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Abstract 

Background  Ankylosing spondylitis (AS) is a chronic inflammatory autoimmune disease, and the diagnosis and treat-
ment of AS have been limited because its pathogenesis is still unclear. Pyroptosis is a proinflammatory type of cell 
death that plays an important role in the immune system. However, the relationship between pyroptosis genes and 
AS has never been elucidated.

Methods  GSE73754, GSE25101, and GSE221786 datasets were collected from the Gene Expression Omnibus (GEO) 
database. Differentially expressed pyroptosis-related genes (DE-PRGs) were identified by R software. Machine learning 
and PPI networks were used to screen key genes to construct a diagnostic model of AS. AS patients were clustered 
into different pyroptosis subtypes according to DE-PRGs using consensus cluster analysis and validated using prin-
cipal component analysis (PCA). WGCNA was used for screening hub gene modules between two subtypes. Gene 
Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were used for enrichment 
analysis to elucidate underlying mechanisms. The ESTIMATE and CIBERSORT algorithms were used to reveal immune 
signatures. The connectivity map (CMAP) database was used to predict potential drugs for the treatment of AS. 
Molecular docking was used to calculate the binding affinity between potential drugs and the hub gene.

Results  Sixteen DE-PRGs were detected in AS compared to healthy controls, and some of these genes showed a 
significant correlation with immune cells such as neutrophils, CD8 + T cells, and resting NK cells. Enrichment analy-
sis showed that DE-PRGs were mainly related to pyroptosis, IL-1β, and TNF signaling pathways. The key genes (TNF, 
NLRC4, and GZMB) screened by machine learning and the protein–protein interaction (PPI) network were used to 
establish the diagnostic model of AS. ROC analysis showed that the diagnostic model had good diagnostic proper-
ties in GSE73754 (AUC: 0.881), GSE25101 (AUC: 0.797), and GSE221786 (AUC: 0.713). Using 16 DE-PRGs, AS patients 
were divided into C1 and C2 subtypes, and these two subtypes showed significant differences in immune infiltration. 
A key gene module was identified from the two subtypes using WGCNA, and enrichment analysis suggested that 
the module was mainly related to immune function. Three potential drugs, including ascorbic acid, RO 90–7501, and 
celastrol, were selected based on CMAP analysis. Cytoscape showed GZMB as the highest-scoring hub gene. Finally, 
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molecular docking results showed that GZMB and ascorbic acid formed three hydrogen bonds, including ARG-41, 
LYS-40, and HIS-57 (affinity: -5.3 kcal/mol). GZMB and RO-90–7501 formed one hydrogen bond, including CYS-136 
(affinity: -8.8 kcal/mol). GZMB and celastrol formed three hydrogen bonds, including TYR-94, HIS-57, and LYS-40 (affin-
ity: -9.4 kcal/mol).

Conclusions  Our research systematically analyzed the relationship between pyroptosis and AS. Pyroptosis may play 
an essential role in the immune microenvironment of AS. Our findings will contribute to a further understanding of 
the pathogenesis of AS.

Keywords  Ankylosing spondylitis, Pyroptosis, Molecular subtype, Machine learning, GZMB

Background
Ankylosing spondylitis (AS) is an immune-mediated 
inflammatory disease with a strong genetic predisposition 
that affects 0.1%-0.3% of the adult population worldwide 
[1, 2]. AS is generally characterized by inflammatory dam-
age to the axial skeleton such as the sacroiliac joints and 
spinal joints [3]. Patients mainly present with chronic low 
back pain and decreased spinal mobility [4]. As the disease 
progresses, it can lead to spinal ankylosis, spinal deformity, 
and even disability, which significantly reduces the patient’s 
quality of life [5]. Currently, the pathogenesis of AS is not 
fully understood, leading to a lack of biomarkers with high 
diagnostic value for AS [6]. Recent studies suggest that 
HLA-B27 is closely related to AS and that the rate of HLA-
B27 positivity in AS patients is as high as 90%. Unfortu-
nately, the specificity of HLA-B27 is low, and only 5% of 
HLA-B27-positive individuals have AS [7]. Therefore, the 
diagnosis of AS remains inaccurate until imaging suggests 
sacroiliac arthritis. In the treatment of AS, with the advent 
of tumor necrosis factor inhibitors (TNFi), interleukin-17 
inhibitors, and Janus kinase inhibitors, patients with AS 
have seen a dramatic improvement in symptom control 
[8]. TNFi, in particular, has been widely used in patients 
with an inadequate response to NSAIDs. However, TNFi 
is not effective in all patients, and it has been reported in 
the literature that approximately half of the patients do not 
have significant improvement in symptoms after the appli-
cation of TNFi, suggesting a large heterogeneity in drug 
response in AS patients [9–11]. Therefore, it is important 
to further explore the pathogenesis of AS and the appro-
priate molecular subtypes.

Currently, it is believed that dysfunction of the body’s 
immune system plays a critical driving role in the path-
ological progression of AS and that immune cells and 
innate cytokines are closely associated with the patho-
genesis of AS [12–14]. Pyroptosis is an inflammatory 
programmed cell death mode characterized by medi-
ating cell membrane destruction and releasing various 
cytokines, ultimately promoting inflammatory effects 
or immune responses [15, 16]. Gasdermin D (GSDMD) 
protein is the key executor of pyroptosis, which can be 

cleaved by active caspase-1 and release the N-terminal 
effector domain, thereby initiating pyroptosis [17]. The 
NOD-like receptor family pyrin domain containing 3 
(NLRP3) inflammasome is an important activator of cas-
pase-1 and plays a key role in the pathogenesis of autoin-
flammatory and arthritic diseases [18]. Previous studies 
have shown that the expression of NLRP3 and caspase-1 
is upregulated in AS patients [19], suggesting that the 
activation of the pyroptosis-associated NLRP3 inflam-
masome may be associated with AS. Therefore, we infer 
that pyroptosis may regulate the pathological progression 
of AS through inflammatory injury or cytotoxic effects. 
However, currently, the study of pyroptosis-related genes 
in AS is still lacking, and their potential as therapeutic 
targets for AS remains to be understood.

