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Abstract
Background In case of focal neuropathy, the muscle fibers innervated by the corresponding nerves are replaced 
with fat or fibrous tissue due to denervation, which results in increased echo intensity (EI) on ultrasonography. EI 
analysis can be conducted quantitatively using gray scale analysis. Mean value of pixel brightness of muscle image 
defined as EI. However, the accuracy achieved by using this parameter alone to differentiate between normal and 
abnormal muscles is limited. Recently, attempts have been made to increase the accuracy using artificial intelligence 
(AI) in the analysis of muscle ultrasound images. CTS is the most common disease among focal neuropathy. In this 
study, we aimed to verify the utility of AI assisted quantitative analysis of muscle ultrasound in CTS.

Methods This is retrospective study that used data from adult who underwent ultrasonographic examination 
of hand muscles. The patient with CTS confirmed by electromyography and subjects without CTS were 
included. Ultrasound images of the unaffected hands of patients or subjects without CTS were used as controls. 
Ultrasonography was performed by one physician in same sonographic settings. Both conventional quantitative 
grayscale analysis and machine learning (ML) analysis were performed for comparison.

Results A total of 47 hands with CTS and 27 control hands were analyzed. On conventional quantitative analysis, 
mean EI ratio (i.e. mean thenar EI/mean hypothenar EI ratio) were significantly higher in the patient group than in the 
control group, and the AUC was 0.76 in ROC analysis. In the analysis using machine learning, the AUC was the highest 
for the linear support vector classifier (AUC = 0.86). When recursive feature elimination was applied to the classifier, the 
AUC value improved to 0.89.

Conclusion This study showed a significant increase in diagnostic accuracy when AI was used for quantitative 
analysis of muscle ultrasonography. If an analysis protocol using machine learning can be established and mounted 
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Background
In the case of focal neuropathy, the muscle fibers inner-
vated by the corresponding nerves are replaced with fat 
or fibrosis due to denervation, which results in increased 
echo intensity (EI) on ultrasonography [1]. EI analysis can 
be performed visually, qualitatively, and quantitatively. 
In the case of quantitative analysis, grayscale analysis is 
performed. In this analysis, parameters such as mean 
and standard deviation (SD) are mainly used; however, 
the attainable accuracy achieved by using this param-
eter alone to differentiate between normal and abnormal 
muscles is limited [2, 3]. Recently, attempts have been 
made to increase the accuracy of diagnosis using artifi-
cial intelligence (AI) in the analysis of muscle ultrasound 
images. However, it was studied in generalized neuropa-
thy [4].

Carpal tunnel syndrome (CTS) is a disease that not 
only causes numbness in the hand as the median nerve 
is compressed at the wrist, but also causes weakness in 
the hand muscles in severe cases. It is the most com-
mon focal compressive neuropathy, with a prevalence of 
approximately 3% in the general population [5]. There-
fore, its diagnosis and appropriate treatment are very 
important for clinicians. However, no attempts have been 
made to increase the accuracy of distinguishing the hand 
with CTS and without using AI assisted quantitative 
muscle ultrasound analysis. The purpose of this study 
was to verify the utility of AI-assisted quantitative muscle 
ultrasound analysis in CTS.

Materials and methods
Subjects
This was a retrospective study that used data from adult 
who underwent ultrasonographic examination of the 

hand muscles at the Department of Physical Medicine 
and Rehabilitation, University Hospital. The patient with 
CTS confirmed by electromyography and subjects with-
out CTS were included. Electromyographic diagnosis and 
grading complied with the American Association of Neu-
romuscular and Electrodiagnostic Medicine (AANEM) 
guidelines[6, 7]. Ultrasound images of the unaffected 
hands of patients and the subjects without CTS were 
used as controls. Patients with myelopathy, myopathy, 
neuromuscular junction disease, motor cell disease, cer-
vical radiculopathy, ulnar neuropathy, and other systemic 
peripheral neuropathies were not included. This study 
was approved by the Institutional Review Board of the 
relevant institution (IRB No. 2021GR0506).

