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Abstract
Background Hip dysplasia is a condition where the acetabulum is too shallow to support the femoral head and is 
commonly considered a risk factor for hip osteoarthritis. The objective of this study was to develop a deep learning 
model to diagnose hip dysplasia from plain radiographs and classify dysplastic hips based on their severity.

Methods We collected pelvic radiographs of 571 patients from two single-center cohorts and one multicenter 
cohort. The radiographs were split in half to create hip radiographs (n = 1022). One orthopaedic surgeon and one 
resident assessed the radiographs for hip dysplasia on either side. We used the center edge (CE) angle as the primary 
diagnostic criteria. Hips with a CE angle < 20°, 20° to 25°, and > 25° were labeled as dysplastic, borderline, and normal, 
respectively. The dysplastic hips were also classified with both Crowe and Hartofilakidis classification of dysplasia. 
The dataset was divided into train, validation, and test subsets using 80:10:10 split-ratio that were used to train two 
deep learning models to classify images into normal, borderline and (1) Crowe grade 1–4 or (2) Hartofilakidis grade 
1–3. A pre-trained on Imagenet VGG16 convolutional neural network (CNN) was utilized by performing layer-wise 
fine-turning.

Results Both models struggled with distinguishing between normal and borderline hips. However, achieved high 
accuracy (Model 1: 92.2% and Model 2: 83.3%) in distinguishing between normal/borderline vs. dysplastic hips. The 
overall accuracy of Model 1 was 68% and for Model 2 73.5%. Most misclassifications for the Crowe and Hartofilakidis 
classifications were +/- 1 class from the correct class.

Conclusions This pilot study shows promising results that a deep learning model distinguish between normal and 
dysplastic hips with high accuracy. Future research and external validation are warranted regarding the ability of deep 
learning models to perform complex tasks such as identifying and classifying disorders using plain radiographs.

Level of Evidence Diagnostic level IV

Keywords Crowe classification, Deep learning model, Hartofilakidis classification, Hip dysplasia, Radiographs

Application of deep learning for automated 
diagnosis and classification of hip dysplasia 
on plain radiographs
Martin Magnéli1,2,3, Alireza Borjali1,2, Eiji Takahashi1,2,4, Michael Axenhus3,5*, Henrik Malchau2,6, Orhun K. Moratoglu1,2 
and Kartik M. Varadarajan1

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12891-024-07244-0&domain=pdf&date_stamp=2024-2-8


Page 2 of 10Magnéli et al. BMC Musculoskeletal Disorders          (2024) 25:117 

Introduction
Hip dysplasia is a condition where the acetabulum is 
too shallow to support the femoral head, which can 
lead to subluxation or luxation of the femoral head and 
disrupted anatomy of the hip joint (Fig.  1). The biome-
chanics of a dysplastic hip joint can cause labrum tear 
and cartilage damage due to abnormal center of rota-
tion and load distribution. Hip dysplasia is commonly 
considered a risk factor for hip osteoarthritis (OA) [1]. 
Surgical interventions such as periacetabular osteotomy, 
could affect hip OA development within this population. 
Hence, accurate and timely diagnosis of hip dysplasia is 
of utmost importance.

Congenital hip dysplasia is usually diagnosed during 
routine screening of newborns [2]. Hip dysplasia can also 
manifest later in life in adolescence. Plain radiographs of 
the pelvis and hip are the foundation of diagnosing adult 
hip dysplasia. A recent study found that among general 
radiologists (and thus among the reports to general prac-
titioners), the diagnosis of most (93%) adult hip dysplasia 
goes unrecognized and hence untreated [3]. Furthermore, 
the agreement between individual orthopaedic specialists 
reading the same radiographs to diagnose hip dyspla-
sia has been shown to be highly variable, with weighted 
kappa coefficients ranging from 0.43 to 0.93 [4–6] (from 
moderate to almost perfect agreement).

