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Abstract
Background Steroid-induced avascular necrosis of the femoral head (SANFH) is characterized by osteoblast 
apoptosis, leading to a loss of bone structure and impaired hip joint function. It has been demonstrated that 
erythropoietin (EPO) performs a number of biological roles.

Objective We examined the effects of EPO on SANFH and its regulation of the STAT1-caspase 3 signaling pathway.

Method In vitro, osteoblasts were treated with dexamethasone (Dex) or EPO. We identified the cytotoxicity of EPO 
by CCK-8, the protein expression of P-STAT1, cleaved-caspase9, cleaved-caspase3, Bcl-2, BAX, and cytochrome c by 
Western blotting, and evaluated the apoptosis of osteoblasts by flow cytometry. In vivo, we analyzed the protective 
effect of EPO against SANFH by hematoxylin and eosin (H&E), Immunohistochemical staining, and Micro-computed 
tomography (CT).

Results In vitro, EPO had no apparent toxic effect on osteoblasts. In Dex-stimulated cells, EPO therapy lowered the 
protein expression of BAX, cytochrome c, p-STAT1, cleaved-caspase9, and cleaved-caspase3 while increasing the 
expression of Bcl-2. EPO can alleviate the apoptosis induced by Dex. In vivo, EPO can lower the percentage of empty 
bone lacunae in SANFH rats.

Conclusion The present study shows that EPO conferred beneficial effects in rats with SANFH by inhibiting STAT1-
caspase 3 signaling, suggesting that EPO may be developed as a treatment for SANFH.
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Introduction
Prolonged and high-dose steroid administration com-
monly leads to the development of steroid-induced avas-
cular necrosis of the femoral head (SANFH), which can 
result in a significant disability rate [1]. Left untreated, 
SANFH can lead to a collapse of bone structure and 
impaired hip joint function, eventually requiring surgi-
cal intervention. This progressive deterioration can have 
significant psychological and financial costs for patients 
and society [2]. An excessive amount of corticosteroids 
can lead to a reduction in the lifespan of osteoclasts, the 
induction of cell death in osteoblasts, endothelial cells, 
and osteocytes, as well as the inhibition of osteoblast 
and osteoclast development [3]. An excessive amount 
of corticosteroids can lead to a reduction in the lifespan 
of osteoclasts, the induction of cell death in osteoblasts, 
endothelial cells, and osteocytes, as well as the inhibition 
of osteoblast and osteoclast development [4]. As a kind 
of skeletal component cell, osteoblasts contribute to the 
pathogenesis of non-traumatic osteonecrosis of the fem-
oral head and bone growth, maintenance, and repair [5]. 
In addition, it is reported that dexamethasone (Dex) can 
induce apoptosis of rat osteoblasts [6, 7].

Signal transducer and activator of transcription (STAT) 
is a family of cytoplasmic proteins that can bind to DNA 
in the regulatory region of target genes. Once activated, 
it can regulate the expression of many apoptosis-related 
genes, cell growth, and immunology [8, 9]. STAT1 has 
two phosphorylation sites, including tyrosine phosphory-
lation, and serine phosphorylation, which can promote 
apoptosis when activated [10, 11]. Caspase-3, one of the 
most essential executors of apoptosis, can spontaneously 
regulate cell life activities. Moreover, its activation (usu-
ally a slow process) will execute the process of cell apop-
tosis [12]. Additionally, prior research has demonstrated 
that the STAT1/caspase3 pathway is crucial for the devel-
oping of SANFH [13, 14].

Erythropoietin (EPO) is the first hematopoietic growth 
factor found and has clinical application value. EPO 
has the effects of anti-inflammation, anti-oxidation, 
anti-apoptosis, and improving local microcirculation 
[15–18]. Further, EPO can contribute to the process of 
hematopoiesis by controlling the expression of STAT1 
and STAT3, according to research by Kirito K et al. 
[19]. Liang C et al. have found that EPO can reduce the 
degree of cerebral ischemia injury by down-regulating 
the expression of p-STAT1 and upregulating the expres-
sion of p-STAT3 and reducing the number of brain cell 
apoptosis [20]. Furthermore, EPO can down-regulate 
Caspase3 and upregulate the expression of vascular 
endothelial growth factor (VEGF) and delay the develop-
ment of prevention of SANFH by reducing the apopto-
sis rate of osteoblasts and osteoclasts [21]. Additionally, 
a composite stent loaded with EPO benefits the repair 

of SANFH by enhancing the osteogenic ability and pro-
moting the expression of angiogenic factors [22]. While 
the therapeutic potential of EPO in treating SANFH has 
been established, its specific impact on dexamethasone-
induced osteoblast apoptosis remains unclear. Therefore, 
this study aimed to investigate the effect of EPO on dexa-
methasone-induced osteoblast apoptosis, both in vitro 
and in an SANFH animal model, and explore the under-
lying mechanisms.