Our study is the first to comprehensively explore the 
immune infiltration and molecular functions of differ-
entially expressed pyroptosis-related genes (DE-PRGs) 
in AS and construct a diagnostic model of AS using 
machine learning and a PPI network. Subsequently, we 
identified two pyroptosis-associated clusters with distinct 
immune signatures using consensus clustering analysis. 
Finally, in combination with disease differential genes 
and subtype differential genes, we screened three small-
molecule drugs and used molecular docking to analyze 
the proteins of the hub gene and the potential binding 
targets and binding ability of small-molecule compounds 
and provide new insights into the treatment of AS.

Methods
Data collection
The Gene Expression Omnibus (GEO) database is the 
largest fully public gene expression resource that col-
lects gene expression data for multiple species [20]. 
The GEO database was searched for "Ankylosing spon-
dylitis", set the species to human, and selected Entry 
type to Series. A total of 33 datasets were eventually 
retrieved. In order to ensure the quality of the data, we 
checked each of these datasets for information related 
to the experimental sample, experimental design, and 
data type. Finally, three datasets (GSE73754, GSE25101 
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and GSE221786) were identified from the GEO database 
[21, 22]. GSE73754 (Microarray, platform GPL10558) 
included gene expression profiles in whole blood sam-
ples from 52 AS patients and 20 healthy controls and 
was used as a training cohort. GSE25101 (Microarray, 
platform GPL6947) included gene expression profiles 
of whole blood samples from 12 AS patients and 12 
healthy controls, and GSE221786 (RNA-seq, platform 
GPL24676) included gene expression profiles of whole 
blood samples from 20 AS patients and 8 healthy con-
trols, GSE25101 and GSE221786 were used to validate 
the value of the diagnostic model. Pyroptosis-related 
genes were derived from the Molecular Signatures Data-
base (MSigDB, version 7.5.1) and are listed in Supple-
mentary file 2.

Screening for differentially expressed genes
The Illumina platform used by GSE73754 provides a 
standardized matrix file of microarray data. The “limma” 
package was used to determine differentially expressed 
genes (DEGs) between 52 AS samples and 20 healthy 
controls in GSE73754 with inclusion criteria of p < 0.05 
and |logFC|> 0 [23]. Subsequently, we determined the 
DE-PRGs by overlapping DEGs and pyroptosis-related 
genes (PRGs). The expression levels of DE-PRGs between 
AS and healthy controls were visualized using the 
“ggplot2” and “pheatmap” R packages. Significant correla-
tions between DE-PRGs were visualized by the “corrplot” 
and “circlize” packages.

Functional enrichment analysis
GO terms and KEGG pathways are commonly used 
methods in gene enrichment analysis [24]. To understand 
the biological functions of genes, we performed GO 
terms and KEGG pathways using the “ClusterProfiler” R 
package [25].

Immune infiltration analysis
In this study, we used two algorithms for immune 
analysis. ESTIMATE was used to calculate the total 
immune scores of different groups. The CIBERSORT 
algorithm was used to evaluate the relative proportion 
of 22 types of immune cell infiltration for each sample 
(perm = 1000), and the results were filtered according 
to p < 0.05.

Furthermore, we analyzed the correlation between DE-
PRGs and immune cell infiltration in AS. We removed 
healthy controls, extracted the expression of DE-PRGs, 
and performed correlation analysis with the results of 
immune infiltration using Pearson’s correlation coeffi-
cient. Finally, the results are presented using the “ggplot2” 
package.

PPI network construction
The STRING database (https://​string-​db.​org/) is a plat-
form for exploring protein interactions, both physical 
interactions and functional associations [26]. We use the 
STRING database to build PPI networks, and a confi-
dence score of 0.4 was set as the cutoff standard. Cyto-
Hubba was used to screen key genes in the PPI network.

Machine learning
Based on the expression of DE-PRGs, least absolute 
shrinkage and selection operator (LASSO) and random 
forest (RF) analyses were performed to identify the most 
characteristic diagnosis-related DE-PRGs. The Lasso 
model was performed using the “glmnet” package with 
the penalty parameter (λ) by tenfold cross-validation, the 
response type set as binomial, and the alpha set as 1. The 
“randomforest” package was used for RF modeling, and 
the number of decision trees was set to 500.

Construction and evaluation of the diagnostic model 
and nomogram
We used the overlapping genes of the LASSO, RF, and 
PPI networks to build a diagnostic model and the “rms” 
package to construct the nomogram and calibration 
curve. The calibration curve can intuitively demonstrate 
the prediction ability of the nomogram. Decision curve 
analysis (DCA) generated with the “rmda” package was 
used to obtain the highest net benefit and determine the 
clinical practicality of the nomogram. Finally, receiver 
operating characteristic (ROC) curve analysis was per-
formed on the GSE73754, GSE25101, and GSE221786 
datasets through the “pROC” package [27]. The area 
under the curve (AUC) was calculated to validate the 
diagnostic value of the diagnostic model.