Muscle ultrasound
Ultrasonography was performed by one experienced 
rehabilitation physician using the HD15 system (Phil-
ips Ultrasound, Bothell, WA, USA) with a linear array 
transducer. Muscle ultrasonography was performed on 
the thenar muscles innervated by the median nerve and 
hypothenar muscles innervated by the ulnar nerve. The 
transverse muscle image was acquired around midpoint 
of the first (i.e. thenar muscle) or 5th metatarsal bone (i.e. 
hypothenar muscle) by placing the transducer perpen-
dicular to the bone (Total 74 hands). Of total 74 hands, 
in the 53 hands, images were only acquired around mid-
point of thenar and hypothenar muscle. In another 17 
hands, images were additionally acquired from 9 different 
sites other than the midpoint of muscles in the thenar and 
hypothenar, respectively. In the other 4 hands, images 
were additionally obtained from 10 different sites other 
than the midpoint of each muscles. These additional 
images which acquired from sites other than the mid-
point were used only in the analysis of machine learning 
not in conventional quantitative analysis. The summary 
of our dataset is presented in [Table 1]. The participants 
were instructed to fully relax their hand muscles in fore-
arm supination, wrist-neutral, and elbow extension 
positions. Ultrasound gain, dynamic range, depth, and 
transducer frequency settings were kept constant for 
all image acquisitions throughout the study (gain = 54, 
dynamic range = 59, depth = 3 cm, frequency = 65 Hz).

Data analysis
Conventional quantitative analysis
In the ultrasound images which was obtained around 
midpoint of the first (i.e. thenar muscle) or 5th 

on an ultrasound machine, a noninvasive and non-time-consuming muscle ultrasound examination can be 
conducted as an ancillary tool for diagnosis.

Keywords Muscle ultrasound, Quantitative ultrasound, Carpal tunnel syndrome, Machine learning, Artificial 
intelligence

Table 1 Dataset of ultrasound images (number of hands) for the 
machine learning analysis
Label Severity Dataset

Data 
for ML 
Training

Data 
for ML 
Test

Normal Normal 104 (19) 26 (8)

CTS Mild 31 (4) 8 (8)

Moderate 62 (16) 15 (7)

Severe 17 (8) 4 (4)

Total 214 (47) 53 (27)
CTS, carpal tunnel syndrome. Data presented above means number of image 
pairs (number of hands). A pair of images consists of thenar and hypothenar 
images, and a total of 267 pairs of images were obtained from 74 hands
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metatarsal bone (i.e. hypothenar muscle), the region of 
interest (ROI) was set manually using the ImageJ soft-
ware (Wayne Rasband, Kensington, MD) by physician. 
The ROI of the thenar muscle was set by using four 
boundaries (outer, inner, lower, upper) so that only the 
muscles innervated by median nerve is included [Fig. 1] 
[8]. The ROI of the hypothenar muscle was set by trac-
ing the border of the hypoechoic area of muscle [Fig. 1] 
[8]. Quantitative grayscale analysis of EI was performed 
automatically in program using the gray-level intensity 
histogram. The mean and SD of EI were obtained for the 
thenar and hypothenar muscles, respectively. The mean 
EI ratio of two muscles was attained by dividing the mean 
EI value of the thenar muscle by the mean EI value of the 
hypothenar muscle. This mean EI value was compared 
between hands with CTS and without.

AI analysis
We present a binary classification analysis using sev-
eral features obtained from muscle ultrasound images. 
Several features were obtained from Pyradiomics, an 
open-source platform capable of extracting a group of 
formulated features from medical images [9]. A total of 
176 radiomic features, 88 each for the thenar and hypo-
thenar areas were extracted and used as the input data to 
the machine learning (ML) classifiers for the classifica-
tion of patients with CTS. We considered the following 
ML classifiers: (a) random forest, (b) adaptive boost-
ing (AdaBoost), (c) support vector classifier (SVC), and 
(d) extreme gradient boosting (XGB). The dataset was 
split into the training and test sets at a ratio of 80:20. 
The training and test images were obtained from inde-
pendent patient groups. That is, the subjects of images 

used for machine learning ‘training’ and the subjects of 
images used for machine learning ‘test’ do not overlap 
each other. [Table 1] summarizes the datasets. Also, our 
experiment was conducted with five-fold cross-valida-
tion at each iteration, i.e., 80% of the training data were 
used for training and the remaining 20% were used for 
validation. We evaluated the classification performance 
using the following metrics: area under the ROC curve 
(AUC), precision, recall, and F1 score. Additionally, we 
performed recursive feature elimination (RFE) to iden-
tify useful features for the diagnosis of CTS form among 
the 88 features. RFE is a method for removing features of 
low importance during training until the desired number 
of features remains [10]. We performed RFE for each of 
the four classifiers, and the same performance metric was 
used after the feature was selected by applying RFE. The 
overall metric was calculated as the average of repeated 
100 times experiments for the test dataset. [Figure 2] out-
lines the overall approach to the AI analysis.

