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Abstract
Background  We aimed to establish an osteosarcoma prognosis prediction model based on a signature of 
endoplasmic reticulum stress-related genes.

Methods  Differentially expressed genes (DEGs) between osteosarcoma with and without metastasis from The 
Cancer Genome Atlas (TCGA) database were mapped to ERS genes retrieved from Gene Set Enrichment Analysis to 
select endoplasmic reticulum stress-related DEGs. Subsequently, we constructed a risk score model based on survival-
related endoplasmic reticulum stress DEGs and a nomogram of independent survival prognostic factors. Based on 
the median risk score, we stratified the samples into high- and low-risk groups. The ability of the model was assessed 
by Kaplan–Meier, receiver operating characteristic curve, and functional analyses. Additionally, the expression of 
the identified prognostic endoplasmic reticulum stress-related DEGs was verified using real-time quantitative PCR 
(RT-qPCR).

Results  In total, 41 endoplasmic reticulum stress-related DEGs were identified in patients with osteosarcoma with 
metastasis. A risk score model consisting of six prognostic endoplasmic reticulum stress-related DEGs (ATP2A3, ERMP1, 
FBXO6, ITPR1, NFE2L2, and USP13) was established, and the Kaplan–Meier and receiver operating characteristic curves 
validated their performance in the training and validation datasets. Age, tumor metastasis, and the risk score model 
were demonstrated to be independent prognostic clinical factors for osteosarcoma and were used to establish a 
nomogram survival model. The nomogram model showed similar performance of one, three, and five year-survival 
rate to the actual survival rates. Nine immune cell types in the high-risk group were found to be significantly different 
from those in the low-risk group. These survival-related genes were significantly enriched in nine Kyoto Encyclopedia 
of Genes and Genomes pathways, including cell adhesion molecule cascades, and chemokine signaling pathways. 
Further, RT-qPCR results demonstrated that the consistency rate of bioinformatics analysis was approximately 83.33%, 
suggesting the relatively high reliability of the bioinformatics analysis.

Conclusion  We established an osteosarcoma prediction model based on six prognostic endoplasmic reticulum 
stress-related DEGs that could be helpful in directing personalized treatment.
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Background
Osteosarcoma (OS) is the most common primary bone 
tumor that commonly arises in the osteogenic skeletons 
within membranes in both children and young adults 
[1]. OS tumors grow rapidly during the early stage of the 
disease, which is followed by systemic dissemination. 
Although the prognosis of OS has improved through the 
combination of chemotherapy and surgery, the long-term 
survival rate remains unsatisfactory in > 30% of patients 
[2]. Thus, it is challenging to improve the survival of 
patients with OS, and novel diagnostic approaches and 
therapeutic strategies are urgently needed for the same.

With the increasing knowledge of molecular profiling 
and the creation of robust model systems, various genetic 
alterations have been detected in OS. The endoplasmic 
reticulum (ER) is the first metabolic compartment for 
several biochemical processes and reactions [3]. The ER 
mainly plays is the organelle in which secretory protein 
and membrane synthesis occurs, where proteins fold into 
their native conformations [4, 5], intracellular Ca2 + is 
stored, and lipids and sterol biosynthesis occurs. Multiple 
studies have supported the role of ER stress (ERS) in OS. 
For example, Shimizu et al. demonstrated that the thera-
peutic role of calcitriol in OS was mediated through ERS 
via the downregulation of cyclin D1, activation of intra-
cellular production of reactive oxygen species, and acti-
vation of the p38 MAPK pathway [6]. Additionally, ERS 
has been reported to mediate apoptosis in human OS 
[7, 8]. Zhao et al. reported that β-elemonic acid induces 
ERS-mediated suppression of the Wnt/β-catenin path-
way and activation of the PERK/eIF2α/ATF4/CHOP 
axis in OS [9]. Taken together, these findings suggest 
that ERS-related genes may be promising molecules for 
predicting the effectiveness of ERS-based treatment 

approaches. However, the gene signatures related to ERS 
in the prognosis of OS and associated metastasis need to 
be explored further.

Therefore, in the present study, to improve the diagno-
sis of OS, we attempted to construct an OS prognostic 
prediction model based on the signature of ERS-related 
genes. First, OS-associated RNA sequencing datasets 
were downloaded and differentially expressed genes 
(DEGs) between OS with and without metastasis were 
identified. Next, candidate prognostic ERS-related genes 
were screened, and a risk score (RS) model based on the 
identified prognostic ERS-related genes and a nomogram 
survival model of independent survival prognostic factors 
were constructed. The ability of the model was assessed 
by Kaplan–Meier (KM) analysis and a receiver operating 
characteristic (ROC) curve. Our results contribute to the 
understanding of the pathogenesis and progression of OS 
metastasis with respect to ERS.