Cluster analysis of AS patients
Based on DE-PRG expression profiles, 52 AS patients were 
reclassified using the “ConsensusClusterPlus” package 
(reps = 1000, pItem = 0.8, pFeature = 1, K-means algorithm, 
distance = euclidean, maxK = 9) [28]. The optimal number 
of clusters can be determined from consensus matrices, 
tracking plots, consensus cumulative distribution func-
tion (CDF) plots, and delta areas. Finally, differences in 
the expression of DE-PRGs and the abundance of immune 
infiltration in different clusters were also clarified.

Weighted gene correlation network analysis (WGCNA)
The variance was calculated based on the expression 
of genes in different clusters, and the top 25% of genes 
were selected for WGCNA [29]. We used the pickSoft-
Threshold function to analyze and test t soft-threshold 
power from 1 to 20. Subsequently, an adjacency matrix 

https://string-db.org/


Page 4 of 21Li et al. BMC Musculoskeletal Disorders          (2023) 24:532 

was generated using the optimal soft-threshold power 
and transformed into a topological overlap matrix 
(TOM). Genes with coexpression relationships were 
grouped using average linkage hierarchical clustering 
based on the dissimilarity measure (1-TOM). We set the 
minimum module size to 50 and used the dynamic tree-
cut algorithm to identify modules. Module eigengene 
(ME), as each module’s first principal component, rep-
resented each module’s expression pattern. The correla-
tion between each module eigengene and cluster were 
calculated, and the module with the greatest correlation 
with the cluster was selected for subsequent analysis.

The prediction of potential small‑molecule drugs
The Connectivity Map (CMAP) database (https://​clue.​
io/) is a drug discovery tool for exploring potential bio-
logical associations between diseases, genes, and drugs. 
By uploading differential genes to CMAP, small molecu-
lar drugs that may induce or reverse the biological pro-
cess of differential gene expression are predicted. The 
score of the final analysis result is calculated from -100 
to 100, and small-molecule drugs with negative scores 
indicate the potential to reverse gene expression, repre-
senting potential therapeutic value. We selected the three 
small-molecule drugs with the smallest fractions for sub-
sequent analysis.

Molecular docking
We used the molecular docking method to explore 
the potential drug targets and binding ability of three 
small-molecule drugs and hub gene proteins [30]. 
PubChem was used to obtain the molecular structures 
of small-molecule drugs. The PDB database can obtain 
the protein structure of hub genes. Subsequently, 
PyMOL was used to remove water molecules and 
ligands in the protein structure. AutoDockTools was 
used to process ligands and receptors further, mainly 
by adding hydrogen atoms and determining active 
pockets. AutoDock Vina software was used to analyze 
the binding modes between the candidate protein and 
three small-molecule drugs. Each docking event pro-
duced 20 different binding modes, and the model with 
the lowest binding free energy was finally selected and 
visualized by PyMOL.

Results
Screening differentially expressed genes
After data preprocessing, we screened 5868 DEGs 
from the GSE73754 dataset. Subsequently, through 
a comparison of the expression of 52 PRGs of AS and 
healthy controls, a total of 16 genes were determined to 
be differentially expressed. Of these genes, the expres-
sion of BAX, IL18, IRF2, NLRC4, NLRP1, and NOD2 
in AS blood samples was significantly higher than 
that in healthy control blood samples, and the expres-
sion of CHMP4A, CHMP4B, CHMP4C, CHMP6, 
CYCS, GZMB, IRF1, CASP8, TNF, and GZMA in AS 
blood samples was significantly lower than that in 
healthy control blood samples (Figs.  1A–B). To fur-
ther understand the relationship between the 16 DE-
PRGs, we analyzed the correlation between these genes 
(Figs.  1C–D). The results revealed that GZMA and 
GZMB showed an intense synergistic effect (R = 0.75), 
and CHMP4A and NLRC4 presented an apparent 
antagonistic action (R = -0.58).

Immune infiltration analysis of AS and DE‑PRGs
We obtained the infiltration abundance of immune 
cells in AS and healthy samples using the CIBERSORT 
algorithm (Supplementary file 3). The obtained results 
showed that the infiltration levels of neutrophils, regu-
latory T cells, and naive CD4 + T cells were significantly 
higher in AS. The infiltration levels of CD8 + T cells, acti-
vated memory CD4 T cells, and resting NK cells were 
significantly lower in AS.

Subsequently, we further analyzed the correlation 
between 16 DE-PRGs and immune cells in AS sam-
ples (Fig.  2A). The obtained results showed that some 
immune cells strongly correlated with DE-PRGs. For 
example, neutrophils were significantly negatively cor-
related with GZMA, GZMB, CYCS, and CHMP4A 
and significantly positively correlated with NOD2, 
NLRP1, NLRP4, IRF2, IRF1, and IL18. CD8 + T cells 
were significantly negatively correlated with NLRC4 
and CHMP4A and significantly positively correlated 
with GZMA, GZMB, CYCS, and CHMP4A. Resting 
NK cells were significantly negatively correlated with 
CHMP4A and significantly positively correlated with 
GZMA and GZMB.