Statistical analysis in conventional analysis
Data were analyzed using SPSS version 26.0 software. 
Mann-Whitney U test was used to investigate whether 
there was a significant difference in the echo-intensity of 
thenar or hypothenar muscle and ratio of echo-intensity 
(thenar/hypothenar) between the hands with CTS and 
without Statistical significance was set at p-value < 0.05. 
ROC curve analysis was performed to set cutoff values 
and to calculate sensitivity and specificity.

Fig. 1 Representative US images of hand muscles and derived histograms. White rectangular or free hand regions of US images is region of interest (ROI). 
Mean and StdDev is the mean and standard deviation of pixel brightness in ROI. [a-b] Thenar muscle (a) and the hypothenar muscle (b) in the control 
group. [c-d] The thenar muscle (c) and hypothenar muscle (d) of a patient with moderate-degree CTS
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Results
This study analyzed 137 images of hands with CTS 
(N = 47) and 130 images of control hands (N = 27). When 
categorizing respect to severity, 12 were with mild; 23, 
moderate; and 12, severe. Baseline characteristics is 

provided in supplementary Table 1. The group of hands 
with CTS was older than the group without CTS, and 
there was no significant difference in gender and hand 
dominance between the two groups.

Fig. 2 Overview of our approach. We applied machine learning (ML) algorithms to improve prediction accuracy and to identify important features re-
quired for classification. We extracted radiomic features from the regions of interests (ROI) of thenar and hypothenar, then predicted performance using 
four ML classifiers. In addition, important features were selected by applying recursive feature elimination (RFE) to each classifier
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Conventional quantitative analysis
When quantitative analysis was performed, the mean 
thenar EI was 38.37 ± 14.80 in hands with CTS and 
32.03 ± 7.03 in the control hands. The mean hypothenar 
EI was 28.23 ± 13.03 in hands with CTS and 30.16 ± 7.86 
in the control hands. In Mann-Whitney U test, EI of 
thenar and hypothenar muscle had no significant dif-
ference between hands with CTS and without (p = 0.08, 
0.07, respectively). The mean EI ratio (i.e. mean EI 
value of the thenar muscle/mean EI value of the hypo-
thenar muscle) was 1.43 ± 0.39 and median value was 
1.33(1.16–1.63) in the hands with CTS. In the control 
hands, the mean EI ratio 1.10 ± 0.24 and the median 
value was 1.09(0.85–1.31) in the control hands. The mean 
value of SD ratio (i.e. SD of the thenar muscle/SD of the 

hypothenar muscle) was 1.02 ± 0.24 and the median value 
was 0.99(0.87–1.17) in the hands with CTS. In the con-
trol hands, the mean SD was 0.82 ± 0.15 and the median 
value was 0.81(0.72–09.96). In Mann-Whitney U test, the 
hands with CTS showed higher mean thenar/hypothenar 
EI or SD ratio (p < 0.001, respectively). In ROC analysis of 
the EI ratio, the AUC was 0.755. The sensitivity and spec-
ificity were 83.0% and 59.3% in the cut off value of 1.422. 
[(a) of Fig. 3]

AI-assisted quantitative analysis
[Table  2] describes the results of the classifiers and 
application of RFE to each classifier. [(b) – (e) of Fig. 3] 
shows the ROC curve and AUC for each classifier. RFE 
was applied to all ML classifiers excepted XGB classifier 
because its performance was better in without. All clas-
sifiers showed high AUC values of ≥ 0.80 without RFE, 
particularly in the case of SVC using a linear kernel close 
to 0.86. In addition, the linear SVC showed the highest 
performance in precision and F1 score of 0.77 and 0.82, 
respectively. Furthermore, the random forest classifier 
had the highest recall score of 0.95.

When removing features of low importance (RFE), the 
thenar and hypothenar muscles were removed as pairs. 
As a result, a total of 30 features (15 each from the thenar 
and hypothenar areas) were selected. Compared with the 
case of using all features, in the case of the XGB classifier, 
the AUC score slightly decreased from 0.81 to 0.79. How-
ever, the AUC score increased for other classifiers. There 
were commonly selected features in three or more of the 
four classifiers, which are as follows: interquartile range 
(IQR), robust mean absolute deviation (rMAD), and 
small-area emphasis. These features were deemed impor-
tant for classification. We will discuss these features in 
the following section. [Table 3] summarizes the results.