Methods
Datasets and preprocessing
The gene expression profile of OS-related RNA-seq data 
downloaded from UCSC Xena (https://xena.ucsc.edu/) 
was based on the Illumina HiSeq 2000 and used as the 
training dataset. After corresponding the clinical infor-
mation of the sample, 176 of the 265 OS samples in the 
dataset were included in the present study.

Additionally, the dataset GSE39055 was downloaded 
from the NCBI GEO database, and it was based on the 
Illumina HumanHT-12 WG-DASL V4.0 R2 expression 
beadChip platform [10, 11]. This dataset included 37 OS 
samples, of which 36 samples had corresponding clinical 
survival and prognostic information and were used as the 
validation dataset.

ERS-related differentially expressed genes (DEGs)
OS samples in The Cancer Genome Atlas (TCGA) were 
divided into two groups: with and without metastasis. 
Subsequently, the limma package (version 3.34.7) [12] 
in the R3.6.1 was used to screen DEGs between the two 
groups. The thresholds were defined as a false discovery 
rate (FDR) < 0.05, and |log2 fold change (FC)| > 0.263.

Subsequently, based on the MSigDB module in the 
Gene Set Enrichment Analysis (GSEA) database, the 
genes related to “GOBP RESPONSE TO ENDOPLAS-
MIC RETICULUM STRESS” and “GOBP REGULATION 
OF RESPONSE TO ENDOPLASMIC RETICULUM 
STRESS” were downloaded [13]. After comparison with 
the screened DEGs, the overlapping genes were selected 
as ERS-related DEGs for further analysis.

Keywords  Endoplasmic reticulum stress, Osteosarcoma, Overall survival, Survival prediction model

Table 1  The sequences of all primers
Primer Sequence (5’-3’)
GAPDH F: AGACAGCCGCATCTTCTTGT

R: CTTGCCGTGGGTAGAGTCAT

FBXO6 F: TGGAAAATCTTCTACTTCCTACGG

R: AATACTTCTTGACTTTGGGGTCAG

NFE2L2 F: TTGACATACTTTGGAGGCAAGATA

R: GTGACTGAGCCTGATTAGTAGCAA

ITPR1 F: TGTCTACACAGAGATCAAGTGCAA

R: CCACATGTGATTGCTGGTATAAAT

ERMP1 F: AATTTCTCACATAACCCCTCACAT

R: CAAGGTGTCTGTTCTTTGGATATG

USP13 F: TGACGATTTAAATAGCGACGATTA

R: GTCCTGCTTTCTGTATGGAGATTT

ATP2A3 F: TCCTTTAACGAGATCACTGCTATG

R: GAATTGCTTCATGTTGCTGTAGAT

https://xena.ucsc.edu/
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Construction of the protein–protein interaction network
The relationship between the protein products of the 
identified ERS-related DEGs was analyzed using the 
STRING database (Version 11.0) [14], and protein pairs 
were included when the interaction score was higher 
than 0.4. Based on the expression of the selected ERS-
related DEGs, the Pearson correlation coefficient (PCC) 
was calculated using the cor. function in R3.6.1. Co-
expression relationship pairs with p values less than 0.05 
and absolute PCC values higher than 0.3 were defined as 
significantly related protein–protein interaction pairs. 
We constructed and visualized the integrated network 
using Cytoscape (version 3.6.1) software [15]. Subse-
quently, enrichment analysis was performed using the 

Kyoto Encyclopedia of Genes and Genomes (KEGG, 
approved by Kanehisa laboratories, Kyoto, Japan) sig-
naling pathway [16–18] and gene ontology (GO) of bio-
logical processes to investigate the potential functional 
enrichment using the Database for Annotation, Visual-
ization, and Integrated Discovery (DAVID, Version 6.8) 
[19, 20], and p-values less than 0.05 was defined as statis-
tically significant.