Materials and methods
Ethics statement and experimental animals
All experimental procedures were by the recommenda-
tions in the Guide of the Care and Use of Experimental 
Animals laid down by the National Institutes of Health 
and were approved by the Committee for Animal Experi-
mentation of Wenzhou Medical University.

Reagents and antibodies
Recombinant human EPO (PeproTech, USA) was dis-
solved in 0.1% Bovine serum albumin (BSA) (Sigma, MO, 
USA). Type I collagenase, dexamethasone (Dex), and 
dimethylsulfoxide (DMSO)were purchased from Sigma 
Chemical Co. (MO, USA). Antibodies against STAT1, 
caspase 3, Cleaved-caspase 9, caspase 9, BAX, Bcl-2, 
and GAPDH were obtained from Proteintech (Wuhan, 
China). Goat anti-rabbit and anti-mouse IgG-HRP were 
obtained from Biosharp Life Sciences (Anhui, China), 
and primary antibodies against Cleaved-caspase3 were 
acquired from Cell Signaling Technology (MA, USA). 
Dojindo (Kumamo, Japan) provided the Cell-Count-
ing Kit-8 (CCK-8). Primary antibodies directed against 
P-STAT1, Cytochrome C, and Alexa Fluor®488-labeled 
goat anti-rabbit IgG (H + L) secondary antibodies were 
obtained from Abcam (Cambridge, MA, USA). Meilun-
bio (Dalian, China) provided the annexin V-FITC/prop-
idium iodide (PI) double staining.

Cell culture
The cranium of newborn rats (within 10 days of birth; 
Animal Center of the Chinese Academy of Sciences, 
Shanghai, China) was aseptically removed following 
euthanasia with pentobarbital sodium. The extracted 
skull tissue was soaked in sterile phosphate-buffered 
saline (PBS). Connective tissue was carefully separated, 
and the skull tissue was cut into small pieces measuring 
1 × 1  mm^2. Subsequently, the tissue was washed thrice 
times with PBS and digested for 20  min using a 0.25% 
trypsin-EDTA solution. Subsequently, the tissue was 
washed thrice with PBS and digested for 20 min using a 
0.25% trypsin-EDTA solution. Subsequently, the tissue 
was incubated with 0.2% collagenase in a CO2 incuba-
tor (5%) at 37 °C for 1 h. The digested tissue solution was 
centrifuged at 1000 rpm for 5 min, and the supernatant 
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was discarded. The resulting osteoblasts were suspended 
in DMEM containing 1% penicillin/streptomycin and 
10% FBS. Osteoblasts were identified and passaged at 
80-90% confluency using a 0.25% trypsin-EDTA solution. 
For this study, only 0 to 2 passages of cells were used to 
ensure phenotypic stability.

Cell survival
Osteoblasts were treated with different concentrations of 
EPO (0, 10, 50, 100 IU/ml) for 24 h, and in some groups, 
the cells were co-cultured with Dex (1µM) for 24 h. The 
cell count kit (CCK-8, Dojindo, Japan) was used to mea-
sure the survival rate of osteoblasts according to the 
manufacturer’s instructions. Record each well’s CCK-8 
optic density (OD) at 450 nm using a spectrophotometer.

LDH release assay
The cytotoxicity of Dex was detected by the lactate dehy-
drogenase (LDH) release method. Osteoblasts were 
treated with Dex (1µM) and then incubated at 37 ℃ in a 
5% CO2 incubator with different concentrations of EPO 
(0, 10, 50, 100 IU/ml) for 24 h. According to the manu-
facturer’s instructions, samples of the cell culture media 
from each well were taken, and the LDH activity was 
measured (Solarbio, Beijing, China).