Moreover, the prevalence of hip dysplasia varies in dif-
ferent demographics from 1– 13% [7–11]. The relative 
rarity and demographic variation in the incidence of hip 
dysplasia also mean that orthopaedic practitioners are 

not equally familiar with the diagnosis and management 
of hip dysplasia. Currently, no tool is available to help 
orthopaedic practitioners with a better diagnosis of hip 
dysplasia.

Deep learning is a relatively new sub-category of arti-
ficial intelligence mainly concerned with image analysis 
and pattern recognition. In recent years deep learning 
models have been successfully used for automated image 
analysis and diagnosis of different orthopaedic disorders. 
These studies have focused on a myriad of orthopae-
dic disorders such as diagnosis of total hip replacement 
(THR) aseptic loosening, detecting the type of a THR 
implant prior to the revision surgery, diagnosing hard 
to detect tibiofemoral cartilage defects, and bone frac-
ture detection and classification to name a few [12–19]. 
In most of these applications, deep learning models 
have achieved on-par or better performance compared 
to orthopaedic practitioners performing the same task. 
Despite these successful applications, no deep learning 
model has been developed so far to diagnose hip dyspla-
sia from plain radiographs. Deep learning models may 
offer a solution to overcome the current challenges in 
the radiographic diagnosis of hip dysplasia and provide 
a valuable tool for reducing the inter-reader variability, 
enabling inexperienced practitioners to find dysplasia 
cases in larger cohorts, and standardizing the reporting 
of clinical outcomes of dysplasia patients based on dis-
ease severity. Hence, the objective of this study was to 
develop a deep learning model to diagnose hip dysplasia 

Fig. 1 Examples of (a) normal, and (b) dysplastic hip radiograph
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from plain radiographs and classify dysplastic hips based 
on their severity.

Methods
Study design
We conducted a retrospective study with institutional 
review board (IRB) approval, using previously collected 
imaging data. The study goal was to create and validate 
deep learning models for diagnosing hip dysplasia and 
classifying its severity from plain hip radiographs.

Data
Data sources
The following three data sources were used in this study:

1) A prospective, international, multicenter study 
established in 2007, with the primary purpose of 
evaluating the outcomes of patients treated with 
total hip arthroplasty using vitamin-E infused highly 
cross-linked polyethylene liners [20]. The study 
consists of 16 centers in 8 countries.

2) A retrospective single center cohort study from 
a Japanese hospital, with the primary purpose 
of studying outcomes following hip arthroplasty 
surgery.

3) A retrospective single center cohort study from 
a Japanese hospital, with the primary purpose of 
studying dislocations following hip arthroplasty 
surgery.

All hospitals and the number of included hips are listed 
in Table 1. All patients were 18 years or older. Indication 
for all patients were degenerative joint disease, primary 
or secondary osteoarthritis. The contralateral hip was 
also assessed. We found no hips with Perthes disease, 
prior fracture or epiphysiolysis.

Ethics
For data source 1, written informed consent was col-
lected for all participants in the clinical study. A separate 
IRB approval for continuing radiographic analysis exists, 
Partners Human Research, protocol no. 2007P001955. 
For data source 2 and 3, written informed consent was 
collected for all participants in the clinical study. IRB 
committee of Kanazawa Medical University. Receipt 
number: 134, date of approval: June 18, 2012.

Data preprocessing
The images existed in both JPEG and DICOM format. 
DICOM images were exported into JPEG format and 
kept as full-size images. All patient data was removed 
from the DICOMs. All images were anteroposterior 
pelvis radiographs that were subsequently cropped by a 
vertical split through the symphysis, creating two AP hip 
images. We only included the native hips and excluded 
hips with arthroplasty, prior osteotomy surgery, femoral 
head necrosis, and scanned radiographs with overlaying 
free-drawn preoperative planning templates and writing.