Construction of prognostic model of ERS-related genes
Based on the clinical survival prognosis information 
provided in the TCGA dataset, single-factor Cox regres-
sion analysis was performed [21] to screen the ERS-
related genes that were associated with overall survival. 
Subsequently, multi-factor Cox regression analysis was 

Fig. 1  Differentially expressed genes (DEGs) in patients with osteosarcoma and overlapping endoplasmic reticulum stress (ERS)-related genes. a: Volcano 
map of DEGs in patients with osteosarcoma with and without metastasis. Red and blue dots indicate significantly upregulated and downregulated DEGs, 
respectively; horizontal dotted lines indicate false discovery rate < 0.05; and the two vertical dotted lines indicate | log2fold change| > 0.263. b: Wayne 
Chart of ERS-related genes and DEGs. c: The protein–protein interaction network of ERS-related DEGs. Blue and orange nodes represent downregulated 
and upregulated genes in the transferred samples, respectively. The size of the node indicates the significance of the difference, and the larger the node 
represents the higher significance. Red and green connections represent significant positive and negative correlation, respectively, while gray connec-
tions represent interactions. d: Column diagram of biological process. e: Column diagram of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
(www.kegg.jp/kegg/kegg1.html, Kanehisa Laboratories, Kyoto, Japan). The horizontal axis represents the number of genes, the vertical axis represents the 
item name, and the column color represents significance

 

http://www.kegg.jp/kegg/kegg1.html
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performed to screen for ERS-related genes that were 
significantly correlated with prognosis. Gene sets with 
a p value less than 0.05 were considered as statistically 
significant. Finally, survival regression analysis was per-
formed using the LASSO algorithm in the lars package 
of R3.6.1 (Version 1.2) to screen the optimal ERS-related 

genes [22]. Based on the LASSO prognostic coefficient of 
the optimized ERS-related genes and the level of expres-
sion of the target genes in the dataset, the RS model was 
constructed using the following formula: RS = ∑Coefgenes 
×Exp genes; wherein, Coefgenes is defined as the LASSO 

Fig. 2  Forest map of prognostic ERS-related genes, LASSO parameter diagram, and prognostic Kaplan-Meier (KM) curves. a: Forest map of ERS related 
genes significantly related to survival. b: LASSO parameter diagram. c: Prognostic KM curves of six optimized survival related ERS genes. Blue and red 
curves represent the groups with low and high level of expression, respectively
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prognosis coefficient of the target gene and Expgenes is 
defined as the level of expression of the target gene.

Subsequently, the RS values of the genes involved in 
the GSE39055 validation dataset and the TCGA train-
ing set were calculated. Based on the median RS values, 
we stratified the samples into high- and low-risk groups. 
The correlation between the high- and low-risk groups 
and the actual survival prognosis was evaluated using the 

Kaplan–Meier (KM) curve method in the survival pack-
age in R3.6.1 [22].

Nomogram survival rate model construction
The distribution of clinical information in samples from 
the two risk groups was further analyzed. Clinical fac-
tors associated with independent survival prognosis were 
screened using the single-factor and multi-factor Cox 
regression analysis survival packages (Version 2.41-1) in 

Fig. 3  KM curves, risk score distribution, and ROC curves of prognosis models based on ERS-related genes. a: KM curves based on the six optimized ERS-
related genes in the TCGA training set. Blue and red curves represent low- and high-risk groups, respectively. b: Risk score and the status of survival time 
based on the six optimized ERS-related genes in the TCGA training set. c: ROC curves based on the six optimized ERS-related genes in the TCGA training 
set. The numbers in brackets represent the specificity and sensitivity of the corresponding ROC curves. d: KM curves based on the six optimized ERS 
related genes in the GSE39055 dataset. Blue and red curves represent low- and high-risk groups, respectively. e: Risk score and the status of survival time 
based on the six optimized ERS-related genes in the GSE39055 data set. f: ROC curves based on the six optimized ERS-related genes in the GSE39055. The 
numbers in brackets represent the specificity and sensitivity of the corresponding ROC curves
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R3.6.1 [22], and the clinical factors with log rank p value 
less than 0.05 were defined as independent survival prog-
nosis-related factors. To evaluate the association between 
independent prognostic clinical factors and the RS model 
enrolled factors, one year, three year and five year-sur-
vival prediction models of the nomogram were evaluated 
using the rms package (version 5.1-2) in R3.6.1 [23, 24]. 
Subsequently, the C-index coefficient of the nomogram 
prognostic model was calculated using the survcomp 
package in R3.6.1 (Version 1.34.0). The C-index repre-
sented the score of all individual pairs correctly sorted 
based on Harrell’s statistics [24–26].