Western blot analysis
Osteoblasts were treated with Dex (1µM) for 24  h. In 
some experiments, cells were co-treated with EPO (50 
IU/ml) or pre-treated with the STAT1 inhibitor fludara-
bine (100µM) for 1 h, followed by the treatment of Dex. 
Both adhering and floating cells were gathered at the end 
of the experiment. Osteoblast proteins were extracted 
using radioimmunoprecipitation (RIPA) buffer contain-
ing 1% phenylmethane sulfonyl fluoride (PMSF) and 1% 
phosphatase inhibitor cocktail (100X). A BCA protein 
assay kit (Beyotime) measured the total protein content. 
After measurement, A total of 30  µg of protein, loaded 
into each well of the gel, had been resolved by 10% 
sodium dodecyl sulfate-polyacrylamide gel electropho-
resis were transferred to room temperature for 30  min 
using a polyvinylidene fluoride membrane (Millipore, 
Billerica, MA, USA). After blocking with 5% non-fat 
milk solution for 60  min, the membrane was incubated 
with the following primary antibodies: anti-P-STAT1, 
anti-STAT1, anti-Cleaved-caspase 3, anti-caspase 3, anti-
Cleaved-caspase 9, anti-caspase 9, anti-Cytochrome C, 
anti-BAX, and anti-Bcl-2. After an overnight stay at 4 °C 
of incubation, membranes were then exposed for two 
hours to the secondary antibody. Proteins were detected 
using ECL detection kits from Beyotime, and their quan-
tities were determined using Image Lab 3.0 (Bio-Rad, 
Hercules, CA, USA).

Immunofluorescence staining
Osteoblasts were cultured on glass slides in a 12-well 
plate and incubated overnight in conditioned media. The 
cells were then treated with Dex (1µM) for 24 h. In some 
groups, osteoblasts were co-treated with EPO (50 IU/ml) 
for an additional 24 h. After treatment, the samples were 
rinsed three times with PBS and fixed with 4% parafor-
maldehyde for 15  min. Permeabilization was performed 
using 0.5% Triton X-100 (SolarBio) for 5  min. To block 
non-specific binding, a 30-minute incubation with 10% 
goat serum at room temperature was carried out. Subse-
quently, cells were incubated overnight at 4 °C with rabbit 
anti-P-STAT1 or rabbit anti-cleaved-caspase 3 antibod-
ies. Following antibody incubation, cells were stained 
with goat anti-rabbit IgG (Alexa Fluor 488) (Abcam). 
After three washes with PBS, all cells were counter-
stained with DAPI (Beyotime) and observed using a 
laser scanning confocal microscope (Olympus). The fold 
increase relative to the baseline level of the control group 
was used to express the results.

Flow cytometric analysis
Apoptotic osteoblasts were assessed using flow cytomet-
ric analysis. Osteoblasts were seeded in 12-well plates 
and stimulated with or without Dex (1µM) for 24  h. In 
certain experiments, osteoblasts were co-cultured with 
EPO (50IU/ml) for 24  h. Following collection, the cells 
were washed twice with PBS and resuspended in 100 µl 
of 1X Annexin V binding buffer. Subsequently, 5  µl of 
FITC-Annexin V was added, and the cells were incubated 
for 15 min at room temperature in the absence of light. 
The apoptosis rate of osteoblasts was then measured 
using flow cytometry (BD Biosciences, USA).

Model of SANFH
A total of 30 mature male Sprague-Dawley (SD) rats 
weighing between 180 and 200  g were acquired from 
the Chinese Academy of Sciences’ central animal house 
(Shanghai, China). All rats were kept in specially made 
cages with full access to food and water in normal cir-
cumstances (temperature 22 ± 2 °C and humidity 50 ± 5%). 
The animals were randomly allocated to three groups 
(n = 10 rats/group) using a random number table as fol-
lows: control group (intramuscular administration of a 
sham injection), Dex group (intramuscular administra-
tion of Dex at 10  mg/kg), and Dex + EPO group (treat-
ment with EPO (500 U/kg/day) after the administration 
of Dex (10 mg/kg)]. Dex and the sham injection with nor-
mal saline (NS) were administered to rats thrice weekly 
for 8 continuous weeks. EPO was administered thrice 
weekly starting 1 week following the initial injection of 
Dex.
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Micro-computed tomography (CT) and quantitative 
analysis
Eight weeks after the last Dex injection, the rat femo-
ral head microstructures were measured by a micro-
CT scan. Before analysis, femur samples were collected 
and stored in 4% paraformaldehyde. Specimens were 
scanned on a Micro-CT system (70 kV, 114 A; micro-CT 
80 scanner; Scanco Medical, Bassersdorf, Switzerland). 
A workstation for analysis was used to rebuild the three-
dimensional (3D) digital pictures. The diagnostic criteria 
for femoral head necrosis are as follows: trabecular bone 
fracture, cystic change, hardened zone of femoral head, 
or flat. The proximal femur’s relative bone mass was cal-
culated using measurements of bone mineral density 
(BMD), trabecular thickness (Tb. Th), trabecular separa-
tion (Tb. Sp), bone volume per tissue volume (BV/TV), 
and trabecular number (Tb. N) [23, 24].