Fig. 1  Identification of DE-PRGs in AS. A Expression of PRGs in AS and control groups. Blue represents the control group, and red represents the 
AS group. A total of 52 PRGs were included, 48 PRGs were detected to be expressed in the samples, and 16 PRGs were differentially expressed. 
*p < 0.05, **p < 0.01, ***p < 0.001. B Heatmap showing the expression of the DE-PRGs in AS and control samples. C The relationship circle diagram 
of 16 DE-PRGs. D Correlation analysis of 16 DE-PRGs. Blue represents negative correlations, and red represents positive correlations. Correlation 
coefficients are shown in pie charts and figures

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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Fig. 2  Immune infiltration analysis and enrichment analysis of 16 DE-PRGs. A Correlation of DE-PRGs with immune cells. *p < 0.05, **p < 0.01, 
***p < 0.001. B Top 10 BPs, CCs and MFs in GO enrichment analysis. BP: biological process; CC: cellular component; MF: molecular function; C Top 30 
KEGG pathways
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Functional enrichment analysis of DE‑PRGs
GO terms and KEGG pathways were used to deter-
mine the molecular biological functions of DE-PRGs 
in AS (Figs.  2B-C). In GO terms, positive regulation of 
cysteine-type endopeptidase activity involved in apop-
totic process, pyroptosis, and positive regulation of inter-
leukin-1 beta production was enriched in the biological 
process. The ESCRT III complex, amphisome membrane, 
and kinetochore microtubule were enriched in the cel-
lular component category. Cytokine receptor binding, 
endopeptidase activity, and tumor necrosis factor recep-
tor binding were enriched in the molecular function 
category. Regarding KEGG pathway analysis, DE-PRGs 
were significantly enriched in necroptosis, the NOD-
like receptor signaling pathway, and the TNF signaling 
pathway.

Screening of the key genes for creating the diagnostic 
model
The hub genes for constructing the AS diagnostic 
model were screened by PPI network, LASSO, and RF 
algorithms on 16 DE-PRGs. The results of the LASSO 
algorithm showed that 11 candidate genes were iden-
tified based on the optimal value of λ, including BAX, 
CHMP4B, CHMP4C, CHMP6, GZMB, IRF2, CASP8, 
NLRC4, NLRP1, NOD2, and TNF (Figs. 3A–B). For the 
RF model, the number of trees corresponding to the min-
imum error point was determined (number of trees = 43) 
(Fig. 3C), and candidate genes were obtained with a criti-
cal score of more than 2, including TNF, NLRC4, BAX, 
GZMA, and GZMB (Fig. 3D). The PPI network with 16 
nodes and 41 edges was constructed based on STRING 
PPI confidence scores > 0.4 in the STRING platform 
(Supplementary file 4). The top 8 hub nodes were iden-
tified from the PPI network using the MCC method in 
cytoHubba (Fig.  3E), including TNF (score = 206), IL18 
(score = 198), CASP8 (score = 198), NOD2 (score = 144), 
NLRP1 (score = 120), NLRC4 (score = 120), GZMB 
(score = 54), and IRF1 (score = 50). To guarantee the 
value of the diagnostic model, the intersection of LASSO, 
RF, and PPI was used as the best gene set for creating a 
diagnostic model (Fig. 3F). As a result, three genes (TNF, 
NLRC4, and GZMB) were identified and selected to 
develop a prediction signature.

Construction and performance evaluation 
of the nomogram model
We created a nomogram using the three hub genes (TNF, 
NLRC4, and GZMB) (Fig.  4A). The calibration curve 
was used to estimate the predictive value of the nomo-
gram, and the obtained results showed a high agreement 
between the predicted and the actual results (Fig.  4B). 

Subsequently, DCA and clinical impact curves were used 
to evaluate the clinical utility of the nomogram. The DCA 
showed that the nomogram had a high clinical net ben-
efit at a threshold probability of 0.1–1.0 (Fig.  4C), and 
the clinical impact curves revealed remarkable predic-
tive power for the nomogram (Fig. 4D). Finally, the pre-
dictive validity of the nomogram was confirmed using 
ROC curves (Figs.  4E-H). The AUC of the GSE73754 
dataset was 0.881 (95% CI: 0.779, 0.958), the AUC of the 
GSE25101 dataset was 0.797 (95% CI: 0.637, 0.934), and 
the AUC of the GSE221786 dataset was 0.713 (95% CI: 
0.519, 0.887). The ROC analysis results demonstrated that 
the nomogram model had high diagnostic performance.

Consensus clustering of DE‑PRGs identified two subtypes 
of AS
The 16 DE-PRGs were used to screen the molecular sub-
clusters of AS. The CDF value and Delta area showed that 
the clustering results were relatively stable when k = 2 
(Figs.  5A-B). In addition, the consistency score of each 
subtype was > 0.9 only when k = 2 (Fig.  5C). Examina-
tion of the consensus matrix showed that k = 2 was the 
best option and that each sample in the cluster exhibited 
a strong correlation (Fig. 5D). Finally, the 52 AS samples 
were stratified into two distinct subtypes: Cluster 1 (C1) 
and Cluster 2 (C2). C1 contains 20 AS samples, and C2 
involves 32 AS samples. Principal component analysis 
(PCA) indicated a significant difference between the two 
patterns (Fig. 5E).

Expression of DE‑PRGs and immune infiltration 
between the two pyroptosis subtypes
The expression differences of 16 DE-PRGs between the 
two clusters were compared and are shown in the heat-
map and boxplot (Figs.  6A-B). The obtained results 
showed that GZMA and GZMB were significantly upreg-
ulated in C1, and CHMP4B and CHMP4C were signifi-
cantly upregulated in C2.