Ground truth
The most common radiographic measure to diag-
nose dysplasia is the acetabular center-edge (CE) angle 
(Fig.  2A) [21, 22]. The CE angle is the angle between a 
vertical line to the intra-teardrop line through the hip 
center and a line from the hip center to the boney lat-
eral edge of the acetabulum. The CE angle measures the 
acetabular coverage of the femoral head. We used the 
original definition of the CE angle and measured the 
most lateral boney edge of the acetabulum. We used a 
matching circle on top of the femoral head to define the 
hip center. There is no universally accepted definition of 
hip dysplasia; however, a CE angle ≤ 20° is mostly consid-
ered dysplastic, whereas a CE angle between 20° − 25° is 
considered borderline, and a CE angle > 25° is considered 
normal [1, 23, 24].

To further expand the description of a dysplastic hip, 
the grade of subluxation can be classified. There are two 
such types of classification that are frequently used. The 
Crowe classification [25], established in 1979, uses the 
proportion of subluxation to divide disease severity into 
four classes:

  • Crowe grade 1 corresponds to subluxation < 50% 
(Fig. 3A).

  • Crowe grade 2 subluxation between 50 and < 75% 
(Fig. 3B).

  • Crowe grade 3 subluxation between 75 and 100% 
(Fig. 3C).

  • Crowe grade 4 total luxation (Fig. 3D).

Fig. 2 A: Center edge angle. B: Sharp’s angle
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Hartofilakidis (HA) [26] classification categorizes dys-
plastic hips into three classes by considering the defor-
mation of the acetabulum in addition to the degree of 
subluxation:

  • Dysplastic hip: The femoral head is contained 
within the original acetabulum despite the degree of 
subluxation (Fig. 3A & B).

  • Low dislocation: The femoral head articulates with 
a false acetabulum that partially covers the true 
acetabulum to a varying degree (Fig. 3C).

  • High dislocation: The femoral head is completely out 
of the true acetabulum and migrated superiorly and 
posteriorly to varying degrees (Fig. 3D).

The radiographs were reviewed by two reviewers (one 
orthopaedic surgeon, specialized in dysplastic hip sur-
gery [ET] and one resident orthopaedic surgeon [MM]) 
that after a training session together, classified all images 
independently. All discrepant measurements were 
remeasured together, and the final grading was done in 
consensus. All hips were assessed for dysplasia by mea-
suring the CE angle (Fig.  2A). First, using the DICOM 
viewer software (Horos v.3.3.6) the hip center was found 
for each radiograph by drawing a circle covering the 
femoral head. Then a horizontal line was drawn from 
teardrop to teardrop. The line was moved so that the 
end was over the circle’s center (the hip’s center). A new 
line was drawn from the hip’s center to the lateral edge 
of the acetabulum. Subsequently, the CE angle was calcu-
lated by subtracting 90 degrees from the angle between 
the two lines. In some hips (N = 10), the femoral head 
was too deformed to find the hip center, and for these 
hips, we relied on Sharp’s angle instead (Fig.  2B) [27]. 
A Sharp’s angle > 42° was defined as dysplastic. The CE 
angle is a well-established measure for hip dysplasia and 
was therefore chosen as the primary measure. Sharp’s 
angle is one of several other acetabular measures, and 
there is no global consensus on which is the most accu-
rate in describing dysplasia. We chose Sharp’s angle as 

the secondary measure of dysplasia due to ease of mea-
surement. Sharp’s angle is based on two easily identifiable 
anatomic features: the lateral acetabulum edge (the same 
lateral point used for the CE angle) and the teardrop. 
After categorizing the entire dataset into “Normal,” “Bor-
derline,” and “Dysplastic,” we further categorized all the 
dysplastic hips based on both Crowe and Hartofilakidis 
classification. The Cohen’s Kappa [28] for interrater reli-
ability was 0.596 for diagnosis of dysplasia (based on CE 
angle) before the final consensus-based grading.

Deep learning models description
Two deep learning models were developed as follows:

  • Model 1: To categorize all radiographs into Normal, 
Borderline, and Crowe 1 to 4 categories.

  • Model 2: To categorize all radiographs into Normal, 
Borderline, and HA 1 to 3 categories.

