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Abstract
Purpose  To develop and evaluate the performance of radiomics-based computed tomography (CT) combined with 
machine learning algorithms in detecting occult vertebral fractures (OVFs).

Materials and methods  128 vertebrae including 64 with OVF confirmed by magnetic resonance imaging and 64 
corresponding control vertebrae from 57 patients who underwent chest/abdominal CT scans, were included. The 
CT radiomics features on mid-axial and mid-sagittal plane of each vertebra were extracted. The fractured and normal 
vertebrae were randomly divided into training set and validation set at a ratio of 8:2. Pearson correlation analyses and 
least absolute shrinkage and selection operator were used for selecting sagittal and axial features, respectively. Three 
machine-learning algorithms were used to construct the radiomics models based on the residual features. Receiver 
operating characteristic (ROC) analysis was used to verify the performance of model.

Results  For mid-axial CT imaging, 6 radiomics parameters were obtained and used for building the models. The 
logistic regression (LR) algorithm showed the best performance with area under the ROC curves (AUC) of training and 
validation sets of 0.682 and 0.775. For mid-sagittal CT imaging, 5 parameters were selected, and LR algorithms showed 
the best performance with AUC of training and validation sets of 0.832 and 0.882. The LR model based on sagittal CT 
yielded the best performance, with an accuracy of 0.846, sensitivity of 0.846, and specificity of 0.846.

Conclusion  Machine learning based on CT radiomics features allows for the detection of OVFs, especially the LR 
model based on the radiomics of sagittal imaging, which indicates it is promising to further combine with deep 
learning to achieve automatic recognition of OVFs to reduce the associated secondary injury.
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Introduction
Occult vertebral fractures (OVFs) are fractures with a 
small degree of trabecular disruption, where the intact 
cortical bone overlying the vertebral collapse makes it 
difficult to directly visualize on X-ray and computed 
tomography (CT) scans [1]. Based on the Genant semi-
quantitative system, which classifies the degree of verte-
bral collapse into grades 0, 1, 2, 3, and 4, the change in 
OVF vertebrae is too small to be easily visualized, and 
is therefore graded = 0 [2]. OVFs may be caused by low- 
energy trauma in elderly patients suffering from osteopo-
rosis, or may occur in the vertebrae of patients subjected 
to high-energy trauma and present as chest, abdomen, 
or back pain [3]. Given the advantages of CT in visual-
izing organs, soft tissue, and bones, chest/abdomen CT 
is considered a routine diagnostic modality for evaluating 
the etiology of chest and/or abdominal pain, especially in 
patients without a history of trauma [4, 5]. Several stud-
ies have reported a high rate of OVF detection on CT, 
reaching up to 30% [6]. Additionally, 79% of the OVFs 
observed could potentially collapse and develop into typ-
ical non-occult fractures within 3 months [7], which may 
lead to a variety of complications, such as peripheral soft 
tissue injury and spinal cord compression [7]. Therefore, 
it is necessary to identify potential OVFs for early disease 
management [1].

Magnetic resonance imaging (MRI), particularly fat 
suppressed sequence such as short tau inversion recovery 
(STIR) sequence, has become the gold standard for the 
diagnosing of occult fractures because of its high sensi-
tivity in detecting bone marrow edema associated with 
occult fracture, which is inconspicuous on conventional 
CT [8]. MRI, however, is typically not considered the 
first line of investigation for patients without a history 
of trauma or any specific symptoms. Additionally, MRI 
might not be readily available in primary medical institu-
tions especially in developing countries, due to its high 
cost and the need for specialized staff and facilities. Dual-
energy CT scans show good diagnostic performance for 
assessing traumatic bone marrow damage through the 
visual and quantitative analysis of material decomposi-
tion technology. This method, however, requires special-
ized equipment and specific technical expertise, limiting 
its clinical use [9].

