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Abstract 

Background The aim of this study was examining the accuracy of accelerometer-based portable navigation systems 
(HipAlign) when measuring leg length changes using two-dimensional (2D) and three-dimensional (3D) methods.

Methods Inclusion criteria were patients ≥ 20 years old with symptomatic hip disease who underwent primary 
total hip arthroplasty (THA) in the supine position using HipAlign between June 2019 and April 2020. The exclusion 
criteria were patients who underwent THA via a posterior approach. We examined correlations between the leg 
length change measurement with HipAlign and either 2D or 3D measurement. We performed a multivariate analysis 
to determine which factors may have influenced the absolute error results.

Results This study included 34 patients. The absolute error in leg length change between the HipAlign and 3D meas-
urement (4.0 mm) was greater than the HipAlign and 2D measurement (1.7 mm). There were positive correlations 
between leg length change with HipAlign and 2D and 3D measurements. Male patients had larger errors with 2D 
measurement. No significant factors were identified for 3D measurement.

Conclusion HipAlign provided acceptable measurement accuracy for leg length changes.
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Background
Leg length discrepancy is a common concern following 
total hip arthroplasty (THA). Furthermore, it remains 
one of the most common reasons for litigation against 
the orthopedic community in the US [1]. To equalize leg 
length, surgeons perform preoperative planning using 
radiological templates or intraoperative measurement 

methods, including calipers, radiographs, and navigation 
systems [2–6].

Navigation systems have been used for accurate cup 
placement to reduce complications from cup malposi-
tioning, including impingement and dislocation [7–9]. 
Using navigation systems, surgeons can also detect a 
change in leg length. Computed tomography (CT)-based 
navigation can be used; however, the associated high 
cost and radiation exposure are problematic [10]. Large 
console image-free navigation does not require preop-
erative CT but is expensive [11]. In recent years, port-
able navigation systems have been developed, which are 
lower in cost. The accuracy of acetabular cup placement 
using a portable navigation system (HipAlign, OrthAlign, 
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Aliso Viejo, CA, USA) has been studied. Previous stud-
ies demonstrated improved accuracy of cup inclination 
and anteversion using navigation systems [12–16]. Only 
two studies have demonstrated the accuracy of leg length 
change measurements using HipAlign [17, 18]. These 
studies examined measurement accuracy using 2D radio-
graphs. To the best of our knowledge, there are no studies 
that examine measurement accuracy using 3D evalua-
tion. The purpose of this study was to examine the accu-
racy of leg length change measurements by the portable 
navigation system (HipAlign) using 3D evaluation. Com-
parisons were also made between the 2D and 3D evalua-
tions. To ensure accurate 2D and 3D measurements, we 
previously performed a reliability study using the intra-
class and inter-class correlation coefficients [19, 20]. The 
intra-class and inter-class correlation coefficients for the 
2D measurements were 0.98 and 0.92, respectively. The 
intra-class and inter-class correlation coefficients for the 
3D measurements were 0.97 and 0.94, respectively [19].

We hypothesized that 2D evaluation would show better 
accuracy for leg length change using HipAlign.

Materials and methods
Patients
Inclusion criteria were patients ≥ 20 years old with symp-
tomatic hip disease who underwent primary THA in the 
supine position under general anesthesia using HipAlign 
between June 2019 and April 2020. The exclusion crite-
ria were patients who underwent THA via a posterior 
approach, such as hips with a high degree of dislocation 
(Crowe groups 3 and 4) [21] requiring subtrochanteric 
osteotomy and revision hip arthroplasty.