Both models had a VGG16 convolutional neural network 
(CNN) base structure pre-trained on the ImageNet data-
set [29]. VGG16 model is widely used in literature for 
analyzing radiographs [30]. We modified the number of 
neurons in the classification layer of each model accord-
ing to the number of classification categories (Model 1: 6 
neurons, Model 2: 5 neurons). The models were adopted 
for the task at hand by using a layer-wise fine-turn-
ing strategy [30]. The dataset (total 1,022 radiographs; 
Table 1) was divided into train, validation, and test sub-
set containing 816, 103, and 103 radiographs respectively 
maintaining the same ratio in each data subset [18]. Data 
augmentation was used with a similar strategy as our pre-
vious work [18] to create new data by applying a series 
of minor translations (e.g., rotation, magnification, etc.) 
on the training subset to create effectively 40,000 radio-
graphs for training. The models were trained using Adam 
optimizer with cross entropy loss function, for 1,000 
epochs with early stoppage accuracy improvement cri-
teria, with a batch size of 32, and an initial learning rate 
of 0.0001. The validation subset was used for tuning the 

Fig. 3 Examples of hip with different severity of hip dysplasia (A = Crowe 1 and Hartofilakidis 1, B = Crowe 2 and Hartofilakidis 1, C = Crowe 3 and Harto-
filakidis 2, D = Crowe 4 and Hartofilakidis 3
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hyper-parameters, and the test subset was used to mea-
sure the models’ performance after training. Saliency 
maps were implemented to indicate the importance of 
each pixel of a given radiograph on the models’ perfor-
mance [31]. This was done for two reasons:

1) As a sanity check that the model does not use 
confounding data in the radiographs. One such 
example was Japanese letters in the Japanese 
radiographs that contained more dysplastic hips and 
subluxated hips.

2) To visualize new features that the AI could 
potentially find for diagnosing and categorizing hip 
dysplasia.

Tensorflow r1.6 with Keras backend on a workstation 
comprised of an Intel(R) Xeon(R) Gold 6128 proces-
sor, 64GB of DDR4 RAM, and a NVIDIA Quadro P5000 
graphic card was used to implement the models.

Results
Data
We included pelvic radiographs from 571 patients. After 
exclusion, the final dataset consisted of 1,022 hip radio-
graphs. The excluded hips either had handwritten letters 
and preoperative templating or a total hip arthroplasty in 
place. The number of images and the distribution of dif-
ferent classes are summarized in Table 1.

Model performance
Table  2 summarizes Model 1 performance in classify-
ing all radiographs in the test subset (103 radiographs) 
into Normal, Borderline, Crowe 1, Crowe 2, Crowe 3, 
and Crowe 4 classes. Model 1 diagnosed the normal hips 
with high accuracy (48 out of 51 correct classifications); 
however, it struggled to distinguish between Normal and 
Borderline hips and classified most of the Borderline hips 
as Normal (13 out of 15 Borderline hips were classified 
as Normal). On the other hand, Model 1 achieved high 
accuracy (92.2%) in distinguishing between dysplastic 
hips (Crowe 1–4) vs. Normal/Borderline hips. Consider-
ing the Crowe classification, most misclassification errors 
by the model were in the neighboring classes, i.e., +/- 1 
Crowe classification error. Model 1 achieved an overall 
68% accuracy.

Table 3 summarizes Model 2 performance in classify-
ing all radiographs in the test subset (103 radiographs) 
into Normal, Borderline, HA 1, HA 2, and HA 3 classes. 
Model 2 also diagnosed the normal hips with high accu-
racy (41 out of 51 correct classifications); however, it 
struggled to distinguish between Normal and Borderline 
hips. On the other hand, Model 2 achieved high accuracy 
(83.3%) in distinguishing between dysplastic hips (HA 
1–3) vs. Normal/ Borderline hips. Considering the HA 

classification, Model 2 also made +/- 1 HA classification 
error distinguishing between the neighboring classes. 
Model 2 achieved an overall 73.5% accuracy.