Radiomics can transform conventional medical images 
into mineable high-dimensional data, permitting the 
extraction of non-visible features, and subsequent anal-
ysis and modeling for noninvasive phenotyping and 
outcome prediction [10]. Radiomics and texture analy-
sis (TA) have been widely used in the musculoskeletal 
system. Zaworski et al. [11] found that MRI-based TA 
of trabecular bone could evaluate vertebral bone fragil-
ity while discriminating between osteoporosis patients 
with or without a history of fracture. Sollmann et al. [12] 

reported that some texture features, based on CT of the 
vertebral body, showed a strong correlation with finite 
element analysis results, indicating that radiomics param-
eters can be used to evaluate the vertebral load. Tabari et 
al. [13] demonstrated that some texture parameters of 
vertebral trabeculae on lumbar spine CT in patients with 
anorexia nervosa were different than those in the healthy 
control group, suggesting that TA might provide infor-
mation about bone health. These results indicated that 
radiomics can help predict poor bone health, although its 
utility for identifying OVFs remains unknown. Addition-
ally, machine learning algorithms, such as support vector 
machine (SVM), logistic regression (LR), and Bayes, are 
suited for discovering predictive patterns from complex 
and large amounts of data, so they have been widely used 
in radiomics [14].

We hypothesized that although the changes in the 
height and shape of vertebrae with OVFs are insufficient 
to be visualized on CT images alone, subtle bone struc-
ture interruptions and bone marrow edema can actually 
be distinguished using CT radiomics features. The objec-
tives of the present study were: (1) to evaluate the diag-
nostic performance of vertebral radiomics on axial and 
sagittal slices from chest/abdomen CT combined with 
machine learning algorithms to identify vertebrae with 
OVFs; and (2) to identify the best imaging position and 
machine learning algorithm for the diagnosis of OVFs 
using radiomic features.

Materials and methods
Study participants
This retrospective study was approved by our institu-
tional review board, the need for written informed con-
sent was waived. We searched our institutional picture 
archiving and communication system, and identified 314 
patients with fresh vertebral fractures between January 
2018 and August 2021. Inclusion criteria were as follows. 
(1)Patient with fresh vertebral fractures with bone mar-
row edema confirmed by thoracic/lumbar MRI. Bone 
marrow edema was identified as significantly high signal 
on STIR and T2WI sequences and low signal on T1WI; 
(2)with chest/abdominal CT scans within 48 h of the MR 
examination; (3) Patients with at least one fresh fracture 
vertebra recognized as OVFs ,that is the fractural verte-
bral without visual reduction in height (Genant grade = 0) 
on initial CT imaging [12].

The spine was divided into 3 regions: thoracic spine (T, 
Th1–Th10); thoracic-lumbar junction (TLJ, Th11–L1); 
and lumbar spine (L, L2–L5) [15]. For each OVF verte-
bra that was included, an adjacent normal vertebra from 
the same region was selected for the control group. The 
exclusion criteria were: (1) patient with diffuse metabolic 
bone disease, malignant tumors, and spinal infections; (2) 
no normal vertebrae adjacent to the OVF vertebra(e) in 
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the same region; (3) Schmorl’s nodes in the target verte-
brae; and (4) significant artefact affecting scan interpre-
tation. 64 OVF vertebrae and 64 corresponding adjacent 
normal vertebrae in 57 patients deemed eligible for study 
inclusion (Fig. 1).

Data acquisition and postprocessing
The images were acquired with Philips Brilliance iCT 256 
slice and Brilliance 16 Slice CT scanners. The scanner 
collimators 16 × 0.75  mm and 256 × 0.625  mm, respec-
tively, peak kilovoltage was 120KV, and the tube cur-
rent time product was 90–170 mAs. The slice thickness 
of the original axial images was 1.0  mm, with a matrix 

of 512 × 512  mm. No intravenous contrast material was 
administered. For each individual, the thin-slice data was 
imported into a workstation (IntelliSpace Portal work-
station 9.0, Philips Healthcare) for multi-planar recon-
struction. Using the axial and sagittal planes as reference, 
single images from the mid-sagittal and mid-axial planes 
of the target vertebrae with a slice thickness of 1.0  mm 
were saved in Digital Imaging and Communications in 
Medicine (DICOM) format.

The results of the vertebral body evaluation in all CT 
reports were recorded. The initial reports were written by 
a junior radiologist after reading the CT images. Then, a 
senior radiologist reviewed the images again and issued a 

Fig. 1  Flow diagram showing study inclusion and exclusion criteria
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final report based on the initial one. The absence of a spe-
cific description of the vertebral body indicated that the 
radiologist considered the vertebral body to be normal.