All hips were implanted with cementless components 
by the same surgeon (MH). The hips were exposed via 
a direct anterior approach (DAA) on a traction table or 
with a modified Watson-Jones approach (anterolateral 
supine approach: ALS), with the patient in a supine posi-
tion. Twenty-six patients were treated using DAA, and 
the remaining eight patients were treated using ALS. 
ALS was selected in cases with severe deformity or exces-
sive anteversion of the femoral neck. Two pins, 4.5 mm 
in diameter, were placed at the iliac crest, and the navi-
gation unit was fixed to these pins. The location of the 
bilateral anterior superior iliac spine (ASIS) and pubic 
symphysis were recorded. HipAlign can measure the leg 
length change using a femoral registration screw, probe, 
laser module, and thigh plate for a vertical laser target 
(Fig. 1). Prior to neck osteotomy, a small reference screw 
was placed in the proximal femur for femoral registra-
tion. However, it can be difficult to fix this screw to the 
proximal femur in patients with DAA or ALS. A hole 
was made using a 2.0  mm diameter Kirschner wire at 
the proximal femur, and a registration probe was placed 

in this hole (Fig. 2). For intraoperative leg length meas-
urement, the laser module was attached to the bracket of 
the navigation unit and the thigh plate was placed on the 
distal anterior thigh. A vertical laser target was attached 
to the thigh plate. The limb was positioned in the neu-
tral reference position, and the laser projection on the 
vertical target was traced using a marking pen [18]. The 
surgeon realigned the vertical laser target to the laser 
projection and registered the marker (Fig. 1).

Leg length change was defined as the change in length 
measured before the neck cut and after the reduction 
with the same six hip directions (flexion/extension, 
abduction/adduction, and external rotation/internal 
rotation). Surgeons can detect 2D leg length changes 

Fig. 1 Sensor with monitor and probe of HipAlign were 
attached to the pelvis. Laser projection aligned with the marking 
on the vertical target

Fig. 2 A registration probe was placed in the hole at the proximal 
femur
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on the monitor (Fig.  3). A G7 PPS Finned BoneMaster 
Limited Hole Shell (Zimmer Biomet, Warsaw, IN, USA) 
was used. Regarding stems, Taperloc Microplasty stems 
(Zimmer Biomet, Warsaw, IN) or AMIStem (Medacta, 
Castel San Pietro, Switzerland) were used. CT was per-
formed preoperatively from the pelvis to knee joint. Neck 
length was determined according to preoperative plan-
ning using 3D software (ZedHip, LEXI Co. Ltd, Tokyo, 
Japan). If instability after trial reduction was found, the 
surgeons selected a longer neck than was decided in pre-
operative planning.

Evaluation
The anteroposterior radiographs of the hips were per-
formed in the supine position preoperatively and postop-
eratively. The leg length discrepancy on 2D measurement 
was measured as the distance between the horizontal line 
connecting the bilateral tear drops and the medial apex of 
the lesser trochanter. Leg length change on 2D measure-
ment was defined as the difference between the preoper-
ative and postoperative leg length. The leg length change 
on 2D measurement was subtracted from the leg length 
discrepancy pre-and -post-surgery. CT was performed 
from the pelvis to the knee preoperatively and 2  weeks 
postoperatively. The ZedHip was used to examine pre- 
and postoperative leg length discrepancies and com-
pared with 3D measurement, which was assessed as the 

distance from the ASIS to the intercondylar fossa of the 
femur. Pre- and 2 weeks postoperative CT digital images 
were superimposed using the ZedHip. The leg length 
change measured by ZedHip was subtracted from the leg 
length discrepancy pre-and -post-surgery. To evaluate 
the accuracy of HipAlign based on 2D and 3D measure-
ments, intraoperative leg length change was compared 
with 2D and 3D measurements [19]. Hip measurements 
with absolute error values within 3, 5, and 10 mm were 
determined using 2D and 3D measurements. All patients 
were followed up post-THA and examined for potential 
complications.