Analysis of selected features
[Supplementary Table  2] presents the definition of 
rMAD, IQR and small-area emphasis. The rMAD is the 
mean distance from the gray-level intensity mean, cal-
culated from the intensity values in the range between 
the 10th and 90th percentiles. IQR represents the range 
of the 75th and 25th percentile of the image array. The 
common characteristic of rMAD and IQR is that they 
are related to robust statistics, because those features 
exclude outliers by definition. [Figure 4] and [Fig. 5] show 
the results of rMAD and IQR features analysis which is 
used to distinguish CTS. As shown in [Fig. 4- and 5-(a)], 
the distribution of CTS groups for each features had a 
larger deviation than that of the control group. [(b) and 
(c) of Figs.  4 and 5], respectively, show that the median 
values of rMAD and IQR features of the control and CTS 
groups were similar in the hypothenar region. However, 
in the thenar region, the median value in the CTS group 

Table 2 Performance evaluation of each classifier
Classifier Performance metric

AUC Precision Recall F1 
score

Random forest 0.83 (0.008) 0.66 (0.008) 0.95 
(0.010)

0.77 
(0.007)

Random forest with 
RFE

0.86 (0.006) 0.66 (0.010) 0.95 
(0.009)

0.78 
(0.008)

AdaBoost 0.80 (0.012) 0.70 (0.016) 0.86 
(0.022)

0.77 
(0.015)

AdaBoost with RFE 0.85 (0.010) 0.72 (0.015) 0.88 
(0.017)

0.79 
(0.012)

Linear SVC 0.86 (0.007) 0.77 (0.015) 0.88 
(0.013)

0.82 
(0.011)

Linear SVC with RFE 0.89 (0.002) 0.75 (0.008) 0.88 
(0.007)

0.81 
(0.005)

XGB 0.81 (0.008) 0.66 (0.009) 0.89 
(0.015)

0.76 
(0.009)

XGB with RFE 0.79 (0.008) 0.65 (0.009) 0.86 
(0.011)

0.74 
(0.008)

AUC, area under the ROC curve; AdaBoost, adaptive boosting; SVC, support 
vector classifier; XGB, extreme gradient boosting; RFE, recursive feature 
elimination. Data are presented as performance of test data (standard 
derivative). The scores in bold are the best performance, and those in italics 
with underlines are the second best

Fig. 3 ROC curve and AUC score. (a) ROC using mean echo-intensity ratio 
(thenar/hypothenar) for distinguishing the hands with CTS. (b – e) ROC for 
each machine learning (ML) classifier. RFE was not applied to XGB classifier 
since its performance was better without RFE. (b) Random forest. (c) Adap-
tive boosting. (d) Linear support vector classifier. (e) XGB classifier
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was significantly higher than that in the control group. 
Moreover, in the thenar region, there were almost no 
outliers in the control group, whereas relatively many 
outliers existed in the hands with CTS.

Lastly, small area emphasis is based on the gray level 
size zone matrix (GLSZM) features. GLSZM is a statis-
tical representation of a bivariate conditional probability 
density function of the image distribution values of the 
gray-level zone, which is the number of adjacent pixels 
with the same gray-level intensity in the input image. 

GLSZM is useful for describing heterogeneous nonperi-
odic texture images and is well suited for the analysis of 
cell textures with speckle-like structures [11]. Small-area 
emphasis is a measure of the distribution of small-sized 
areas, where a large value indicates that there are many 
small areas with fine textures in the input image. The 
implication of this features in our study will be explained 
in the discussion.

Discussion
In this study, it was shown that the AI assisted quanti-
tative muscle ultrasound analysis improved the accu-
racy of distinguishing between the hands with CTS and 
without compared to conventional quantitative analysis. 
Although conventional quantitative analysis also showed 
higher EI ratio in the affected hand compared to the 
unaffected hand, but the AUC, sensitivity and specificity 
were not high enough. On the other hand, the AUC were 
significantly improved when ML was applied.