Histological examination
Paraffin sections from each rat were deparaffinized with 
xylene and then rehydrated in a graded ethanol series. 
Following a deionized water wash, the rehydrated sec-
tions were stained for 5  min with 2% hematoxylin and 
1  min with 2% eosin. All sections were assessed under 
the microscope (Olympus, Japan). The presence of empty 
lacunae was assessed across each section. Based on the 
ratio of empty lacunae, as previously stated, osteonecro-
sis was primarily identified [14].

Immunohistochemical analysis
A range of ethanol concentrations was used to hydrate 
paraffin-embedded 5  mm tissue slices after dewax-
ing them with xylene. Sections were then covered with 
endogenous peroxidase blocking agent (ZSGB-BIO, Bei-
jing, China) for 15 min, then immersed in sodium citrate 
solution for antigen repair, then blocked with 10% goat 
blocking serum for 30  min at room temperature, then 
incubated overnight with Cleaved-caspase3 or P-STAT1 
primary antibody (1:200) at 4℃, and then incubated with 
HRP-conjugated secondary antibody and diamino ben-
zene (DAB) (ZSGB-BIO, Beijing, China). Sections were 
kept at 4 °C.

TdT-mediated dUTP nick-end labeling (TUNEL)
Osteoblast apoptosis was assessed using the DeadEndTM 
Fluorometric TUNEL System (Promega, Madison, Wis-
consin, USA). Following the manufacturer’s instructions, 
the cells on the slides were fixed and made permeable 
before being treated with the cell death detection kit’s 
chemicals. DAPI-containing aqueous mounting solution 
was used to stain the nuclei (Santa Cruz, USA). Lastly, 
pictures were taken using an inverted fluorescent micro-
scope (Olympus, Tokyo, Japan).

Statistical analysis
Data are expressed as mean ± SD. Statistical analyses 
employed SPSS 20.0, using one-way analysis of vari-
ance (ANOVA) and Tukey’s test to compare treated 
and untreated cells and tissues. P values < 0.05 were 
significant.

Results
The protective effect of EPO on osteoblasts under Dex 
stimulation
Osteoblasts were treated with Dex (1µM) and various 
concentrations of EPO (10 IU/ml, 50 IU/ml, 100 IU/ml). 
As shown in Fig. 1A and B, EPO (from a concentration 
of 10 IU/ml to 50 IU/ml) shows no significant toxicity 
to osteoblasts. However, there was a statistically signifi-
cant decrease in cell viability at 100 IU/ml. Meanwhile, 
Dex caused apoptosis, drastically decreasing the number 
of still-alive osteoblasts, and EPO can repair this harm in 
a concentration-dependent way. Alternatively, Dex can 
increase LDH release in osteoblasts, which EPO reverses. 
To replicate osteoblast apoptosis, Dex was utilized as a 
model to examine the impact of EPO. Flow cytometry 
results showed that Dex could induce apoptosis in osteo-
blasts, while EPO had significant anti-apoptotic effects, 
and that treatment of cells with EPO alone did not 
increase osteoblasts apoptosis (Fig. 1C and D).