Statistical analysis
Power analysis was performed, and a minimum of 27 
patients were required to provide appropriate power 
(β = 0.80) at a significance level of 0.05. The absolute 
errors in leg length change were compared between 
the 2D and 3D measurements using the Wilcoxon 
signed-rank test. Correlation analyses were performed 
using Spearman’s rank correlation test. The correla-
tions between leg length change measured with HipA-
lign and 2D or 3D measurements were evaluated. The 
correlation between leg length change measured using 
2D and 3D measurements were determined. Multi-
variate analysis was performed to determine the fac-
tors affecting absolute errors, including age (≥ 65 years 
and < 65  years), sex, BMI (≥ 25  kg/m2 and < 25  kg/m2), 
approach, and Crowe group. P-values of < 0.05 were 
considered statistically significant. Data were statisti-
cally analyzed using the EZR software program, version 
1.61 (Saitama Medical Center, Jichi Medical University, 
Saitama, Japan) [22].

Results
This study included 34 patients. There were 3 men 
and 31 women, with a mean age of 66.9  years (range, 
48–82  years) and mean body mass index (BMI) of 
23.4  kg/m2 (range, 18.9–28.2  kg/m2). The preoperative 
diagnosis for all patients was osteoarthritis of the hip. 
Thirty hips were classified as Crowe group 1 [21]. Four 
hips were classified as Crowe group 2 [21].

The absolute error for leg length change between 
the HipAlign measurement and 2D measurement was 
1.71 ± 1.92  mm (range, 0–5  mm). These errors were 
within 3 mm for 79% of patients (27 of 34 patients), and 
the remaining patients had errors within 5 mm.

The absolute error in leg length change between 
HipAlign measurement and 3D measurement was 
4.03 ± 3.51 mm (range, 0.4–17.7 mm). These errors were 
within 3  mm for 53% of patients (18 patients), within 
5 mm for 82% of patients (28 patients), and within 10 mm 
for 94% of patients (32 patients).Fig. 3 Monitor of HipAlign showing 4 mm longer
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Fig. 4 Correlations between HipAlign and 2D measurement (A) and 3D measurement (B). Correlation between 2 and 3D measurements (C)
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The errors in leg length change for the 3D measure-
ments were greater than those for the 2D measurements 
(p < 0.01). Positive correlations of leg length changes 
were found between HipAlign and 2D (r = 0.84, p < 0.01, 
Fig. 4A) and 3D measurements (r = 0.56, p < 0.01, Fig. 4B). 
Comparing the 2D and 3D measurements, there was 
a positive correlation with leg length change (r = 0.52, 
p < 0.01, Fig. 4C). Multivariate analysis demonstrated that 
sex was a significant contributing factor to 2D measure-
ment errors (p < 0.01). Male patients demonstrated larger 
2D errors. There were no significant factors for the 3D 
measurements (Table 1).

There were no early postoperative complications, 
including fracture, infection, and nerve injury.

Discussion
The most significant finding of this study was that the 
absolute error for leg length change was greater for 
HipAlign evaluated with 3D measurement than 2D 
measurement. This confirmed our hypothesis that 2D 
measurement is a more accurate evaluation of leg length 
change when using HipAlign. An explanation for the 
smaller error in 2D measurement than that in 3D meas-
urement is that HipAlign shows 2D leg length change. 
There was a positive correlation for leg length change 
between 2 and 3D measurements.

An acceptable measure of leg length discrepancy has 
yet to be defined. However, several studies have shown 
that a leg length discrepancy of up to 10 mm is well tol-
erated by most patients [4, 23]. Some patients, especially 
young patients, have complained of minor discrepancies.

Table  2 shows the results of previous reports on the 
accuracy of leg length measurements using navigation 

systems. Ogawa et  al. [5] reported an absolute error of 
2.4 mm with CT-based navigation. Absolute errors with 
portable navigation (HipAlign) were reported to be 2.3 
and 3.1  mm in studies by Tanino et  al. [18] and Anjiki 
et al. [17], respectively. The 2D errors within 5 mm were 
81% and 100% in the present study and the study by 
Anjiki et  al. [17], respectively. The accuracy of the leg 
length measurement in the present study was equivalent 
to that of previous studies, including large console navi-
gation systems.