To analyze the net benefit of the survival-related factors 
and compare the impact of different factors on survival 
prognosis, the decision curve of a single independent 
prognostically significant clinical factor and a combina-
tion model of clinical factors were constructed using the 
rmda package in R3.6.1 (Version 1.6) [27].

Immune related analysis
Various types of immune cells are present in the tumor 
microenvironment. The proportion of immune cells in 
the OS samples was analyzed using CIBERSORT, and 
the distribution of these cells in the two risk groups was 
also analyzed [28]. Subsequently, the ESTIMATE score, 
immune score, matrix score, and tumor purity of the OS 
samples in the TCGA dataset were calculated, and the 
distribution differences of various scores in the two risk 
groups were compared using the R3.6.1 estimate package 
[29]. Finally, we calculated the correlation between the 
characteristic ERS-related genes in the RS model and the 
immune cells, and estimated scores with significant dif-
ferences using the cor function in R3.6.1. CIBERSORT is 
a tool that is used for predicting the expression matrices 
of immune cell subtype deconvolution. Differences in the 
proportion of immune cell types obtained in the previous 
step were compared using the between-group t-test func-
tion in R3.6.1.

KEGG Analysis of genes associated with risk grouping
KEGG data and related gene information was down-
loaded from the GSEA database [13]. Each KEGG sig-
naling pathway was quantified by the level of gene 
expression based on the level of whole genome expres-
sion of tumor samples in the TCGA dataset using GSVA 
in R3.6.1 (Version 1.36.3) [30]. Subsequently, the distri-
bution of each quantified pathway in the two risk groups 
was analyzed using the intergroup t-test in R3.6.1, and 
FDR < 0.05 was set as the threshold.

KEGG signaling pathways related to the high-risk 
group were obtained using GSEA [13]. Three key statis-
tical values were included in the GSEA results: nomi-
nal P value, normalized enrichment score (NES), and 
enrichment score. In general, the greater the absolute 
NES value, the smaller is the significance p or q value, 
which indicates higher enrichment and reliability of the 
results. In KEGG analysis, a p-value less than 0.05 as the 
threshold.

Real-time quantitative PCR (RT-qPCR)
Six patients with OS with metastasis and six patients 
without metastasis were recruited from Shengzhou Peo-
ple’s Hospital (Zhejiang, China), and primary tumor tis-
sue samples were collected from each patient. This study 
was approved by the Ethics Committee of the Shengzhou 
People’s Hospital (approval no. Sheng Human Medical 
Ethics 2021, No. 003), and written informed consent was 
obtained from all participants. All procedures were per-
formed in accordance with the guidelines and regulations 
of the Declaration of Helsinki.

The expression of six identified ERS-related genes that 
were significantly associated with prognosis was verified 
using RT-qPCR. Briefly, total RNA was extracted from 
tissue samples using the RNAiso Plus kit (Trizol, Takara, 
Beijing, China) following the manufacturer’s protocol, 
and was then reverse transcribed into using the Prime-
Script™ II 1st Strand cDNA synthesis kit (Takara). The 
thermal cycling conditions for RT-qPCR were as follows: 

Table 2  Clinical Prognostic Factors Prognostic Correlation Table
Clinical characteristics TCGA(N = 176) Uni-variables cox Multi-variables cox

HR 95%CI P HR 95%CI P
Age (years, mean ± sd) 61.10 ± 15.21 1.018 1.001–1.036 3.99E-02 1.01 1.003–1.309 4.70E-02

Gender (Male/Female) 72/104 1.06 0.642–1.750 8.20E-01 - - -

Pathologic tumor depth (mean ± sd) 6.35 ± 3.68 1.135 1.051–1.225 9.96E-04 1.02 0.871–1.196 8.04E-01

Pathologic tumor length (mean ± sd) 11.89 ± 7.25 1.062 1.031–1.093 3.91E-05 1.055 0.924–1.204 4.27E-01

Pathologic tumor width (mean ± sd) 8.85 ± 5.51 1.092 1.043–1.144 1.37E-04 0.999 0.845–1.183 9.97E-01

Tumor recurrence (Yes/No/-) 28/141/7 2.603 1.533–4.422 2.38E-04 1.162 0.515–2.623 7.17E-01

Tumor metastatic (Yes/No) 56/120 3.014 1.834–4.954 4.80E-06 2.969 1.471–5.996 2.40E-03