Effects of EPO on STAT1/caspase3 pathway in osteoblasts 
treated with Dex
Western blotting was utilized to assess the expression 
levels of STAT1, P-STAT1, caspase3, cleaved-caspase3, 
caspase9, and cleaved-caspase9 in osteoblasts, aiming to 
investigate the impact of EPO on the STAT1/caspase3 
pathway in these cells. Following 24 h of dexamethasone 
stimulation, there was a significant increase in P-STAT1, 
Cleaved-caspase3, and Cleaved-caspase9 levels. How-
ever, co-treatment of osteoblasts with EPO inhibited 
the dexamethasone-induced upregulation of P-STAT1, 
Cleaved-caspase3, and Cleaved-caspase9 (Fig.  2A and 
B). To further explore the effect of STAT1 on caspase-3 
expression, osteoblasts were stimulated with Dex (1µM) 
for 24  h and co-treated with or without EPO (50 IU/
ml). Immunofluorescence analysis revealed that nuclear 
expression of P-STAT1 was minimal in control osteo-
blasts, while cytoplasmic expression of Cleaved-caspase3 
was also minimal. However, their expression significantly 
increased after Dex induction. Furthermore, EPO inhib-
ited the Dex-induced expression of Cleaved-caspase3 and 
P-STAT1 (Fig.  2C and D), further confirming that EPO 
hinders Dex-induced apoptosis via the STAT1/caspase3 
signaling pathway.
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EPO’s attenuation of osteoblast apoptosis via the 
mitochondrial pathway
In order to determine if the mitochondrial pathway is 
involved in the anti-apoptotic effect caused by EPO, the 
expression changes of the proteins linked to the mito-
chondrial route were examined using Western blotting. 
As seen in Fig. 3, BAX and cytochrome C protein expres-
sion levels dramatically rose following Dex stimulation, 
but this trend was suppressed in the group that received 
EPO. Bcl2’s expression alterations were the antithesis of 
those seen in BAX and cytochrome C.

Effect of EPO and fludarabine on the STAT1/caspase3 
pathway in Dex-treated osteoblasts
To further explore the effect of EPO on the STAT1/cas-
pase3 pathway in osteoblasts, we again treated the cells 
induced by Dex with EPO and Fludarabine, respectively. 
As shown in Fig.  4, both fludarabine and EPO reversed 
the Dex-induced changes in the expression levels of 
P-STAT1, Cleaved-caspase3, Cleaved-caspase9, BAX, 
cytochrome C, and Bcl-2. It was further suggested 
that EPO can regulate the STAT1/caspase3 pathway in 
osteoblasts.

Fig. 1 The protective effect of EPO on osteoblasts under Dex stimulation. CCK8 assay was used to determine the cytotoxicity of osteoblasts treated with 
EPO at different concentrations (10 IU/ml, 50 IU/ml, 100 IU/ml) or co-treated with Dex for 24 h (A). The protective effect of EPO against Dex-induced cell 
damage was observed by LDH release (B). Values represent the averages ± S.D. Significant differences between different groups are indicated as *P < 0.05, 
**P < 0.01, vs. control group; #P < 0.05, ##P < 0.01, vs. Dex alone treatment group, n = 5. The apoptosis of osteoblasts induced by Dex together with or with-
out EPO were assessed through Annexin V-FITC/PI double staining with flow cytometric analysis (C, D). Values represent the averages ± S.D. Significant 
differences between different groups are indicated as *P < 0.05, **P < 0.01, n = 3
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EPO alleviated steroid-induced avascular necrosis of the 
femoral head (SANFH)
In the femoral head, SANFH is characterized by mul-
tiple pyknotic nuclei of osteocytes and thin, sparse bone 
trabeculae with broad, empty lacunae. Here, we defined 
osteonecrosis primarily based on the ratio of empty 
lacunae. Significantly more rats in the Dex group (9 of 
10) developed osteonecrosis compared to only 5 in the 
EPO + Dex group (Fig.  5A). In contrast, no rats in the 
control developed osteonecrosis. The ratio of empty 
lacunae was significantly higher in the Dex group when 
compared to the controls and significantly lower in the 
EPO + Dex group when compared to the Dex group, indi-
cating that EPO may suppress the formation of SANFH 
in vivo (Fig.  5C). Furthermore, EPO treatment signifi-
cantly reduced the number of TUNEL-positive cells in 
SANFH (Fig. 5B, D).

EPO inhibited the expression of P-STAT1 and cleaved-
caspase3 in steroid-induced avascular necrosis of the 
femoral head (SANFH)
The immunohistochemistry test was used to measure 
the amounts of Cleaved-caspase3 and P-STAT1 protein 
expression to examine EPO’s impact on those proteins in 

vivo. In the control group, there was hardly any positive 
expression at all. The Dex group, however, had a more 
significant percentage of Cleaved-caspase-3, P-STAT1-
positive cells, and EPO might counteract the effects of 
DEX mentioned above (Fig. 6).

