly related 
with OP were screened by drawing a box plot using the 
wilcox.test method in R package “ggplot2 [19].”

Construction of miRNA-mRNA-TF network
The MiRwalk database contains the predicted and experi-
mentally validated miRNA-gene interaction pairs [31]. In 
the present study, we used miRwalk3.0 database to screen 
experimentally validated miRNA-biomarker interactions 
based on the 3’ untranslated region binding site position, 
and the threshold was set as binding probability ≥ 0.95. 
The NetworkAnalyst database was used to predict the 
TF for the selected biomarkers. The parameters were set 
as follows: Specify organization, H. sapiens; set ID type, 
official gene symbol; and TF gene interaction database, 
ENCODE. Finally, the miRNA-mRNA-TF regulatory 
network was constructed using Cytoscape software [32]. 
Finally, small-molecule drugs related to the biomark-
ers were selected using the DGIdb [33](https://dgidb.
genome.wustl.edu/).

Reverse transcription real-time quantitative PCR (RT-qPCR) 
analysis
Ten subjects aged 45–55 years old were recruited from 
the Weifang Sunshine Union Hospital. The hip BMD was 
measured by a dual-energy X-ray bone densitometer. 
Then, BMD was transformed into a Z score as previous 
description [34, 35]. Subjects were assigned into high 
BMD (control, n = 10) and low BMD (OP, n = 10) group. 
The whole blood samples were collected from all the 
included individuals with informed consent. Ethics Com-
mittee of our hospital approved this study and all the 
procedures were conducted complied with the rules and 
guidelines of Declaration of Helsinki.

Peripheral blood monocytes (PBMs) were isolated from 
whole blood samples using the commercial monocyte 
isolation kit (Miltenyi Biotec Inc, Auburn, CA). Total 
RNA extraction was performed with the application of 
Trizol reagent. cDNA was prepared using the Super-
Script VILO cDNA synthesis kit (Invitrogen) per the 
manufacturer’s protocols. Genes were amplified under 
the Applied Biosystems 7000 sequence detection system, 
following the conditions of 30 s at 95℃, 45 cycles of 95℃ 
for 10s and 60℃ for 30s. GAPDH was used as the refer-
ence gene. The PCR primers were summarized in Table 1.

Results
DEGs selection
In this study, a total of 399 DEGs were identified as OP 
related genes (Supplementary file 2). Compared with 
control group, 286 genes were upregulated and 113 were 
downregulated in OP group (Fig.  1A). Samples were 
clearly distinguished based on their differential expres-
sion profiles (Fig. 1B).

WGCNA network construction
Sample cluster analysis was first conducted to investi-
gate the difference in samples in GSE56815 dataset. The 
sample clustering dendrograms shows that GSM1369791 
sample is different from others (Fig.  2A). After remov-
ing the outlier sample GSM1369791, the association 
between the modules and the clinical characteristics of 
the samples was analyzed. All DEGs were grouped into 
modules based on similar expression patterns (Fig. 2B). A 
soft threshold of six was selected to satisfy the scale-free 
topology with R2 = 0.85 (Fig. 3A).

Key module identification and hub genes collection
Subsequently, a MEDissThres of 0.2 was used to merge 
similar modules and 13 modules were obtained (Fig. 3B). 
The characteristics of the samples were sorted and added 
to the clustering graph to construct a sample cluster-
ing and clinical trait heatmap (Fig.  3C). The correla-
tion between different modules is shown in Fig.  3D. As 
shown in ​Fig. 3E, MEgreen (R2 = 0.41, P = 1e-04) showed 

Table 1  Primer sequence for RT-qPCR
Gene 
symbol

Forward Reverse

BRSK2 5’-​A​C​A​T​C​C​G​C​A​T​C​G​C​A​G​A​C​T​
T​T-3’

5’-​C​G​C​A​A​G​T​T​G​T​C​A​T​C​G​T​C​
G​A​A​G-3’

VPS35 5′-​C​C​G​C​T​C​G​A​G​A​T​G​C​C​T​A​C​A​A​C​
A​C​A​G​C​A​G​T​C​C​C-3′

5′-​C​G​G​G​A​A​T​T​C​T​T​A​A​A​G​G​A​
T​G​A​G​A​C​C​T​T​C​A​T​A​A​A​T​T-3′

GAPDH 5’-​A​T​G​G​G​G​A​A​G​G​T​G​A​A​G​G​T-3’ 5’-​A​A​G​C​T​T​C​C​C​G​T​T​C​T​C​
A​G-3’

https://dgidb.genome.wustl.edu/
https://dgidb.genome.wustl.edu/
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the highest negative association with the Gleason score, 
whereas MEmagenta (R2 = 0.33, P = 0.003) showed the 
highest positive correlation with the Gleason score. Thus, 
the green module containing 911 genes and magenta 
module containing 138 genes were the most significant 
modules. The Supplementary file 3 shows the correla-
tions of genes in significant modules. Finally, a total of 
1049 hub genes were collected for further analysis.