MRI protocol
MRI examinations of the spine were obtained using a 
1.5-T MRI (Signa Hdx; GE Healthcare) with a dedicated 
spine surface coil. The following sequences were obtained 
in sagittal orientation: a standard T1-weighted fast spin 
echo (300 repetition time (TR); 12 echo time (TE); sec-
tion thickness, 4 mm; gap, 0.4 mm), a T2-weighted turbo 
spin echo (2120 TR; 102 TE; section thickness, 4  mm; 
gap, 0.4  mm). and a STIR sequence (2080 TR; 102 TE; 
section thickness, 4 mm; gap, 0.4 mm).

Radiomics feature extraction
All of the images were resampled to a 1 mm × 1 mm × 
1  mm voxel size using the “SimpleITK(version 1.2.4)” 
package in an integration software based on R Program-
ming and Python Artificial Intelligence software kits 
(AK, version 3.2.0, GE Healthcare) [16]. Freehand regions 
of interest (ROIs) were delineated for all 128 vertebrae by 
a single radiologist with 5 years of specialist experience 
using ITK-SNAP software (version 3.6.0, www.itksnap.
org). The ROIs were manually drawn on a single mid-
sagittal and mid-axial slice of each vertebral body (Fig. 2). 
Then, the CT images, together with the related ROIs, 
were imported into AK software for radiomics feature 
extraction.

For each vertebra, 107 radiomic features were extracted 
from both the mid-axial and mid-sagittal images. The 
radiomic features can be subdivided into 7 classes, as fol-
lows: 18 first-order features; 24  Gy-level co-occurrence 

matrix (GLCM) features; 14  Gy-level dependence 
matrix (GLDM) features; 16  Gy-level run length 
matrix (GLRLM) features; 16  Gy-level size zone matrix 
(GLSZM) features; 5 neighboring gray tone difference 
matrix (NGTDM) features; and 14 shape features [17].

To assess the interobserver reproducibility of the 
radiomics features, ROI delineation was repeated by a 
second reader with 11 years of specialist experience for 
reproducibility analysis. Intraclass correlation coeffi-
cients (ICCs) for the radiomics features were calculated. 
Radiomics features with good reproducibility (ICC val-
ues ≥ 0.8) were included for further analysis [18].

Model construction
All vertebrae were randomly divided into a training and 
a validation set, at a ratio of 8:2. Feature selection and 
dimension reduction were performed in two steps. First, 
Pearson’s correlation analysis was performed to remove 
the redundant features with strong correlations, and the 
threshold for collinearity was set at R > 0.9. Second, the 
least absolute shrinkage and selection operator (LASSO) 
regression model was used to construct the signature of 
the dataset; LASSO set all regression coefficients toward 
zero based on the regulation weight λ, with many uncor-
related features having coefficients exactly zero. Tenfold 
cross validation of the minimum criteria was performed 
to find the best λ, and finally the value of λ with mini-
mum cross validation error was found.

For classification, machine learning models including 
support vector machine (SVM), logistic regression (LR), 
and Bayes algorithms were established, based on the 
remaining CT features in both the sagittal and axial 
planes. Model construction was performed with 5-fold 

Fig. 2  Images of a 48-year-old man with occult vertebral fracture (OVF). (A) T1-weighted magnetic resonance (MR) image, and corresponding (B) sagittal 
short tau inversion recovery (STIR) image confirm bone marrow edema without significant vertebral compression at T11, diagnosed as an OVF. T12 was 
chosen as the control group. (C) Free-hand regions of interest (ROIs) drawn on T11 (red) and T12 (green) in the constructed mid-sagittal CT image. ROI 
delineation was restricted to the trabecular bone. ROIs drawn in the corresponding mid-axial images of T11 (D) and T12 (E)
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cross validation. Receiver operating characteristic (ROC) 
analysis was performed for the machine learning models, 
and the diagnostic value was expressed as the area under 
the ROC curve (AUC). The Delong test was used to com-
pare the AUC between the models. The decision curve 
analysis (DCA) was used to evaluate the clinical useful-
ness of the radiomics-clinical model.