Radiotherapy (Yes/No/-) 64/110/2 0.865 0.517–1.447 5.80E-01 - - -

Tumor necrosis (No/Slight/Moderate/Severe/-) 61/35/59/11/10 1.182 0.923–1.513 1.83E-01 - - -

RS model status (High/ Low) 88/88 3.983 2.289–6.928 1.49E-07 4.851 2.258–10.423 5.19E-05
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50  °C for 3 min, 95  °C for 3 min, a total of 40 cycles at 
95  °C for 10  s and 60  °C for 30  s, followed by 95  °C for 
15 s, 60 °C for 60 s, and 95 °C for 15 s. The sequences of 
all primers used in the present study are listed in Table 1. 
GAPDH was used as the housekeeping gene. The rela-
tive expression of related genes was calculated using the 
2−ΔΔCt method.

Results
ERS-related DEGs in OS and functional performance
A total of 508 DEGs in metastatic and non-metastatic tis-
sues were identified, which included 367 downregulated 
and 141 upregulated genes; a volcanic inspection map is 
shown in Fig.  1A. In total, 256 ERS-related genes were 
downloaded from the GSEA database. After compari-
son with the screened DEGs, 41 overlapping genes, i.e., 

Fig. 4  Forest map of prognostic clinical factors, nomogram diagram of independent prognostic factors, and decision line curve. a: Forest map of clini-
cal factors related to prognosis. b: Nomogram diagram of independent prognostic factors in the nomogram survival prediction model. c: Momograph 
of one-year, three-year and five-year survival rate prediction and actual survival rate. The horizontal axis represents the predicted survival rate, and the 
vertical axis represents the actual survival rate. d: Decision line curve of independent prognosis-associated clinical factors. e: Decision line curve of the 
combined model
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ERS-related DEGs, were identified, including 23 and 18 
ERS-related DEGs that were downregulated and upreg-
ulated, respectively, in OS with metastasis compared to 
that in samples without metastasis (Fig. 1B).

The protein–protein interaction network of these 41 
ERS-related DEGs was constructed, and 166 pairs of 
related linkage pairs and 83 co-expression relationship 
pairs were identified (Fig. 1C).

As shown in Figs.  1D and E and 11 biological pro-
cesses, such as response to endoplasmic reticulum stress, 
ubiquitin-dependent ERAD pathway, and endoplasmic 
reticulum unfolded protein response, as well as eight 
KEGG pathways, such as pathways of neurodegeneration, 
multiple diseases, protein processing in endoplasmic 

reticulum, and thyroid hormone signaling pathway were 
found to be enriched by the identified ERS-related DEGs.

Prognostic model construction
In total, 15 ERS-related DEGS that were significantly 
associated with prognosis were screened, namely 
NFE2L2, ATP2A3, LRRK2, BAG6, PIK3R2, FICD, ALOX5, 
FBXO6, ERMP1, USP13, ITPR1, FAF1, BHLHA15, 
ERLEC1, and UBXN10. Furthermore, six ERS-related 
DEGs were identified as independent survival prognos-
tic ERS-related DEGs, namely FBXO6, ATP2A3, ITPR1, 
NFE2L2, USP13, and ERMP1 (Fig. 2A).

A parameter diagram of the LASSO algorithm is 
shown in Fig.  2B. Six optimal ERS-related DEGs were 

Fig. 5  Distribution and potential role of ten immune cells in the high- and low-risk groups. a: Distribution of immune cells in the high- and low- risk 
groups with significant difference, including plasma cells, CD8 + T cells, follicular helper T cells, gamma delta T cells, monocytes, M0 macrophages, M1 
macrophages, resting myeloid dendritic cells, and activated mast cells. b: ESTIMATE score in the high- and low- risk groups. c: The association of ESTIMATE 
scores and the six survival related ERS-related genes and immune cells distribution in the high- and low- risk groups with significant difference
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confirmed as independent survival prognosis-related 
genes for patients with OS metastasis. Based on the 
median expression of these six genes, the samples were 
categorized into high- and low-expression groups, and 
the correlation between the level of expression and sur-
vival prognosis was analyzed using KM curve analysis, 
as shown in Fig.  2C. Patients with OS with low expres-
sion of USP13 and ERMP1 and those with high expres-
sion of FBXO6, ATP2A3, ITPR1, and NFE2L2 had better 
survival.