We also compared the differences in immune infiltra-
tion between the two subclusters. First, the ESTIMATE 
results indicated that C1 had a significantly higher 
overall immune score than C2 (Fig.  6E). Subsequently, 
we further analyzed the immune cell infiltration level 
and immune function level of the two subclusters. As 
expected, we observed that C1 had more immune cell 
infiltration and immune response. CIBERSORT analysis 
results showed that the infiltration level of CD8 T cells, 
activated memory CD4 + T cells, and resting NK cells in 
C1 was higher than that in C2, and the infiltration levels 
of memory CD4 + T cells, resting memory CD4 + T cells, 
naive CD4 + T cells and neutrophils in C1 were lower 
than those in C2 (Figs. 6C-D).
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Fig. 3  Screening for key genes based on machine learning and PPI network. A-B LASSO model. C-D Random forest model. E PPI network. F The 
intersections between the LASSO model, random forest model, and PPI network
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Fig. 4  Construction and validation of the diagnostic model. A Construction of a nomogram for predicting AS risk based on 3 genes. The patients’ 
diagnostic model gene scores were summed to calculate the total score. The higher the total score, the higher the patient’s risk of being diagnosed 
with AS. B-C Construction of the calibration curve (B) and DCA (C) for assessing the predictive efficiency of the nomogram model. D Clinical impact 
curves. The red curve indicates the number of people classified as high risk by the model at the threshold probability for each variable; the blue 
curve is the number of true positives at the threshold probability for each variable. E–H ROC analysis of the 3-gene-based diagnostic model in the 
GSE73754 (E, F), GSE25101 (G), and GSE221786 (H) datasets
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Fig. 5  Identification of pyroptosis-related molecular clusters in AS. A Cumulative distribution function (CDF) curve. B CDF delta area. C Consensus 
clustering score. D Consensus clustering matrix when k = 2. E PCA visualizes the distribution of two clusters
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Fig. 6  Expression of DE-PRGs and immune analysis between the two subtypes. A Heatmap showing the expression of the 16 DE-PRGs in the two 
pyroptosis subtypes. B Boxplot showing the expression of 16 DE-PRGs in two pyroptosis subtypes. *p < 0.05, ***p < 0.001. C Differences in immune 
infiltration between the two pyroptosis subtypes. D The relative infiltration abundance of immune cells between the two pyroptosis subtypes. E 
The estimated immune score between the two pyroptosis subtypes
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Fig. 7  Coexpression analysis for two clusters. A The scale-free fit index and mean connectivity were used to select various soft threshold powers (β). 
B Dendrogram clustering of all genes between the two clusters was performed according to the topological overlap matrix (1-TOM). Each branch 
in the clustering tree represents a gene, and different colors represent different coexpression modules. C Clustering of module eigengenes. D 
Heatmap of the correlation between 14 modules; E Correlation between modules and clusters
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WGCNA screening feature module
WGCNA was used to identify the key gene modules 
between the two pyroptosis clusters in the 52 AS sam-
ples. First, 52 AS samples were clustered to detect and 
remove outliers, and a final sample of 45 was included for 
follow-up analysis (Supplementary file 5). Then, we set 
the soft-threshold power (β) to 6 and the scale-free (R2) to 
0.9 (Fig. 7A). Fourteen modules were determined, which 
are represented by different colors (Figs.  7B-C). The 
TOM heatmap revealed the adjacency of ME (Fig.  7D). 
The module-trait correlation analysis showed that the 
magenta module (276 genes) had the highest correlation 
with two clusters (cor =  ± 0.77, P = 5e-10) (Fig. 7E).

Enrichment analysis of the magenta module
GO and KEGG analyses were used to further explore 
the function and mechanism of the magenta module 
gene with the highest correlation with the pyropto-
sis clusters. Interestingly, most results were closely 
related to the immune response. In GO terms, leuko-
cyte-mediated immunity, immune response-regulating 
cell surface receptor signaling pathway, and cell kill-
ing were enriched in the biological process category. 
External side of plasma membrane, focal adhesion, and 
cell-substrate junction were enriched in the cellular 
component. Immune receptor activity, carbohydrate 
binding, and growth factor binding were enriched in 

Fig. 8  Enrichment analysis of the magenta module. A Top 10 BPs, CCs and MFs in GO enrichment analysis. BP: biological process; CC: cellular 
component; MF: molecular function. B The top 5 GO analysis results and their associated genes. C Top 30 KEGG pathways. D The top 5 KEGG 
pathways and their associated genes
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the molecular function category (Fig. 8A). The top five 
results were selected based on P values, showing the 
genes associated with them (Fig.  8B). KEGG analysis 
showed that 276 genes of the magenta module were 
mostly enriched in natural killer cell-mediated cytotox-
icity, antigen processing and presentation, and graft-
versus-host disease (Fig.  8C). The top five pathways 
were selected based on P values, showing the genes 
associated with them (Fig. 8D).

Identify small‑molecule drugs with potential therapeutic 
value
A total of 118 genes intersected between the magenta 
module gene and DEGs (AS vs. healthy controls), and 
these genes showed different expression levels in the AS-
control and two pyroptosis subtypes (Fig. 9A). According 
to the expression of 118 genes in AS, they were divided 
into high expression and low expression groups. Sub-
sequently, through the CMap online website, the top 3 
small molecule drugs with opposite AS expression pat-
terns, including ascorbic acid, RO 90–7501, and ryano-
dine, were screened based on their scores (Table  1). 
These drugs may be able to reverse the genetic changes 
in the pathogenesis of AS and serve as potential drugs for 
AS treatment.