Statistical analysis
The statistical analyses were performed with SPSS (ver-
sion 19.0) and the “One-key AI” platform (https://www.
medai.icu), which is based on Pytorch 1.8.0 [19]. Statis-
tical significance was set at a p-value < 0.05. Continuous 
variables are presented with descriptive statistics: stan-
dard deviation (SD), mean, median, and quartile spacing, 
where appropriate. Z score normalization was performed 
on all radiomics features to improve the comparability of 
the various features.

Results
Study population
A total of 128 vertebrae were included in the present 
study, 64 with OVFs, and 64 adjacent normal bodies 
(including 16 pairs of vertebrae in the thoracic spine, 
43 pairs in the TLJ, and 5 in the lumbar spine) from 57 
patients (36 women, 21 men; mean age, 63.51 ± 15.54 
years). The clinical characteristics of the training and val-
idation sets were shown in Table 1.

Feature selection
Of the 107 radiomic features evaluated, 76 (71.03%) from 
axial, and 78 (72.90%) from sagittal CT images, showed 
good reproducibility between the two readers. After 
selection, a total of 6 features that coefficient value was 
none zero remained for axial CT imaging. The detail 
of the features shows in Fig. 3. A total of 5 features that 
coefficient value was none zero remained for sagittal CT 
imaging. The detail of the features shows in Fig. 4.

Table 1  Clinical Factors and CT Features of the Training and Validation Sets
Training set (n = 102) Validation set (n = 26) P value
OVF(n = 51) Control(n = 51) P value OVF(n = 13) Control(n = 13) P value 0.249

Age, year 63.04 ± 15.23 66.85 ± 13.93
63.35 ± 15.41 62.73 ± 15.14 0.836 65.62 ± 13.91 68.08 ± 14.40 0.661

Gender(M/F) 42/60 6/20 0.089
22/29 20/31 0.687 2/11 4/9 0.645

OVF, occult vertebral fracture; F, female; M, male

Fig. 4  Shows the screening of sagittal CT radiomics features. (A) LASSO coefficient profiles of the features. (B) Tuning parameter selection in LASSO; (C) 
The histogram of the coefficients of the selected features

 

Fig. 3  Shows the screening of axial CT radiomics features. (A) LASSO coefficient profiles of the features. (B) Tuning parameter selection in LASSO; (C) The 
histogram of the coefficients of the selected features
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Model performance
The accuracy, sensitivity, and specificity of the models in 
the axial and sagittal planes are shown in Tables 2 and 3, 
respectively. The radiomics models based on axial imag-
ing had AUCs of 0.692, 0.775 and 0.680 using the SVM, 
LR, and Bayes algorithms in the validation set, respec-
tively (Fig.  5A). The radiomics models based on sagit-
tal imaging for the diagnosis of OVFs achieved AUCs of 
0.805, 0.882, and 0.834 using the SVM, LR, and Bayes 
algorithms in the validation set, respectively (Fig.  5B). 
There was no significant difference in AUCs of different 
radiomic models (DeLong test, p > 0.05 for each com-
parison). The LR model based on sagittal CT radiomics 
yielded the best predictive performance, with an accu-
racy of 0.846, sensitivity of 0.846, and specificity of 0.846. 
The DCA demonstrated that the model could provide 
greater benefit (Fig. 6).

Discussion
CT is a frequently used diagnostic test for patients pre-
senting with chest and/or back pain in the emergency 
department [19, 20]. However, the conventional CT, can 
well display morphologic bone changes, it is unable to 
detect bone contusions without significant morphologic 
changes in OVFs [21]. Our study findings show that by 
selecting and extracting the radiomics features of the 
vertebral bodies on chest/abdomen CT images, machine 
learning models combined with CT radiomics achieved 
a high diagnostic value for OVFs. The diagnostic per-
formance of the radiomics models was higher than that 
of the radiologist. The CT radiomics model in the sagit-
tal plane showed a higher AUC in differentiating OVF 
from normal vertebrae than in the axial plane. Among 
the models developed using SVM, LR and Bayes, the LR-
developed model had the best performance.