The RS formula was formulated based on the expres-
sion of the six genes and the LASSO regression coeffi-
cient, as follows:

RS = (− 0.04799009 × Exp ATP2A3) + (0.04418081 × Exp 
ERMP1) + (− 0.08854917 × Exp FBXO6) + (− 0.04318914 × 
Exp ITPR1) + (− 0.14873321 × Exp NFE2L2) + (0.13858617 × 
Exp USP13).

Characterized of RS survival and prognosis risk prediction 
models
In the TCGA training set, low-risk samples stratified 
by RS values showed better overall survival than high-
risk samples (Fig. 3A). The distribution of RS values and 
survival in the high- and low-risk groups are shown in 
Fig.  3B. As shown in Fig.  3C, the area under the curve 
(AUC) of the ROC curve of these genes in the TCGA 

Table 3  KEGG pathway associated with risk grouping based on GSEA
NAME SIZE ES NES NOM p-val
KEGG_ADIPOCYTOKINE_SIGNALING_PATHWAY 57 -0.5569825 -1.7915876 0.00193424

KEGG_APOPTOSIS 78 -0.5117746 -1.65334 0.01764706

KEGG_CELL_ADHESION_MOLECULES_CAMS 117 -0.72137684 -1.6764867 0.002

KEGG_CHEMOKINE_SIGNALING_PATHWAY 164 -0.6473055 -1.7237236 0.00197629

KEGG_FATTY_ACID_METABOLISM 33 -0.5824161 -1.618102 0.01734104

KEGG_HISTIDINE_METABOLISM 21 -0.7386318 -1.6555344 0

KEGG_JAK_STAT_SIGNALING_PATHWAY 109 -0.54960704 -1.5821759 0.01171875

KEGG_PEROXISOME 67 -0.4413059 -1.6513382 0.01724138

KEGG_REGULATION_OF_AUTOPHAGY 20 -0.59448904 -1.8016571 0.00386847

KEGG_RIG_I_LIKE_RECEPTOR_SIGNALING_PATHWAY 46 -0.54924124 -1.6602743 0.03281853

KEGG_RNA_POLYMERASE 28 0.5676556 1.7359135 0.0244898

KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY 99 -0.595637 -1.6760957 0.03386454

KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY 83 -0.6178474 -1.5817055 0.01629328

KEGG_TRYPTOPHAN_METABOLISM 32 -0.67251796 -1.6750845 0.00389105

KEGG_TYROSINE_METABOLISM 27 -0.7117 -1.6309493 0.003861

KEGG_VASCULAR_SMOOTH_MUSCLE_CONTRACTION 92 -0.6447367 -1.5765048 0.01431493

Fig. 6  Heatmap of KEGG pathway between the high- and low- risk groups with significant difference
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Fig. 7  The mRNA expression of six ERS-related prognostic genes in OS patients with or without metastasis. * P < 0.05, compared with patients with OS 
without metastasis

 

database was 0.840, with a specificity of 0.869 and a sen-
sitivity of 0.785.

In the GSE39055 dataset, the risk groups that were 
predicted based on the RS model significantly correlated 
with the actual prognosis (Fig.  3D). The distribution of 
RS values and survival in the high- and low-risk groups 
are shown in Fig. 3E. As shown in Fig. 3F, the AUC of the 
ROC curve for these genes in the GSE39055 database was 
0.789, with a specificity of 0.815 and a sensitivity of 0.800.

The characterization of the nomogram survival rate model
As shown in Table 2, age, tumor metastasis, and the RS 
model were independent prognostic clinical factors, and 
OS was found to be positively correlated with age, tumor 
metastasis, and the RS model (Fig. 4A).

To further analyze the correlation between age, tumor 
metastasis, RS model factors, and survival prognosis, a 
nomogram survival rate model was constructed (Fig. 4B). 
The nomogram used the “Total points” axis in the first 
row to synthesize various clinical indicators to pre-
dict the survival period of the sample. The consistency 
between the predicted 1-year, 3-year and 5-year survival 
rates of the nomogram survival rate model and the actual 
1-year, 3-year and 5-year survival rates was analyzed and 
verified. As shown in Fig. 4C, the predicted 1-year, 3-year 
and 5-year survival rates were consistent with the actual 
1-year, 3-year and 5-year survival rates.

To assess the net earnings rate of age, tumor metasta-
sis, RS models, and a combined model of clinical factors 
for survival and prognosis, decision curve analysis was 
performed. Figure 4D and E show the prediction model 
with three clinical patients that had the highest earnings 
rate.