Differentially expressed PCDs, functional analysis, and PPI 
network
Total 25 differentially expressed PCDs were obtained by 
intersecting 399 DEGs, 1049 hub genes and 1254 PCDs 
(Fig.  4A), which were used for GO analysis. The top 10 
significant GO terms ranked by p values were visualized. 
The results showed that these genes were significantly 
enriched in the regulation of autophagy, regulation of the 
apoptotic signaling pathway, and negative regulation of 
the apoptotic signaling pathway related GO BP (Fig. 4B). 
For CC, the differentially expressed PCDs were mainly 
enriched in tubular endosome, retromer complex, and 
lysosomal lumen (Fig. 4C) and in MF category, the genes 
were closely associated with ferroxidase activity, oxido-
reductase activity, acting on metal ions, and oxygen as 
acceptors (Fig. 4D). As shown in Fig. 4E, a PPI network of 
the 25 PCDs was constructed comprising nine edges con-
necting 12 nodes. In the PPI network, FASLG exhibited 

the highest connectivity, followed by CP, RIPK2, FOXO1, 
and CASP10 (Fig. 4F).

Screening of OP signature genes by machine learning 
analysis
The OP-associated biomarkers were further filtered by 
three machine learning methods. Based on the LASSO 
model, graphs of gene coefficients and error plots of 
cross-validation were constructed (Fig.  5A and B). Six 
characteristic genes were screened: BRSK2, NKX3-1, 
SLC7A11, SNX5, TMEM161A, and VPS35. To verify the 
accuracy of the SVM model under different features, 
we used a 5-fold cross validation to calculate the accu-
racy of the different feature combination models. The 
model achieved the highest accuracy after incorporat-
ing the first 15 features (Fig.  5C). Fifteen feature genes 
were identified. The RF results showed an order accord-
ing to the mean decrease accuracy of the enrolled genes 
(Fig. 5D). The top ten genes included BRSK2, SST, VPS35, 
POLB, DAP3, SLC25A5, PHLDA3, RIPK2, CP, and FXN 
(Fig.  5E). Finally, two genes (BRSK2 and VPS35) were 
screened by intersecting the LASSO, SVM, and RF 
results (Fig. 5F) and were used for further analysis.

Diagnostic value of BRSK2 and VPS35 in OP
In GSE56815 cohort, the area under the receiver operat-
ing characteristic curve (AUC) of BRSK2 was 0.761 and 
that of VPS35 was 0.789, suggesting that both BRSK2 

Fig. 1  Volcano plot and heatmap of differentially expressed genes (DEGs). A: Volcano plot of DEGs; Horizontal axis represents difference multiple, and 
vertical axis represents - log10 (adj. P. Value). Each point in the graph represents a gene, and the blue and red dots represent DEGs. The red dots indicate 
upregulated genes, the blue dots indicate downregulated genes, and the gray dots indicate genes with non-significant difference. B: Each small square 
represents each gene, and its color represents the expression level of the gene. The darker the color represents the higher expression level. Each row 
represents the expression level of each gene in different samples, and each column represents the expression level of all differential genes in each sample. 
The left tree graph represents the clustering analysis results of different genes from different samples

 



Page 6 of 14Li et al. BMC Musculoskeletal Disorders          (2024) 25:235 

and VPS35 have the ability to distinguish between OP 
and healthy controls (Fig. 6A). In GSE7158, the AUC of 
the two genes were more than 0.8 (BRSK2 AUC: 0.804; 
VPS35 AUC: 0.804), verifying the valuable diagnos-
tic ability (Fig.  6B). Figure  6C and D show upregulated 
BRSK2 and VPS35 in OP compared with that in the con-
trol in both GSE56815 and GSE7158 (P < 0.01).

Nomograph model
The nomograph model is constructed to verify the pre-
dictive power of the two biomarker genes (Fig. 7A). The 
calibration curve showed that the error between the 
actual disease risk and the predicted risk of the calibra-
tion curve was very small, indicating that the column 
chart model had high prediction accuracy for OP diseases 
(Fig. 7B). The ROC curve showed that the AUC value of 
the column chart model was greater than 0.85, indicating 

Fig. 2  Cluster analysis of dataset samples, data Sample Clustering, and Phenotypic Information. A: cluster analysis of dataset samples; the branches in the 
figure represent samples, and the ordinate represents the height of hierarchical clustering. B: Data Sample Clustering and Phenotypic Information; the 
upper half of the figure shows the clustering situation, the lower half shows the phenotype, and the red represents the corresponding phenotypic traits
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that the column chart model had the predictive ability to 
distinguish OP from normal samples (Fig. 7C).