Among the methods for evaluating muscle EI, quantita-
tive analysis is the most sensitive method, and the detec-
tion rate for pediatric skeletal muscle disease is > 90% [12, 
13], with a sensitivity of approximately 75%, even for dis-
eases that cause less structural muscle abnormality [1]. 
However, in previous studies that applied this method for 
CTS diagnosis, Ozsoy-Unubol et al. reported a sensitiv-
ity of 71.4% and specificity of 59.4% when using the EI 
ratio [3]. In another study by Kim et al., the EI ratio had a 
relatively low AUC (0.66), indicating that its discrimina-
tive power was lower than that of muscle disease [2]. This 
is because the change in muscle EI is more pronounced 
in myogenic disease than in neurogenic disease, and the 
study by Sogawa et al. also showed a higher AUC value in 
the myogenic group than in the neurogenic group when 
compared with the value obtained in normal subjects [4].

Recently, several studies have been conducted on the 
use of AI to enhance the diagnostic performance. First, 

Table 3 RFE feature selection
Classifier AUC Selected Features
Random 
Forest

0.86 MedianAbsoluteDeviation, Entropy, Interquar-
tileRange, Kurtosis, MeanAbsoluteDeviation, 
RobustMeanAbsoluteDeviation, Unifor-
mity, JointEnergy, JointEntropy, SumEntropy, 
LargeDependenceHighGrayLevelEmphasis, 
LowGrayLevelRunEmphasis, RunVariance, Low-
GrayLevelZoneEmphasis, SmallAreaEmphasis

AdaBoost 0.85 InterquartileRange, MeanAbsoluteDeviation, 
Mean, RobustMeanAbsoluteDeviation, To-
talEnergy, Uniformity, Variance, Autocorrelation, 
Idmn, Idn, MaximumProbability, HighGrayLevel-
RunEmphasis, LowGrayLevelZoneEmphasis, 
SizeZoneNonUniformity, SmallAreaEmphasis

SVC 0.89 MedianAbsoluteDeviation, 90Percentile, 
RobustMeanAbsoluteDeviation, Autocor-
relation, Imc1, JointAverage, JointEntropy, 
MaximumProbability, SumAverage, SumEntropy, 
DependenceVariance, LargeDependence-
HighGrayLevelEmphasis, LargeDepen-
denceLowGrayLevelEmphasis, RunEntropy, 
SmallAreaEmphasis

XGB 0.79 MedianAbsoluteDeviation, Energy, Interquartil-
eRange, Uniformity, Autocorrelation, Idn, Imc1, 
LongRunLowGrayLevelEmphasis, LowGray-
LevelRunEmphasis, RunLengthNonUniformity-
Normalized, ShortRunHighGrayLevelEmphasis, 
LowGrayLevelZoneEmphasis, SizeZoneNonUni-
formity, SmallAreaEmphasis, Coarseness

RFE, recursive feature elimination; AdaBoost, adaptive boosting; SVC, support 
vector classifier; XGB, extreme gradient boosting. The features in bold are 
commonly selected

Fig. 5 Distribution of interquartile range (IQR) feature values. T_IQR de-
notes the IQR obtained from the thenar muscle and H_IQR denotes the 
IQR obtained from the hypothenar muscle. (a) Joint plot of T_IQR and H_
IQR. (b) Distribution of the T_IQR values with the box plot. (c) Distribution 
of the H_IQR values with the box plot

 

Fig. 4 Distribution of robust mean absolute deviation (rMAD) feature 
values. T_rMAD denotes rMAD obtained from the thenar muscle, and H_
rMAD denotes the rMAD obtained from the hypothenar muscle. (a) Joint 
plot of T_rMAD and H_rMAD. (b) Distribution of the T_rMAD values within 
the box plot. (c) Distribution of the H_rMAD values with the box plot
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Sogawa et al. performed texture analysis on muscle 
ultrasound images from 67 patients: 25 in the neuro-
genic group, 21 in the myogenic group, and 21 in the 
healthy group. They performed binary classification 
between each group using five ML-based classifiers (lin-
ear discriminant analysis, quadric discriminant analysis, 
k-nearest neighbors, support vector machine, and ran-
dom forest) and reported > 70% classification accuracy 
between each group, and a classification accuracy > 90% 
between the myogenic and neurogenic groups; however, 
the neurogenic group in this study included patients 
with generalized neuropathy, not focal neuropathy such 
as CTS. Among studies applying ML to CTS diagnosis, 
Sayin et al. used ML algorithms for 109 patients with 
CTS and 42 healthy individuals to detect CTS, achiev-
ing 91% CTS detection accuracy [14]. This study used 
electrophysiological findings as a variable but has the 
disadvantage of causing discomfort to the patient, owing 
to the invasiveness of the procedure. Park et al. applied 
ML classifiers to 1037 hands with CTS for categoriza-
tion according to severity, i.e., mild, moderate, and severe 
grades [15]. Since demographic factors and ultrasound 
parameter, such as cross-sectional area and palmar bow-
ing, were analyzed as variables, it required a considerable 
amount of time to collect the information for analysis. In 
contrast, in our study, several features could be extracted 
and analyzed from muscle ultrasound images that could 
be obtained within 1 min. Therefore, our method is much 
simpler and is not significantly affected by the operator’s 
skill.