Immune related analysis
The infiltration of nine types of immune cells in the high-
risk group was significantly different from that in the 
low-risk group, namely plasma cells, CD8 + T cells, fol-
licular helper T cells, gamma delta T cells, monocytes, 
M0 macrophages, M1 macrophage, resting myeloid den-
dritic cell, and activated mast cell. The distribution of the 
immune cells is shown in Fig. 5A.

ESTIMATE was used to evaluate the sample scores. 
As shown in Fig. 5B, high-risk samples had significantly 
higher ESTIMATE scores and tumor purity and rela-
tively lower stromal and immune scores. RS was found 
to be significantly positively correlated with tumor purity 
and M0 macrophages, whereas it was significantly nega-
tively correlated with stromal score, immune score, ESTI-
MATE score, and the other immune cell types (Fig. 5C). 
The relationships between the six survival prognostic 
ERS-related DEGs and the four ESTIMATE scores or the 
immune cell types are shown in Fig. 5C.

KEGG analysis of the risk groups
In total, 101 KEGG signaling pathways with significant 
differences between the high- and low-risk groups were 
identified, including glycosaminoglycan biosynthesis, 
heparan sulfate, aminoacyl tRNA biosynthesis, and RNA 
polymerase. A heatmap of the top 20 KEGG signaling 
pathways according to the degree of difference is shown 
in Fig. 6.

Based on the expression in TCGA tumor samples 
and a P < 0.05, 16 KEGG pathways were found to be 
significantly related with the risk groups (Table  3). Fur-
thermore, we identified nine overlapping KEGG path-
ways between GSEA and GSVA, including histidine 
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metabolism, cell adhesion molecule cams, tryptophan 
metabolism, Toll-like receptor signaling pathway, chemo-
kine signaling pathway, RNA polymerase, Toll-like recep-
tor signaling pathway, and tyrosine metabolism.

Validation of ERS-related DEGs significantly associated 
with survival prognosis using RT-qPCR
To validate the reliability of the bioinformatics analy-
sis, six ERS-related DEGs that were significantly associ-
ated with survival prognosis (FBXO6, ATP2A3, ITPR1, 
NFE2L2, USP13, and ERMP1) were verified with RT-
qPCR. Compared to patients with OS without metasta-
sis, the expression of ATP2A3 and NFE2L2 in patients 
with OS with metastasis were found to be significantly 
decreased (P < 0.05), whereas the expression of ITRP1, 
ERMP1, and USP13 were markedly increased in patients 
with OS with metastasis (P < 0.05, Fig.  7). These results 
are consistent with the expression patterns observed in 
the bioinformatics analysis. However, no significant dif-
ference was found in the expression of FBXO6 between 
patients with OS with and without metastasis (P > 0.05; 
Fig.  7). Collectively, these results implied that the con-
sistency rate of the RT-qPCR results with those of the 
bioinformatics analysis was approximately 83.33%, which 
suggests relatively high reliability of the bioinformatics 
analysis.

Discussion
Improving the overall survival for patients with OS is a 
clinical challenge, although advancement has been made 
to a certain degree. Appropriate treatment strategies 
should be supported by accurate diagnosis and staging 
to combat this challenge. Recently, imaging and biopsies 
have become the standard diagnostic strategies for OS, 
and imaging mainly includes magnetic resonance imag-
ing, computed tomography, bone scintigraphy using 
technetium, and positron emission tomography [31]. On 
the other hand, molecular diagnosis is not widely used 
to diagnose OS. In the present study, six survival-related 
ERS genes were investigated in OS: ATP2A3, ERMP1, 
FBXO6, ITPR1, NFE2L2, and USP13. We constructed a 
RS model based on these genes and demonstrated their 
promising ability to predict survival. Furthermore, age, 
tumor metastasis, and the RS model were independent 
prognostic clinical factors for OS. The predicted nomo-
gram survival model confirmed a similar performance of 
one, three, and five year-survival rate to the actual sur-
vival rates. The distribution of the nine types of immune 
cells in the high-risk group was found to be significantly 
different from that in the low-risk group, including that 
of plasma cells, CD8 + T cells, and follicular helper T 
cells. Functional analysis showed that these survival 
prognostic ERS-related genes were significantly enriched 

in pathways related to amino acid metabolism and mem-
brane signaling.