EPO prevented bone loss in the SANFH model of rats
As shown in Fig. 7A, the control group’s subchondral tra-
becular bone had a normal distribution and was intact, 
with little osteonecrosis, as demonstrated by the Micro-
CT. Images from the Dex group revealed a significantly 
damaged subchondral trabecular structure, an erratic 
low-density region, and a substantial loss of bone mass. 
However, EPO therapy can lessen femoral head necro-
sis and increase femoral head bone mass, indicating that 
EPO may cure SANFH. After the EPO treatment, the 
microstructural parameters such as bone mineral den-
sity (BMD), trabecular thickness (Tb. Th), trabecular 
separation (Tb. Sp), bone volume per tissue volume (BV/
TV), and trabecular number (Tb. N) were significantly 
increased. Trabecular separation (Tb. Sp) was decreased 
when compared with the Dex group (Fig. 7B). In conclu-
sion, dexamethasone-induced bone loss can be consider-
ably halted by EPO.

Fig. 2 Effects of EPO on STAT1/caspase3 pathway in osteoblasts treated with Dex. The protein expression of P-STAT1, STAT1, cleaved-caspase3, caspase3, 
cleaved-caspase9 and caspase9 were measured by western blot (A) and quantification of the resulting bands (B). Values represent the averages ± S.D. 
Significant differences between different groups are indicated as *P < 0.05, **P < 0.01, n = 3. Osteoblasts were stimulated with Dex or co-cultured with EPO 
for 24 h. Typical P-STAT1 (C) and cleaved caspase-3 (D) were detected by immunofluorescence combined with DAPI staining for nuclei (scale bar: 10 μm). 
Values represent the averages ± S.D. Significant differences between different groups are indicated as *P < 0.05, **P < 0.01, n = 3
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Discussion
In this study, we effectively induced SANFH in an experi-
mental rat model through intramuscular administra-
tion of Dex, which led to prominent empty lacunae and 
extensive necrosis of bone marrow cells, as observed in 
H&E-stained slides. However, co-administration of EPO 
successfully attenuated the progression of these patho-
logical changes, resulting in significant improvements in 
histological outcomes.

Acute spinal cord injury, viral infections, autoim-
mune disorders, shock, and other illnesses are all com-
monly treated with glucocorticoids (GCs), which also 
have potent anti-inflammatory and immunosuppressive 

properties. The extensive use of GCs will promote the 
induction of SANFH; joint replacement is usually the 
final treatment, but new pharmacological measures and 
the use of growth and differentiation factors to prevent 
and treat this disease have recently received widespread 
attention [25, 26]. Early research revealed that the mech-
anism of SANFH could be connected to defective cell 
differentiation, osteoporosis, microvascular coagulation, 
apoptosis, and arterial vascular injury. however apoptosis 
is currently thought to be a more common process [27, 
28]. Cumulative evidence suggests that Dex and other 
glucocorticoids (GCs) contribute to the pathogenesis 
and development of nontraumatic osteonecrosis [29]. 

Fig. 3 EPO’s attenuation of osteoblast apoptosis via the mitochondrial pathway. The protein expressions of Bcl-2, BAX and cytochrome c in osteoblasts 
treated above were detected by Western blotting (A) and quantification of the resulting bands (B). Values represent the averages ± S.D. Significant differ-
ences between different groups are indicated as *P < 0.05, **P < 0.01, n = 3
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Apoptosis and osteoblast decrease are crucial for produc-
ing SANFH by glucocorticoids via glucocorticoid recep-
tor activation [30, 31]. In a previous study, we provided 
direct evidence that the activation of STAT1-caspase 3 
signaling during GC administration resulted in osteo-
cyte apoptosis, which in turn contributed to the devel-
opment of SANFH [14]. It has recently been shown that 
STAT1, a member of the STAT protein family, acts as a 

cytoplasmic transcription factor and activates several sig-
nal transduction pathways involved in various physiologi-
cal and pathological responses. More proof indicates that 
STAT1 can cause apoptosis and obstruct bone fracture 
repair [32, 33]. Activated caspase 3 is a downstream tar-
get of STAT1 and is involved in several cellular processes, 
including the beginning of apoptosis, which results in 
the breakdown of cellular components [34]. Significant 