A small reference screw is often difficult to fix to the 
proximal femur in patients with DAA or ALS. In our 
experience, the screw was often loose. The screw was not 
required if we could register the same point before the 
neck cut and after implantation. We utilized an easy tech-
nique whereby we created a small hole in the proximal 
femur and performed registration at this hole. Assessing 
intraoperative leg length change using navigation is based 
on the measurement of the distance between fixed points 
on the pelvis and the femur. However, these techniques 
are unreliable as they require accurate femur reposition-
ing. Five degrees of abduction/adduction malpositioning 
may lead to leg length errors of up to 8 mm [24]. Using a 
laser enables surgeons to reposition the femur in HipAl-
ign accurately.

Male patients in our study had larger errors when 2D 
measurements were used. As men generally have larger 
muscle volumes than women, this could explain the 
increase in error value; placing the registration probe on 
the hole was sometimes difficult without retracting the 
gluteus medius, gluteus minimus, and tensor fascia latae 
muscle in ALS and tensor fascia latae muscle and rectus 
femoris in DAA. Errors in leg length measurement can 
occur with 2D measurements when the hips have flexion 
contracture or are in the pelvic position. The 2D meas-
urement was defined as the distance between the hori-
zontal line connecting bilateral tear drops and the medial 
apex of the lesser trochanter. The 3D measurement was 
defined as the distance from the ASIS to the intercondy-
lar fossa of the femur [19]. The importance of 3D meas-
urement was reported in femoral offset [25]; however, 
the usefulness of 3D measurement in leg length change 
was not confirmed by comparison with 2D measurement 
[19]. Regarding leg length change, 2D evaluation alone 

Table 1 Multivariate analyses of errors

Factor 2D 3D

Age 0.88 0.66

Sex  < 0.01 0.26

Body mass index 0.53 0.13

Approach 0.3 0.31

Crowe group 0.65 0.61

Table 2 Accuracy of leg length measurement using navigation systems

Authors Murphy et al. 
[2]

Kitada et al. 
[3]

Ogawa et al. 
[5]

Renkawitz 
et al. [6]

Anjiki et al. 
[17]

Tanino et al. 
[18]

Present study 
(2D)

Present study 
(3D)

Navigation CT-based Image free Portable

Error (mm)  − 0.5 ± 1.8 1.3 ± 4.1 0.35  − 0.14 ± 3.6 0.8 ± 3.4  − 0.12 ± 2.6 1.5 ± 5.2

Absolute error 
(mm)

2.4 ± 1.7 3.1 ± 2.5 2.3 ± 2.6 1.7 ± 1.9 4.0 ± 3.5



Page 6 of 7Hasegawa et al. BMC Musculoskeletal Disorders          (2023) 24:872 

is useful if accurate radiographs can be obtained [19]. 
Although 3D measurement of femoral offset is clinically 
important, 3D measurement of leg length change did not 
have a clinically important role.

The limitations of this study include the small sample 
size, the use of a new registration method, no assessment 
of the offset, and the use of CT. The offset is an impor-
tant factor requiring intraoperative assessment, however, 
HipAlign cannot determine the offset intraoperatively. 
CT has several drawbacks, including radiation exposure 
and cost [26]. Recently, low-dose CT has been used for 
preoperative planning and postoperative assessment of 
THA [27].

Conclusions
The absolute error in leg length change for the HipAlign 
and 3D measurement (4.03  mm) was greater than the 
HipAlign and 2D measurement (1.71 mm). Positive cor-
relations between leg length changes were found between 
HipAlign and 2D and 3D measurements. HipAlign used 
in the supine position provided acceptable accuracy for 
leg length change measurement. 3D measurement is not 
recommended for the evaluation of leg length change 
after THA using HipAlign.

Abbreviations
2D  Two-dimensional
3D  Three-dimensional
THA  Total hip arthroplasty
CT  Computed tomography
BMI  Body mass index
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