Functional role of BRSK2 and VPS35 in OP
To gain the insight of the involvement of biomarker genes 
in OP, GSEA was employed to analyze OP related bio-
logical process and pathways. The results showed that 
BRSK2 was mainly enriched in BPs, such as the apop-
totic process involved in morphogenesis and microtubule 
organizing center localization, and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways such as ether 
lipid metabolism. VPS35 was mainly enriched in BPs, 
such as regulation of glycoprotein metabolic processes 
and poly a plus mRNA export from the nucleus, and 
KEGG pathways, such as dilated cardiomyopathy and 
RNA degradation (Supplementary Fig. 2).

Correlation of biomarkers and immune cells in OP
The correlation between the biomarkers and immune 
cells was investigated and the heatmap of the correlation 
is shown in Fig. 8A. Significant differences were observed 
in three types of immune cells between OP and control 

groups, including activated dendritic cells, CD56dim 
natural killer cells, and central memory CD4 + T cells 
(Fig. 8B). A bubble chart of the correlation between bio-
markers and differential immune cells shows that BRSK2 
is positively correlated with CD56dim natural killer cells 
and negatively correlated with central memory CD4 T 
cells, whereas VPS35 is negatively correlated with acti-
vated dendritic cells (Fig. 8C).

The miRNA-mRNA-TF network and small molecule drugs
MiRNAs and TFs play key roles in regulating gene 
expression and functions of gene encoding proteins. As 
shown in Fig.  9 and 406 interaction pairs were identi-
fied in the miRNA-mRNA-TF network, which included 
21 miRNAs, two mRNAs, and 31 TFs. Based on the data 
from DGIdb, hesperadin was associated with BRSK2, and 
melagatran was associated with VPS35.

RT-qPCR confirmation
To confirm the significantly differential expression of 
the biomarker genes in clinical samples, RT-qPCR analy-
sis was performed. Consistent with the bioinformatics 

Fig. 3  The results of weighted gene co-expression network analysis (WGCNA). A: Scale free soft threshold distribution; The horizontal axis represents the 
power value of the weight parameter. The vertical axis of the left graph represents Scale Free Topology Model Fit, that is, signed R^2. The higher the square 
of the correlation coefficient represents the closer the network approaches the scale-free distribution. The vertical axis of the right graph represents the 
mean value of all gene adjacency functions in the corresponding gene module. B: Module Clustering Tree; the module clustering tree graph gene is 
divided into various modules through hierarchical clustering, and different colors represent different modules. C: Clustering of module eigengenes. D: 
Clustering of module heatmap. E: Heatmap of the module-clinical traits relationships
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analysis in GSE56815 and GSE7158 datasets, BRSK 2 and 
VPS35 were expectably upregulated in OP patients com-
pared with controls (all p < 0.05, Fig. 10).

Discussion
OP is a complex bone disease characterized by deteriora-
tion of bone tissue microarchitecture and reduced bone 
mass. PCDs plays a critical role in the regulation of bone 
metabolism. Thus, we aimed to explore the valuable 
PCDs that contribute to OP development.

Here, BRSK2 and VPS35, selected as the differentially 
expressed PCDs are vital for OP diagnosis. Programmed 
cell death is a cell death process that maintains homeo-
stasis in the internal environment and is induced by a 
certain signal. The critical role of PCDs in regulating 
bone metabolism has been well demonstrated, and drugs 
targeting specific regulatory molecules in PCDs play 
valuable roles in preventing OP [11]. VPS35 is critical for 
transmembrane proteins [36], is upregulated in osteo-
blasts and osteoclasts, and is activated by deregulating 
RANK signaling to prevent OP deficits [37]. The study 
by Raychaudhuri et al. demonstrated the roles of VPS35 
in osteoclast and osteoblast activity regulation in OP and 
put forward that VPS35 may be a potential diagnostic 
biomarker of osteoporosis [38]. A similar conclusion was 
supported by Xia et al. based on data from GSE56815 and 

GSE56814 [39]. In the current study, we also identified a 
potential diagnostic role for VPS35.

In the present study, BRSK2 was selected as a critical 
biomarker of OP. It is well known that BRSK2 is impor-
tant in cell cycle regulation, neuronal and axonogenic 
polarization, and insulin secretion. Although few studies 
have demonstrated the regulatory role of BRSK2 in OP, 
the function of senescent and differentiated cells in age-
related pathologies, including OP, has been well reported 
[40]. In addition, we showed that the level of BRSK2 posi-
tively correlated with CD56dim natural killer cells and 
negatively correlated with central memory CD4 + T cells 
in OP. Natural killer cells are innate immune cells that act 
as the first responders to immunological processes [41, 
42] and have been accepted as important regulators of 
senescent cell immune surveillance [43].