Screening of hub genes and molecular docking
We used PPI to identify the most critical gene from 118 
genes. After obtaining the PPI network with the same 
method as above, we used cytoHubba to calculate the 
score of each gene. We tried the four most commonly 
used algorithms (MCC, MNC, EPC, and DEGREE) 
(Supplementary file 6). Surprisingly, three algorithms 
obtained consistent results, with GZMB obtaining the 
highest score (MCC = 535,352, MNC = 26, DEGREE = 26) 
(Fig.  9B). The protein structure of GZMB was obtained 
from the PDB database (PDB ID: 1IAU), and the dock-
ing pattern with the lowest binding affinity (kcal/mol) 
was visualized with PyMOL (Supplementary files 7, 8 and 
9). The obtained results showed that GZMB and celastrol 
formed three hydrogen bonds, including TYR-94, HIS-
57, and LYS-40 (affinity: -9.4 kcal/mol) (Fig. 10A). GZMB 
and RO-90–7501 formed one hydrogen bond, including 
CYS-136 (affinity: -8.8  kcal/mol) (Fig.  10B). GZMB and 
ascorbic acid formed three hydrogen bonds, including 
ARG-41, LYS-40, and HIS-57 (affinity: -5.3  kcal/mol) 
(Fig. 10C).

Discussion
AS is a chronic inflammatory autoimmune disease, and 
the diagnosis and treatment of AS have been limited 
because its pathogenesis is still unclear [31]. Therefore, 
exploring the underlying mechanism of AS initiation and 

progression is important and urgent. Recent studies have 
investigated additional genes and inflammatory biomark-
ers associated with the pathogenesis of AS. Ye et al. [32] 
found that serum from AS patients induced mitochon-
drial dysfunction in mesenchymal stem cells in  vitro. 
Notably, altered mitochondrial morphology and function 
is a major feature of ferroptosis and an important way to 
distinguish it from other regulatory cell death [33]. Rong 
et  al. [34] found that iron death may affect AS through 
potential molecular regulatory pathways. In addition, 
ribosome-related genes and N6-methyladenosine RNA 
methylation regulators were also found to be dysregu-
lated in AS [35, 36].

Pyroptosis is a proinflammatory type of cell death that 
releases proinflammatory cytokines and immune sub-
stances through cell rupture [37]. Excessive release of 
inflammatory factors triggers an overactive immune sys-
tem and leads to the progression of autoimmune diseases 
[38]. There is now increasing evidence that pyroptosis 
plays an integral role in the pathogenesis of autoimmune 
diseases. Studies have shown that the expression of the 
pyroptosis-associated inflammasome is increased in 
the salivary glands of Sjogren’s Syndrome (SS) patients, 
and the number of salivary glands epithelial cells in SS 
patients is reduced by pyroptosis, resulting in a signifi-
cant decrease in salivary secretion [39, 40]. Anti-dou-
ble-stranded DNA antibodies, the hallmark antibody of 
systemic lupus erythematosus (SLE), have been found to 
bind to TLR4, which in turn activates NLRP3 inflamma-
some [41]. In addition, Pentaxin 3, which is upregulated 
in the plasma of patients with rheumatoid arthritis, can 
act synergistically with the ligand C1q to activate NLRP3 
inflammasome, causing caspase-1-mediated pyroptosis 
and inflammatory cytokines, the degree of which was 
consistent with disease activity [42]. However, the rela-
tionship between pyroptosis and AS remains unclear. 
Studying the potential association between AS and 
pyroptosis will provide a foundation for diagnosis and 
clinical treatment. Therefore, this study was the first to 
systematically analyze the role of pyroptosis in AS and 
its immune microenvironment and constructed an AS 
diagnostic model by key DE-PRGs. In addition, we fur-
ther detected the molecular subtypes of AS from the per-
spective of pyroptosis and analyzed the characteristics of 
different subtypes, which will provide new insights for 
individualized treatment of AS.

In this study, we performed differential expression 
analysis of 52 PRGs with data from the GSE73754 data-
set. The obtained results showed that the expression of 
16 PRGs was significantly different between AS samples 
and healthy controls. Subsequently, we performed some 
immune infiltration analyses. We first analyzed the infil-
tration abundance of immune cells in AS and healthy 
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Fig. 9  Identification of the hub gene. A The intersection of the DEGs of AS-control and the DEGs of subtypes. B PPI network
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samples. Notably, according to the results, a signifi-
cant increase in neutrophil infiltration and a significant 
decrease in CD8 + T cell infiltration were observed in 
AS samples, which is consistent with the results of pre-
vious studies [43]. We further analyzed the correlation 
between 16 DE-PGRs and immune cells in AS samples. 
The results showed significant positive or negative cor-
relations between DE-PGRs and immune cells, such as 
neutrophils, CD8 + T cells, and resting NK cells. Innate 
immunity plays an important role in the pathological 
progression of AS, of which neutrophils are an essential 
cell type [44]. Recent studies suggest that neutrophils 
may play an important role in maintaining autoinflam-
mation and autoimmunity by releasing neutrophil extra-
cellular traps (NETs) carrying bioactive molecules [45]. 
Jiang et al. [46] suggest that upregulated neutrophils may 
be a key factor in the progression of AS. CD8 + T cells, 
antigen-presenting targets of HLA-B27 molecules, are 
considered to be involved in the occurrence and develop-
ment of AS [47]. In AS patients, the inhibitory receptor 
for NK cells, KIR3DL1, interacts with multiple subtypes 
of HLA-B27, thereby inhibiting NK cell activity [48]. 
Moreover, innate immune cells can play an essential role 
in the pathogenesis of AS by secreting cytokines, such 
as IL-17, IL-22, IL-23, IL-1β, and TNF-α [1]. We further 
analyzed the correlation between 16 DE-PRGs and found 
clear synergistic or antagonistic effects among some DE-
PRGs, suggesting that these DE-PRGs may play a role in 
AS through interactions. In summary, pyroptosis may 
affect the immune status of AS, and thus the progression 
of AS, and the abnormal expression of pyroptosis-related 
genes may be the beginning of autoimmunity and chronic 
inflammatory responses in AS, but the underlying mech-
anism of inducing the abnormal expression of pyroptosis 
genes in AS remains to be further elucidated. Our study 
will help to explore the mechanism of the occurrence and 
development of AS.