ERS can cause aggregation of misfolded protein, which 
consequently results in dysregulation of cell proliferation 
and apoptosis [32]. Various regulatory and transcription 
factors can be triggered by an unfolded protein response 
[33]. In the present study, a survival prediction model 
based on six ERS-related DEGs including ATP2A3, 
ERMP1, FBXO6, ITPR1, NFE2L2, and USP13 was estab-
lished, which were also validated using RT-qPCR. Our 
RT-qPCR results showed that the expression of ATP2A3 
and NFE2L2 was upregulated in patients with OS with 
metastasis, while the expression of ITRP1, ERMP1, and 
USP13 was downregulated, thereby suggesting the rela-
tively high reliability of the bioinformatic analysis. Based 
on previous studies, it is known that these genes are 
involved in several cancers with respect to processes, 
such as leukotriene biosynthesis and cell apoptosis. 
ATP2A3 alteration has been reported in various types of 
tumors, and is involved in the susceptibility to multiple 
cancers in humans as a consequence of modulation of 
gene transcription and cell proliferation [34]. Zhang et al. 
reported that ATP2A3, which is upregulated after salino-
mycin treatment, may be a potential target of salomycin, 
which can suppress Ca2+ release and trigger ERS to play 
an anticancer role [35]. ERMP1 is widely expressed in 
cancers, and is an important participant in the unfolded 
protein response. Huang et al. showed that ERMP1 
knockdown inhibited cell proliferation, thereby suppress-
ing OS metastasis [36]. FBXO, a core component of the 
E3 ubiquitin ligase family, is important in multiple cel-
lular processes. Researchers have indicated that FBXOs 
play critical roles in cancer development [37]. ITPR1 is 
highly expressed in OS tissues and cells, and overexpres-
sion of ITPR1 can reportedly inhibit OS cell function 
[38]. The Nfe2l2/Hmox1 signaling pathway is involved 
in different cellular stress responses, acts wherein it 
decreases inflammatory factor levels, decreases oxidative 
damage, and inhibits cell apoptosis, thereby protecting 
tissues and organs [39]. USP13 serves as a critical regula-
tor of tumorigenesis by inhibiting tumor growth in vivo 
and suppressing lactate production, glucose uptake, and 
cell proliferation in vitro [40]. Taken together, we specu-
late that ATP2A3, ERMP1, FBXO6, ITPR1, NFE2L2, and 
USP13 play important roles in the pathogenesis and pro-
gression of OS.

Additionally, the influence of the six ERS-related DEGs 
on the prediction of OS prognosis was further explored 
by dividing the samples into high- and low-risk groups. 
We found significantly higher levels of immune cells in 
the low-risk group than that in the high-risk group, with 
the exception of M0 macrophages. Previous evidence 
suggests that prolonged immune responses and the com-
position of the tumor microenvironment are significant 
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factors that determine OS prognosis [41, 42]. Tan et al. 
previously reported that the tumor microenvironment 
was helpful in identifying the signature of immunother-
apy-relevant and prognostic genes [43]. Along with our 
results, it can be inferred that the six ERS-related prog-
nostic genes could be beneficial for predicting OS with 
or without metastasis and could be important for clinical 
decision-making and prognostication.

Age, tumor metastasis, and the RS model were inde-
pendent prognostic clinical factors for OS. Metastasis 
is a common cause of high mortality rates in various 
tumors. Additionally, patients aged > 40 years reported 
have worse survival outcomes than younger patients [44, 
45]. Meanwhile, in the present study, RS was significantly 
correlated with the four ESTIMA scores and all nine 
immune cell types, indicating that the RS model status 
had the highest influence on OS prognosis.

However, our study has some limitations. First, all sam-
ple information was downloaded from an online data-
set, and the clinical background and information were 
limited. Second, functional annotation was based on 
resources from bioinformatics analysis, which should be 
verified using clinical data. Additionally, immune-related 
genes involved in OS prognosis should be investigated in 
the future, and the specific roles of the identified ERS-
related genes that are closely related to survival prognosis 
in OS need to be further explored.

Conclusion
In conclusion, we constructed a prediction model for OS 
survival prognosis based on six survival prognostic ERS-
related DEGs and three independent prognostic factors 
that may greatly improve OS prognosis. These findings 
improve our understanding of the roles of ERS-related 
genes in OS progression and lay the foundation for the 
use of the identified six ERS-related survival prognostic 
genes as potential biomarkers to diagnose OS metastasis 
and potentials targets to develop therapeutic approaches.
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