It is worth mentioning that while both Model 1 and 
Model 2 struggled to accurately identify the severity 
of dysplasia (Crowe and HA classification), they both 
achieved high performance in diagnosing a dysplastic 
hip (Normal/Borderline vs. Crowe 1–4/HA 1–3). Table 4 
summarizes Model 1 performance in distinguishing 
between Normal/Borderline and Dysplastic hips.

Discussion
Main results
To the best of our knowledge, this is the first study to 
use deep learning to diagnose and classify the severity 
of hip dysplasia. In this study, we found that deep learn-
ing models trained on multicenter radiographs could 
classify hips into dysplastic or non-dysplastic with over 
90% accuracy. These deep learning models were also suc-
cessful in detecting the severity of hip dysplasia based on 
Crowe and HA classifications, where the most misclassi-
fications were made in neighboring classes.

Strengths and limitations
A major strength of this study is the multicenter data 
source across different countries and healthcare institu-
tions. By using multicenter radiographs, the models were 
externally validated and thereby are suitable for global 
use. Furthermore, the models learned to ignore the varia-
tions in how the radiographs were performed (some cen-
ters had higher consistency than others) as well as the 
patients’ demographics.

Another strength is that we used two reviewers for the 
data labeling. This gave us a measure of the dysplasia 
classification quality and how hard it is to classify dyspla-
sia consistently. After the individual reviews, all discrep-
ancies were adjusted with consensus between the two 
reviewers. Although this was a time-consuming process, 
it resulted in more objective labels than a single reviewer. 
The interrater agreement between the two reviewers was 
moderate for diagnosing dysplasia. Both reviewers found 
the measurement of the CE angle to be challenging. The 
main challenge was defining the most lateral boney point 
of the acetabular edge. Only a few millimeters differ-
ence in identifying that measurement point was enough 
to change the CE angle and hence the classification from 
borderline to dysplastic/normal.

We tried to increase the understanding of the model by 
using saliency maps. Figure 4 shows examples of saliency 
maps for Normal/Borderline and Crowe 1–4 classifi-
cations. The saliency maps showed that the edge of the 
calcar region of the femur and its relation to the pelvic 
ring played an important role in the classification. This 
seems like a method resembling dysplasia classification 
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Table 2 Confusion matrix of Model 1 results, Crowe classification
True
Normal Borderline Crowe 1 Crowe 2 Crowe 3 Crowe 4 Class precision

Predicted
Normal 48 13 5 0 0 0 72.7%
Borderline 3 1 2 0 0 0 16.7%
Crowe 1 0 1 13 3 1 0 72.2%
Crowe 2 0 0 0 4 3 0 57.1%
Crowe 3 0 0 0 1 3 1 60.0%
Crowe 4 0 0 0 0 0 1 100.0%
Class recall 94.1% 6.7% 65.0% 50.0% 42.9% 50.0%

Table 3 Confusion matrix of Model 2 results, Hartofilakidis (HA) classification
True
Normal Borderline HA 1 HA 2 HA 3 Class precision

Predicted
Normal 41 4 1 1 0 87.2%
Borderline 5 5 4 0 0 35.7%
HA 1 5 6 21 0 0 65.6%
HA 2 0 0 0 7 1 87.5%
HA 3 0 0 0 0 1 100.0%
Class recall 80.4% 33.3% 80.8% 87.5% 50.0%

Table 4 Confusion matrix of Model 1 results for Normal/Borderline vs. Dysplastic hip
True
Predicted Normal/ Borderline Dysplastic (Crowe 1–4) Precision
Normal/Borderline 65 7 90.3%
Dysplastic (Crowe 1–4) 1 30 96.8%
Recall 98.5% 81.1%

Fig. 4 Saliency maps for Normal/Borderline and Crowe 1–4 classifications
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by relying on Shenton’s line, which is a method that has 
high accuracy for determining femoral subluxation [32].

Furthermore, the model seemed to use the inferior cor-
tex of the femoral neck arch and its relation to the inner 
and outer cortices of the pelvic ring (Fig. 5). For the more 
dysplastic hips that also had more femoral head defor-
mity, the model seemed to recognize a narrower arch 
between the neck and the deformed head (Fig. 5, Crowe 
class 3). Although these interpretations are highly subjec-
tive and cannot be interpreted as a “logic” being used by 
the model, it is encouraging to see that the model learned 
to focus on relevant anatomical areas without any explicit 
training or “rules” to follow.