Based on the 16 DE-PRGs, we used PPI, LASSO, and 
RF to screen candidate genes. The intersection of the 
three algorithms was identified as the hub gene for 
building the AS diagnostic model. Three genes (TNF, 
NLRC4, and GZMB) were ultimately screened. TNF 
encodes a multifunctional proinflammatory cytokine 
that is involved in regulating various biological processes, 
including cell proliferation, differentiation, and apoptosis 

[49]. In addition, this cytokine is closely related to the 
pathological mechanisms of various diseases, including 
autoimmune diseases, AS, and cancer [50]. Currently, 
TNFi has been widely used in patients with AS [51]. 
TNFi dramatically improved symptoms by blocking TNF 
cytokines, which play an important role in inflammation 
[52]. NLRC4 is a member of the nucleotide binding and 
oligomerization domain (NOD)-like receptor (NLR) fam-
ily [53]. NLRC4 can induce proinflammatory cytokine 
maturation and pyroptosis by activating caspase-1. Cur-
rent studies have shown that NLRC4 is widely involved 
in regulating immune responses and plays an important 
role in metabolic diseases, tumors, and autoimmune dis-
eases [54]. GZMB is a member of the peptidase S1 fam-
ily of serine proteases that plays an important role in 
tissue healing, chronic inflammation, and the immune 
response [55]. Noticeably, GZMB is closely associated 
with NK cell activity. A recent study showed that patients 
with AS exhibited NK cell depletion and downregulated 
GZMB and GZMA expression compared to normal con-
trols [56]. This is consistent with the results of this study, 
our results showed that GZMA and GZMB exhibited 
significant synergistic effects and were downregulated in 
AS samples. In addition, immune cell correlation analy-
sis showed that GZMA and GZMB were significantly 
positively correlated with resting NK cells and nega-
tively correlated with neutrophils. Finally, we constructed 
nomograms based on TNF, NLRC4, and GZMB and vali-
dated the diagnostic value of the model in two datasets. 
The obtained results showed that the actual result in the 
calibration chart was highly consistent with the predicted 
result, suggesting that the model could provide a valu-
able reference for the prediction of AS, and the DCA and 
clinical impact curves indicated that the model had sig-
nificant clinical utility. The ROC curve indicated that the 
model had good diagnostic value. Thus, combined with 
previous reports and our findings, the potential value of 
this model in clinical applications is fully demonstrated.

Based on the 16 DE-PRGs, we identified two pyrop-
tosis clusters. First, we assessed the expression levels of 
16 DE-PRGs between the 2 clusters, and the obtained 
results showed that CHMP4B and CHMP4C were down-
regulated in C1, and GZMA and GZMB were down-
regulated in C2. Subsequently, we used ESTIMATE and 
COBERSORT to assess the immune status of the two 
pyroptosis clusters. The two algorithms obtained roughly 
similar results. We found that C1 had a higher total 
immune infiltration score and mediated more immune 
cell infiltration. Thus, C1 may represent a more immu-
noreactive microenvironment, and C2 represents an 
immunosuppressive microenvironment. Moreover, we 
noted that the level of neutrophil infiltration in C2 was 
significantly higher than that in C1, suggesting that a 

Table 1  CMAP analysis

Name Score Description PubChem ID

Ascorbic acid -99.02 Antioxidant 54,670,067

RO 90–7501 -97.95 Beta amyloid inhibitor 824,226

Celastrol -97.89 Anti-inflammatory 122,724
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more severe inflammatory response may exist in C2. If 
dead neutrophils are not cleared in time, tissue damage 
will be aggravated. Meanwhile, according to previous 

studies, cytokines and inflammatory mediators produced 
during the inflammatory response can recruit or reject 
immune cell subpopulations by establishing gradients 

Fig. 10  Molecular docking results. A A 3D view of the best-selected conformation of GZMB and celastrol. B A 3D view of the best-selected 
conformation of GZMB and RO 90–7501. C A 3D view of the best-selected conformation of GZMB and ascorbic acid. Green represents protein
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and ultimately promote the formation of an immunosup-
pressive microenvironment and immune escape [57–59]. 
Then, we further identified the signature gene module 
(magenta module) of C1 and C2 using WCGNA and 
performed enrichment analysis of the signature module 
genes. GO analysis showed that the signature module 
genes are involved in immune regulation and associ-
ated with various immune cell-mediated immune func-
tions. Similarly, the results of KEGG analysis suggest 
that magenta module genes are involved in molecular 
pathways mostly related to immunity, such as the differ-
entiation of Th1 and Th2 cells and the NF-κB signaling 
pathway. The Th1 immune response is proinflammatory, 
and its overactivation will recognize self-antigens and 
generate autoimmunity; the Th2 immune response is 
anti-inflammatory and has the effect of counteracting the 
Th1 immune response. The magenta module gene plays 
an important role in the development of AS by regulating 
the differentiation of Th1 and Th2 cells. The NF-κB sign-
aling pathway, one of the critical regulatory pathways in 
the inflammatory and immune responses, has also been 
reported to be involved in the pathological progression of 
AS [60]. In conclusion, based on the characteristics of the 
two pyroptosis clusters, the powerful ability of different 
pyroptosis clusters to discriminate immune phenotypes 
was confirmed.