Fig. 4 Effect of EPO and fludarabine on the STAT1/caspase3 pathway in Dex-treated osteoblasts. As described above, the osteoblasts were treated 
with Dex, EPO, or Fludarabine. The protein expression of P-STAT1, cleaved-caspase3, cleaved-caspase9, Bcl-2, BAX and cytochrome c were measured by 
western blot (A) and quantification of the resulting bands (B, C). Values represent the averages ± S.D. Significant differences between different groups are 
indicated as *P < 0.05, **P < 0.01, n = 3
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Fig. 5 EPO alleviated steroid-induced avascular necrosis of the femoral head (SANFH). The control group’s femoral head included no empty lacunae. 
While there were few empty bone lacunae in the Dex + EPO group, the Dex group displayed a significant number of empty bone lacunae and necrotic 
bone marrow cells (A, C). Representative images of TUNEL staining of the sections (scale bar: 100 μm and 50 μm) (B) and quantitative analysis of TUNEL 
staining (D). Values represent the averages ± S.D. Significant differences between different groups are indicated as *P < 0.05, **P < 0.01, n = 5
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evidence has shown that STAT1 is crucial for controlling 
mitochondria-mediated apoptosis [13, 35]. In particu-
lar, the Bcl-2-BAX complex separates in response to the 
stimulation of apoptotic agents in osteocytes, causing a 
drop in Bcl-2 and a rise in BAX levels [36]. These pro-
teins regulate mitochondrial membrane permeabiliza-
tion, leading to the release of cytochrome C [37]. Caspase 
9 is then activated, and Caspase 3 must be activated later 

[38]. In this study, Dex induced the progress of SANFH, 
as characterized by the increased expression of P-STAT1, 
BAX, cytochrome C, cleaved-caspase 9, and cleaved-cas-
pase 3 along with decreased expression of Bcl-2. These 
results were confirmed by both histological examinations 
of femoral heads and immunofluorescence staining of 
osteoblasts, consistent with previous studies [13, 39].

Fig. 6 EPO inhibited the expression of P-STAT1 and cleaved-caspase3 in steroid-induced avascular necrosis of the femoral head (SANFH). Activation of 
caspase3 and STAT1 is involved in apoptotic cell death. Positive expressions were found in the Dex groups (A). The percentages of P-STAT1 and Cleaved-
caspase3 positive cells in each section were quantified by Image J software (B). Values represent the averages ± S.D. Significant differences between 
different groups are indicated as *P < 0.05, **P < 0.01, n = 5
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Fig. 7 EPO prevented bone loss in the SANFH model of rats. In the various groups, the femoral head’s three plane images—coronal section (COR), sagittal 
section (SAG), and transverse section (TRA)—were rebuilt (A). Quantitative analysis of micro-CT results. Bone mineral density (BMD), trabecular thickness 
(Tb.Th), trabecular separation (Tb.Sp), bone volume per tissue volume (BV/TV), and trabecular number (Tb.N)were analyzed in the different groups (B). 
Values represent the averages ± S.D. Significant differences between different groups are indicated as *P < 0.05, **P < 0.01, n = 10
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The pleiotropic cytokine EPO is crucial for enhancing 
erythropoiesis. A variety of organs generates EPO and 
its receptor (EPO-R), and it is now understood that EPO 
serves physiological purposes other than erythrocyte 
production [40, 41]. Such as stimulating angiogenesis 
and cell regeneration, anti-inflammatory, anti-oxidation, 
anti-apoptosis and improving local microcirculation 
effects [42, 43]. As research on EPO and its receptors 
continues to expand, the application of their effects in 
clinical practice is increasingly evident. For example, 
its function of promoting erythropoiesis is used to treat 
various anemia and tumors [44]; its anti-inflammatory, 
anti-apoptosis, and other functions are used to treat the 
ischemia-reperfusion injury of myocardium [45]. It was 
reported that EPO can exert an anti-apoptotic effect by 
targeting and regulating STAT1 [20]. In the application 
of SANFH, EPO can effectively slow down the changes 
in bone morphology during SANFH and prevent the 
destruction of bone tissue structure, thus delaying or 
preventing SANFH [46]. By reducing the apoptosis rate 
of osteoblasts and osteoclasts, EPO can downregulate 
Caspase3 and upregulate the expression level of VEGF, 
thereby delaying the progression of the SANFH preven-
tion process [21]. The precise mechanism by which EPO 

slows SANFH is yet unclear. In this work, we assessed the 
function of EPO in Dex-induced osteoblast apoptosis and 
its potential mechanism in vitro and in vivo.