This study is limited by the use of plain anteroposte-
rior hip radiographs. The three-dimensional anatomy of 
the acetabulum cannot be fully captured in a two-dimen-
sional image. For instance, the pelvic tilt and rotation 
can affect the CE angle and would most probably impact 
radiographs classification as dysplastic, borderline, or 
Crowe 1. There is computer software (Hip2norm) avail-
able that can compensate for the pelvic position, but to 
the best of our knowledge, this software has not been val-
idated to be used for dysplastic hips [33]. Furthermore, 
three-dimensional modalities such as computed tomog-
raphy and magnetic resonance tomography can give a 
more comprehensive image of the acetabular anatomy; 
however, plain radiographs are still the most widely used 
imaging modality to assess the hip joint.

There is no global consensus on the definition of hip 
dysplasia, and there are many different ways to measure 

the CE angle. A surgeon might perform several measure-
ments and supplement them with their overall impres-
sion of the hip anatomy to make a diagnosis. This method 
is not as reproducible as using a single measure but could 
be implemented in future studies as a more clinically rel-
evant method to diagnose dysplasia.

The dataset’s size, and more specifically the distribution 
of higher Crowe grade hips, is somewhat limited in this 
study. This is due to the lower prevalence of totally dislo-
cated hips since these patients are usually treated before 
the total collapse of the hip joint. While our study yields 
promising outcomes in employing deep learning for hip 
dysplasia diagnosis, it is crucial to acknowledge that it is 
a pilot study and the potential for selection bias, factors 
that may impact the generalizability of the results. Future 
research with larger and diverse datasets is needed for 
comprehensive validation and broader applicability.

Another observation made during this study was that 
Crowe class 1 includes a wide range of hips from slight 
dysplastic with a CE angle just below 20° to more severe 
dysplastic hips approaching Crowe class 2. The radio-
graph from a slight dysplastic hip looks entirely differ-
ent from a hip with, e.g., 49% subluxation. This is evident 
even to a person that is not used to reviewing hip radio-
graphs. The symptoms are probably different for these 
two examples as well; however, they both get classified 
as Crowe class 1. This further explains the models’ per-
formance in classifying the severity of hip dysplasia that 
they made +/- 1 Crowe or HA classification error.

Fig. 5 Saliency maps for example radiographs of normal and dysplastic hips. Colored regions, where red denotes a higher relative influence than blue, 
indicate the most influential regions on the convolutional neural network’s performance
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Generally, the application of deep learning in the clas-
sification of adult hip dysplasia is somewhat limited. Sev-
eral smaller studies, each demonstrating varying degrees 
of accuracy, have been conducted. For instance, Jensen 
et al. suggested the potential utility of their algorithm in 
quantifying specific landmarks of hip dysplasia, although 
their study was limited in size and lacked precision [34]. 
In another study, Archer et al. illustrated that machine 
learning could offer a quick and cost-saving approach for 
assessing certain hip dysplasia parameters, with exter-
nal validation. However, their model faced challenges in 
identifying anatomical landmarks and had a smaller sam-
ple size compared to ours [35].

Future implications
Hopefully, this study will encourage researchers to con-
duct more extensive studies with larger datasets result-
ing in a model with even higher performance. A similar 
model trained on a large dataset assessed and labeled in 
consensus by a global expert panel could in the future 
be used as a benchmark for hip dysplasia diagnosis and 
classification.

Conclusion
We have developed two deep learning models to diagnose 
and classify hip dysplasia, archiving high performances. 
These models could be used by professionals who lack 
relevant experience and in large cohorts for automatic 
diagnoses and classification of hip dysplasia. Timely diag-
nosis of hip dysplasia and subsequent conservative treat-
ments could potentially delay the development of OA 
and the requirement of more aggressive treatments.
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