We intersected the magenta module genes with DEGs 
(AS vs. healthy control) and obtained a total of 118 inter-
section genes. Then, the PPI network was used to identify 
the most critical genes. We tried the four most com-
monly used algorithms, including MCC, MNC, EPC, and 
DEGREE, and the gene with the highest scores in the four 
results was GZMB. Notably, GZMB is also one of the 
three key genes for which we constructed the AS diag-
nostic model above. Meanwhile, the expression of GZMB 
in AS was also verified in previous experimental studies. 
Therefore, GZMB may be the hub gene for distinguishing 
AS from normal controls and different pyroptotic sub-
types of AS.

We divided 118 intersecting genes into upregulated and 
downregulated groups according to their expression in 
AS, uploaded them to CMap, and finally obtained three 
small-molecule preparations (ascorbic acid, RO-90–
7501, and celastrol). Ascorbic acid, also known as vitamin 
C, plays an important role as an antioxidant or cofactor 
for various enzymatic reactions in the prevention and 
treatment of many diseases, such as cancer, infectious 
diseases, and cardiovascular diseases [61]. Moreover, 
ascorbic acid exists in large quantities in immune cells 
and has key functions, such as maintaining immune bal-
ance and reducing proinflammatory responses. Studies 
have shown that ascorbic acid may regulate the cell death 
process of neutrophils, which can reduce the proportion 

of neutrophil necrosis and cause more neutrophils to 
develop apoptosis while accelerating the evacuation of 
dead neutrophils at the site of inflammation. Therefore, 
ascorbic acid can effectively reduce the inflammatory 
response and tissue damage [62–64]. AS, an inflamma-
tory autoimmune disease, has higher levels of neutro-
phil infiltration than healthy controls. Ascorbic acid may 
inhibit the pathological progression of AS by acting on 
the regulatory processes of neutrophils. In addition, our 
findings suggest that the abundance of neutrophil infil-
tration is significantly higher in C2 than in C1. Ascor-
bic acid may have a better therapeutic effect on C2. RO 
90–7501 acts as an inhibitor of amyloid β (Aβ) protofibril 
assembly and reduces Aβ-induced cytotoxicity [65]. We 
note that previous studies have shown that Tg2576 trans-
genic mice with high expression of Aβ have abnormal 
bone metabolism, and Aβ may regulate osteoclast activ-
ity in an age-dependent manner, resulting in increased 
bone resorption and inhibition of osteoblast differen-
tiation, eventually leading to osteoporosis and decreased 
bone reconstruction ability [66, 67]. In addition, elevated 
levels of Aβ and amyloid precursor protein have been 
observed in human osteoporotic vertebral trabecular 
bone and femoral neck specimens [68]. Therefore, Aβ 
may be one of the regulators of bone metabolism, and 
abnormal expression of Aβ may have important effects 
on bone development and metabolism, as well as bone 
formation and resorption. Osteoporosis is a common 
complication of AS and one of the critical causes of spi-
nal fractures. Most patients present with decreased bone 
density and abnormal bone metabolism. RO 90–7501 
may improve the prognosis of AS patients by regulating 
bone metabolism by inhibiting Aβ expression. Celastrol, 
a bioactive molecule extracted from Thunder God Vine, 
has shown great potential in treating various inflamma-
tory and autoimmune diseases, such as arthritis, inflam-
matory bowel disease, and systemic lupus erythematosus, 
through the modulation of immune cell signaling in the 
inflammatory microenvironment [69]. Currently, celas-
trol’s potential pharmacological effects and application 
value are being discovered in an increasing number of 
diseases, but studies on AS are still minimal [70, 71]. One 
study showed that celastrol could inhibit the cell prolif-
eration of isolated AS fibroblasts and in vitro osteogenic 
differentiation [72], suggesting that celastrol potentially 
affects bone metabolism in AS patients. In summary, 
these three drugs may have potential therapeutic value 
for AS and may even have different therapeutic effects 
for different pyroptosis subtypes of AS. Finally, we used 
molecular docking to verify the binding ability of the 
three drugs to the hub protein (GZMB), and the obtained 
results showed that RO 90–7501 (affinity: -8.8 kcal/mol) 
and celastrol (affinity: -9.4 kcal/mol) achieved satisfactory 
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results. We infer that RO 90–7501 and celastrol may 
inhibit the pathological progression of AS by acting on 
GZMB proteins and regulating pyroptosis. However, 
more experimental evidence is needed in future studies 
for validation.

This study has some limitations and shortcomings. 
First, this study used only retrospective data from the 
GEO database, and prospective studies are needed 
to confirm these findings. Second, the conclusions 
reached through data analysis in this study need to be 
further confirmed by more experiments.

Conclusions
In conclusion, our study revealed that pyroptosis 
might play an essential role in regulating the immune 
microenvironment of AS, and pyroptosis-related genes 
showed excellent discrimination for AS. Moreover, we 
identified drugs with potential therapeutic value for AS 
by CMap and molecular docking. Our study will pro-
vide new insights into the molecular mechanism, diag-
nosis, and treatment of AS.
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