Table 2  Diagnostic Performance of Machine Learning Models for Predicting Occult Vertebral Fracture Based on CT Sagittal Imaging
AUC (95% CI) ACC SEN SPE AUC (95% CI) ACC SEN SPE
Training set Validation set

SVM 0.893 (0.833, 0.953) 0.814 0.686 0.941 0.805 (0.628, 0.982) 0.769 0.538 1.000
LR 0.837 (0.760, 0.914) 0.804 0.765 0.843 0.882 (0.750, 1.000) 0.846 0.846 0.846
Bayes 0.845 (0.770, 0.919) 0.794 0.824 0.765 0.834 (0.675, 0.994) 0.808 0.923 0.692
SVM, support vector machine; AUC, area under the curve; CI, confidence interval; ACC, accuracy; SEN, sensitivity; SPE, specificity

Table 3  Diagnostic Performance of Machine Learning Models for Predicting Occult Vertebral Fracture Based on CT Axial Imaging
AUC (95% CI) ACC SEN SPE AUC (95% CI) ACC SEN SPE
Training set Validation set

SVM 0.780 (0.689, 0.870) 0.745 0.863 0.627 0.692 (0.474, 0.910) 0.731 0.615 0.917
LR 0.682 (0.578, 0.786) 0.657 0.431 0.882 0.775 (0.589, 0.961) 0.731 0.462 1.000
Bayes 0.689 (0.586, 0.791) 0.657 0.647 0.667 0.680 (0.466, 0.895) 0.692 0.923 0.462
LR, logistic regression; SVM, support vector machine; AUC, area under the curve; CI, confidence interval; ACC, accuracy; SEN, sensitivity; SPE, specificity

Fig. 5  ROC curves of the machine learning model based on axial CT radiomics features (A) and sagittal radiomics CT features (B) in the validation set. 
ROC = receiver operating characteristic
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Previous studies on the use of radiomics in the skeletal 
system have primarily focused on bone tumors. Chen et 
al. [22] found that a radiomics nomogram based on MRI 
could predict early relapse in osteosarcoma. Yin et al. [23] 
found that radiomics nomograms based on CT and MRI 
features could be used for the preoperative differentiation 
of sacral chordomas and giant cell tumors. Several stud-
ies have shown promising predictive performances of 
vertebral CT radiomics for evaluating the integrity and 
structural changes of the bone. Tabari et al. [13] inves-
tigated the utility of trabecular TA, and found that par-
tial radiomic parameters might contribute information 
about bone health in anorexia nervosa. Muehlematter 
et al. [24] observed that spine TA combined with SVM 
allows for the identification of fractural vertebrae. To the 
best of the authors’ knowledge, the present study is the 
first to diagnose OVFs using CT radiomics analysis, and 
the results of our study demonstrated that there were sig-
nificant differences in some features between the fracture 
and control groups. These results indicated that although 
OVFs showed minimal effects on vertebral height, due 
to the slight dislocation of the cancellous bone and mar-
row edema, which may be non-visible, the grayscale and 
distribution changes on CT imaging can be quantified by 
radiomics features.

Seven classes of features were extracted in the pres-
ent study. Among them, the first-order feature describes 
how grey levels within the ROI are distributed. GLCM, 

GLDM, GLRLM, GLSZM, and NGTDM belong to the 
texture features designed to evaluate surface textures 
in 2D images or 3D objects. They are primarily used to 
represent the gray distribution characteristics of pixels/
voxels of discretized gray levels and neighboring pix-
els/voxels in the same or different directions. The shape 
features describe the geometric aspects of an ROI [25]. 
A combination of radiomics features from various levels 
can better evaluate microstructural changes.

Increased computing power and the successful devel-
opment of new algorithms have provided several 
approaches with which to distinguish pathological condi-
tions based on radiomics over the past few decades. In 
the present study, we built a variety of radiomics models 
(SVM, LR, and Bayes), based on sagittal and axial planes, 
for the identification of OVF and normal vertebrae. LR 
calculates the predicted probability of binary classifica-
tion by obtaining the weight of each variable through 
training, and the algorithm is easy to understand. The 
SVM algorithm is a non-probabilistic classifier defined 
by a hyperplane that divided the samples into their real 
classes, with gaps as wide as possible. It is a nonlinear 
model that may be used for machine learning with small 
samples [26]. The Bayesian algorithm, a probabilistic 
classification method, assumes each variable is indepen-
dent, and calculates its corresponding probability. It then 
integrates statistics to obtain the final classification prob-
ability based on Bayes’ theorem. These three algorithms 