In this research, we first examined the possible toxic 
concentration of EPO on osteoblasts using the CCK-8 
assay. EPO dramatically reduced Dex-induced cell death, 
as shown by the LDH release test, in a concentration-
dependent manner. Further confirmation of Dex-induced 
osteoblast cell death via apoptosis came from flow cyto-
metric analysis, which showed that EPO could prevent 
Dex-induced apoptosis. Furthermore, we found that the 
expression levels of Cytochrome c and BAX and the pro-
tein production of Bc1-2 were significantly increased, 
which could be reversed by EPO-cotreated cells, suggest-
ing that EPO acts as anti-apoptosis through the mito-
chondrial pathway.

STAT1, the first identified STAT family member, is 
essential for the regulation of caspase-3, and it was 
recently shown that its expression is significantly reduced 
in STAT1-knockout cells and is resistant to apopto-
sis, suggesting that STAT1 is involved in apoptosis [47]. 
Meanwhile, once STAT1 is activated, it can lead to 
upregulation of caspase3 expression, further promoting 
apoptosis [48, 49]. It has been reported that silencing or 

Fig. 8 Schematic illustration of EPO protective effect against SANFH

 



Page 13 of 15Cai et al. BMC Musculoskeletal Disorders          (2023) 24:894 

inhibiting STAT1 was shown to reduce apoptosis in the 
action of stimuli, all accompanied by altered caspase-3 
expression levels, further indicating the close relation-
ship between STAT1 and caspase3 in apoptosis [50, 51]. 
Moreover, it has also demonstrated that STAT1 and cas-
pase3 are closely related to the development of SANFH 
[13, 14]. In this study, we found by Western imprinting 
and immunofluorescence assays that EPO inhibited Dex-
induced apoptosis through the STAT1/caspase3 signaling 
pathway and that EPO may have potential therapeutic 
potential in treating SANFH and act in synergy with the 
effects of the STAT1 inhibitor Fludarabine. Furthermore, 
this effect may be achieved by inhibiting of STAT1 activ-
ity to mediate mitochondrial apoptosis. Immunohisto-
chemistry testing revealed that EPO impacted caspase3 
and STAT1 activation in vivo.

To comprehensively evaluate the protective function 
of EPO in vivo, we developed a SANFH animal model. 
In the Dex group, many rats exhibited hollow femoral 
heads, indicating significant bone necrosis and compro-
mised blood flow, as observed through HE staining. Con-
versely, empty bone notch sockets were notably lower 
in the EPO group. Micro-CT results showed a substan-
tially reduced SANFH severity in the EPO-treated group, 
with less severe trabecular destruction in the subchon-
dral bone. Furthermore, EPO treatment led to improved 
microstructural parameters, including increased bone 
mineral density (BMD), trabecular number (Tb. N), and 
bone volume fraction (BV/TV), as well as decreased tra-
becular separation (Tb. Sp), compared to the Dex group. 
These findings suggest that EPO can potentially ame-
liorate SANFH in vivo by mitigating bone necrosis and 
preserving the structural integrity of the femoral head. 
While our study focused on an experimental animal 
model, it is essential to consider the clinical implications 
of these observations in human patients.

In clinical practice, SANFH often leads to debilitating 
symptoms and functional impairments in affected indi-
viduals. Current treatment options are limited, empha-
sizing the need for novel therapeutic approaches. Our 
study is promising preclinical outcomes of EPO warrant 
further investigation to ascertain its efficacy in human 
clinical trials. Several studies have already explored the 
clinical utility of EPO in related conditions [40, 41].

There are a few limitations to this study that should be 
mentioned. First of all, the sample size was somewhat 
tiny, and rats are known to exhibit unknown variability. 
Second, the mechanism of EPO in SANFH needs fur-
ther investigation, such as whether EPO plays a role at 
the time of Dex interaction with its receptor and during 
intranuclear transfer following glucocorticoid receptor 
stimulation. Finally, whether data from Sprague-Daw-
ley rats accurately reflect molecular changes in human 

SANFH is still being determined, though all target genes 
are evolutionarily conserved.

Conclusion
Taken together, the data presented here suggest that 
EPO significantly inhibited the development of SANFH 
via inhibition of the STAT1-caspase 3 signaling pathway 
(Fig. 8). EPO is a therapeutic option for the management 
of SANFH.
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