Several studies have demonstrated the association 
between the number and distribution of natural killer cell 
subsets and age-related diseases [44]. Collectively, the 
data in the present study showed a valuable diagnostic 
role for BRSK2, and the levels of this gene were related 
to the number of CD56dim natural killer cells, suggesting 
that BRSK2 may be important for the OP process.

Based on data from DGIdb, hesperadin and melagatran 
were selected as potential treatment drugs for OP by tar-
geting BRSK2 and VPS35, respectively. Hesperadin is an 

Fig. 4  Immune-related programmed cell death genes (PCDs) and functional analysis. A: Venn diagram for selecting Immune-related PCDs; B: Bubble 
Chart of TOP10 GO biological process enrichment; B: Bubble Chart of TOP10 GO cellular component enrichment; C: Bubble Chart of TOP10 GO molecular 
function enrichment; The vertical axis represents the enriched GO descriptions, the horizontal axis represents the number of genes enriched by the path-
way, the color represents the p value. The size of the bubble represents the number of intersecting genes contained in the description, and the larger the 
bubble represents the more genes it contains; D: diagram of protein-protein interaction network; E: Bar chart of PPI Network node connectivity

 



Page 9 of 14Li et al. BMC Musculoskeletal Disorders          (2024) 25:235 

inhibitor of human Aurora kinase, which is widely used 
to inhibit tumor growth and ameliorate cardiac reperfu-
sion injury [45]. Moreover, the inhibitory role of mela-
gatran in osteoblasts and its pronounced influence on 
cellular metabolism has been demonstrated [46]. Taken 
together, the treatment efficiency of hesperadin and mel-
agatran should be further investigated clinically.

This study had some limitations. First, this study was 
based on the gene expression profiles of PBMs, which 

are not equal to those of osteoclasts. Second, in vivo and 
in vitro studies are warranted to dissect the functions of 
these biomarkers. Third, the use of biomarkers for diag-
nosis and treatment requires long-term clinical studies.

Conclusion
In conclusion, the data in the present study showed that 
BRSK2 and VPS35 may be important diagnostic bio-
markers for OP. Moreover, hesperidin and melagatran 
may be valuable OP treatment drugs that target BRSK2 
and VPS35. However, further studies are required to elu-
cidate the relationship between these genes and OP.

Fig. 5  Machine learning for screening biomarkers. A: LASSO Logic Coeffi-
cient Penalty Graph; Each curve represents the variation trajectory of each 
independent variable coefficient, the y-axis represents the coefficient 
value, and the upper x-axis represents the number of non-zero coefficients 
in the model; B: LASSO Logic Coefficient Penalty Graph; The horizontal 
axis represents log (Lambda), while the vertical axis represents the error 
of cross validation; C: Support Vector Machine Model Accuracy (Left) and 
Error Rate (Right); D: Top 10-variable importance. “mean Decrease accu-
racy “indicates the degree of reduction in the accuracy of random forest 
prediction. The higher the value represents the greater the importance of 
the variable; “mean decrease Gini “calculates the impact of each variable 
on the heterogeneity of observations at each node of the classification 
tree. The higher the value represents the greater importance of variables; 
E: Lollipop map of top10 characteristic gene; F: Venn diagram for selecting 
biomarkers
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Fig. 7  Construction of column line diagram model. A: Nomogram model of BRSK2 and VPS35; B: Calibration curve for evaluating the predictive ability of 
column chart models; C: Receiver operating characteristic curve of the column chart model

 

Fig. 6  Diagnosis value of BRSK2 and VPS35 in osteoporosis. A: Receiver operating characteristic (ROC) curve of BRSK2 and VPS35 in dataset GSE56815; B: 
ROC curve of BRSK2 and VPS35 in GSE7158; C: Expression box diagram of BRSK2 and VPS35 in dataset GSE56815; D: Expression box diagram of BRSK2 and 
VPS35 in dataset GSE7158. Versus control, *p < 0.05, **p < 0.01, *** p < 0.001, **** p < 0.0001
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Fig. 8  Correlation of biomarkers and immune cells in osteoporosis. A: Heatmap of correlation between immune cells; B: 28 immune cell expression box 
plots between sample groups; versus *p < 0.05, **p < 0.01, ***p < 0.001, ***p < 0.0001, -p > 0.05; C: Bubble chart of correlation between biomarkers and 
differential immune cells
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