Fig. 6  The DCA of LR model based on sagittal CT radiomics features in validation set. DCA = decision curve analysis; LR = logistic regression
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have advantages not only in small sample data process-
ing and avoiding overfitting, but also in computing power 
requirements. Their performance has been verified by 
many studies [26–28]. In this research, the LR model 
achieved the highest AUC, specificity, and sensitivity, 
meeting the requirements for the detection of occult 
fractures in clinical diagnosis and treatment.

Moreover, the AUCs of the models based on the sag-
ittal plane were generally higher than those for the axial 
plane, which may be related to the method of slice selec-
tion during ROI placement in the two planes. The ROIs 
in the present study were delineated in the mid-sagittal 
and mid-axial planes, while the bone marrow edema or 
cancellous bone changes in OVFs always involved partial, 
instead of whole, vertebral bodies, due to the applica-
tion of uneven forces. Additionally, bone marrow edema 
was typically distributed laterally in the vertebrae. The 
proportion of slices in the mid-axial region involved in 
bone bruising was small, and even absent, in some cases, 
while the mid-sagittal region may have included a higher 
proportion, resulting in a higher range of bone bruising 
overall in the sagittal than the axial ROIs. Furthermore, 
although OVFs are more likely to affect the superior end-
plates, in the present study, the mid-axial, rather than 
the superior plane, of the vertebral body was selected 
for evaluation in the early stage of the design because of 
easier localization, which may facilitate repeatability and 
subsequent studies. This may also lead to a lower propor-
tion of OVFs involving the mid-axial versus the mid-sag-
ittal slices, resulting in a lower efficacy.

Prior studies have distinguished the obvious vertebral 
fractures through deep learning. For instance, Yabu et al. 
employed deep learning to detect fresh vertebral frac-
ture in MRI and yielded favorable efficacy [29]. Kolanu 
et al. developed a computer-aided design system based 
on deep learning techniques to identify Genant grades 
2/3 vertebral fractures in the routine chest/abdominal 
CT [30]. Although the purpose of our study is the same 
as those studies, to find fractures, our study concentrates 
on OVFs that are difficult to detect with eyes. And they 
employed the more advanced methodologies. Moham-
mad et al. combined the deep learning algorithm with 
radiomics, to achieve lesion classification automatically 
[18]. We expect combined deep learning-based-auto-
matic segmentation technology with radiomics in future 
to realize automatic OVF detection.

Several limitations of the present study should be 
noted. First, the sample size was small, due to the limited 
time interval between the CT and MRI exams; therefore, 
additional research with a larger sample size is required 
to validate the efficacy of the radiomics model. Second, 
the data were from a single hospital, and the inherent 
lack of an external validation set limits the conclusions. 
Third, the distribution of the included vertebrae was 

not uniform among regions and ages, which may lead 
to data bias. Most of the selected vertebrae were located 
in the TLJ region, due to the concentration of stress in 
this region. The higher proportion of women (61.67%) in 
this study may be related to the high incidence of osteo-
porosis caused by the reduction of estrogen after meno-
pause. Finally, although the predictive models showed 
good performance in this preliminary study, the AUCs 
of the machine learning based on radiomics in identifica-
tion of OVFs were mildly lower than that of study using 
conventional CT features such as attenuation values [31]. 
It is necessary to increase the sample size, optimize the 
algorithm, and develop deep learning system to identify 
OVFs automatically to reduce missed diagnosis in the 
further studies.

In conclusion, CT radiomics, combined with machine 
learning, allows for the identification of OVFs not readily 
appreciable on CT. A LR-developed model based on sag-
ittal CT images demonstrated the best performance out 
of the three models (SVM, LR and Bayes) examined. This 
finding shown that the changes of vertebral structure can 
be quantified and used for diagnosis of OVFs, which indi-
cates it is promising to further combine with deep learn-
ing to achieve automatic recognition of OVFs to reduce 
the associated secondary injury.
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