In our study, we used four ML classifiers: random for-
est classifier, AdaBoost, linear SVC, and XGB. The clas-
sifiers achieved AUC scores of 0.83, 0.80, 0.86, and 0.81, 
respectively, which are at least 0.04 and up to 0.10 higher 
than the scores obtained with conventional methods 
using quantitative analysis. Furthermore, by using RFE, 
our study not only identified important features for CTS 
diagnosis among the radiological features of the the-
nar and hypothenar images but also increased the AUC 
scores of the classifiers by reducing overfitting. Among 
the 176 input features, 15 pairs were used each in the 
thenar and hypothenar muscles, and the AUC score 
increased by up to 0.89 in the case of linear SVC.

The features selected through RFE were rMAD, IQR, 
and small-area emphasis. rMAD and IQR suppress out-
liers and are related to robust statistics. Because these 
features are commonly selected as important discrimi-
native features, the impact of outliers on classification 
performance was deemed significant. Indeed, a signifi-
cant part of the outliers in the muscle ultrasound image 
is the hyperechoic fibroadipose septa corresponding to 
the perimysium. Because the perimysium is not a muscle 
fiber, there is no change in signal intensity depending on 
whether denervation is present. Therefore, if this region 

is included in the analysis, the increase in muscle signal 
intensity due to neurogenic disease may be diluted, and 
this is why rMAD or IQR, which excludes outliers, is 
helpful in improving discrimination performance.

The thenar region of the hands with CTS appeared 
to have more grayish substances with varying levels of 
intensity and more speckle-like structures in fine pat-
terns than those of the control hands. The implication 
was that images of the thenar regions of the hands 
with CTS tend to have a greater small-area empha-
sis. In the normal muscle, all muscle fibers, except the 
perimysium, are homogeneous hypoechoic. Because 
partial denervation occurs as the neurogenic disease 
progresses, the normal hypoechoic region and dener-
vated hyperechoic region are mixed and the size of the 
region with similar signal intensity tends to decrease. 
As an analogy, this is similar to the difference between 
gravel and sand grains. Accordingly, the small-area 
emphasis was deemed to be relatively higher in the 
hands with CTS.

Our study had some limitations. First, muscle ultra-
sound texture images vary with age or sex, but a sub-
group analysis was not performed because of the 
insufficient number of subjects. Second, because of the 
insufficiency of data for a finer classification based on 
the four classes of severity grades, i.e., normal, mild, 
moderate, and severe, the subjects of this study were 
limited to the binary classification for control hands 
and hands with CTS. To overcome these limitations, in 
a follow-up study, we plan to construct a dataset with 
a larger number of patients and an even distribution 
in terms of demographic factors and severity. Finally, 
since our method used texture feature of the the-
nar and hypothenar regions, ROIs in the images were 
manually annotated by clinicians. In our future study, 
we plan to use a deep neural network (DNN) which 
automatically extracts features, and does not need the 
ROI annotation. The DNN-based model is expected to 
achieve a higher accuracy as well.

In conclusion, this is the first study to use AI-assisted 
quantitative analysis of muscle ultrasonographic find-
ings in CTS. We propose an ML-based classification 
using muscle texture features on ultrasound images. 
We applied RFE to our models to improve CTS clas-
sification accuracy and confirmed that the commonly 
selected features were clinically significant. Among the 
ML models, linear SVC had the best performance; if 
RFE was applied, it showed an AUC of 0.89, which is 
an improvement of 0.13 compared with the conven-
tional quantitative analysis. Therefore, the proposed 
method could be utilized by physicians as a useful tool 
to assist in CTS diagnosis and understand the echo 
patterns observed in the ultrasonography of patients 
with CTS.
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