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Abstract 

Objective The aim of this study was to search for key genes in ankylosing spondylitis (AS) through comprehensive 
bioinformatics analysis, thus providing some theoretical support for future diagnosis and treatment of AS and further 
research.

Methods Gene expression profiles were collected from Gene Expression Omnibus (GEO, http:// www. ncbi. nlm. nih. 
gov/ geo/) by searching for the term "ankylosing spondylitis". Ultimately, two microarray datasets (GSE73754 and 
GSE11886) were downloaded from the GEO database. A bioinformatic approach was used to screen differentially 
expressed genes and perform functional enrichment analysis to obtain biological functions and signalling pathways 
associated with the disease. Weighted correlation network analysis (WGCNA) was used to further obtain key genes. 
Immune infiltration analysis was performed using the CIBERSORT algorithm to conduct a correlation analysis of key 
genes with immune cells. The GWAS data of AS were analysed to identify the pathogenic regions of key genes in AS. 
Finally, potential therapeutic agents for AS were predicted using these key genes.

Results A total of 7 potential biomarkers were identified: DYSF, BASP1, PYGL, SPI1, C5AR1, ANPEP and SORL1. ROC 
curves showed good prediction for each gene. T cell, CD4 naïve cell, and neutrophil levels were significantly higher 
in the disease group than in the paired normal group, and key gene expression was strongly correlated with immune 
cells. CMap results showed that the expression profiles of ibuprofen, forskolin, bongkrek-acid, and cimaterol showed 
the most significant negative correlation with the expression profiles of disease perturbations, suggesting that these 
drugs may play a role in AS treatment.

Conclusion The potential biomarkers of AS screened in this study are closely related to the level of immune cell infil-
tration and play an important role in the immune microenvironment. This may provide help in the clinical diagnosis 
and treatment of AS and provide new ideas for further research.
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Introduction
Ankylosing spondylitis (AS) is an immune-related 
chronic inflammatory disease. In the more severe stage of 
the disease, inflammation can lead to fibrosis and calci-
fication of spinal joints and loss of flexibility and fusion, 
causing severe pain and disability and bringing significant 
physical and social burden to patients [1]. In addition to 
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back pain and progressive spinal ankylosis, extra-articu-
lar symptoms include psoriasis, inflammatory bowel ill-
ness, and acute anterior uveitis [2]. The prevalence of AS 
varies by region, from 0.74% in Africa to 3.19% in North 
America [3]. In addition to ethnic factors, the incidence 
of AS has shown genetic and gender-related associations 
[4], and earlier research has highlighted the significance 
of immunological and genetic variables in AS, specifi-
cally, the close relationship between AS and HLA-B27, 
but the overall genetic risk associated with HLA-B27 in 
AS is less than one-third, suggesting that there may be 
other factors influencing the occurrence and develop-
ment of AS and that the aetiology of AS remains unclear 
[5, 6]. Because the onset of AS is insidious and it is dif-
ficult to detect obvious imaging manifestations in the 
early stage, the diagnosis is often delayed. It is estimated 
that patients have presented symptoms for approximately 
1 year at the time of referral in the United States, and the 
delay in referral in Western Europe and the rest of the 
world may be more than 3 years [7], a situation that usu-
ally leads to delays in AS treatment and loss of the opti-
mal time for treatment.

Currently, AS is not completely curable, and pharma-
cological treatment remains the mainstay treatment for 
AS, with some patients with severe disease requiring sur-
gical intervention [1, 8]. The traditional treatment is non-
steroidal anti-inflammatory drugs and physical therapy. 
In recent years, anti-tumour necrosis factor drugs and 
IL-23/17 pathway inhibitors have been increasingly used 
in clinical practice [9]. However, the treatment of AS is 
difficult, and most patients need lifelong medication to 
control their symptoms. Therefore, the search for new 
diagnostic and therapeutic targets is urgently needed. By 
uncovering and elucidating the molecular mechanisms of 
AS, it is possible to identify new avenues for future AS 
treatment.

Bioinformatics analysis is increasingly used for micro-
array data analysis to identify disease markers [9]. 
Weighted gene coexpression network analysis (WGCNA) 
is a new systems biology approach for identifying can-
didate biomarkers or therapeutic targets [10]. To search 
for potential markers of AS and the specific signalling 
pathways involved, we performed WGCNA on two AS 
microarray datasets in the GEO database. Genome-
wide association studies (GWAS) have identified genetic 
variants that affect many complex traits [11]. To iden-
tify the pathogenic regions of key genes in ankylosing 
spondylitis, we used AS GWAS data to identify SNP 
pathogenic regions corresponding to key genes. The rela-
tionship between differentially expressed genes (DEGs) 
and immune infiltration was analysed using the CIBER-
SORT algorithm [12]. To further explore the molecu-
lar mechanism of core genes, we performed gene set 

enrichment analysis (GSEA) to investigate the relation-
ship between key genes and pathogenic genes and per-
formed regulatory network analysis of key genes. Finally, 
we predicted the drugs that may have therapeutic effects 
on AS through the CMap database. We believe this study 
will help to identify new potential biomarkers and new 
therapeutic approaches for AS.

Materials and methods
Prepare the data
The GSE73754 data file was downloaded from the NCBI 
GEO public database; the annotation platform was 
GPL10558, with a total of 72 sets of transcriptome data 
containing a control group (n = 20) and disease group 
(n = 52). The series matrix file data file of GSE11886 was 
downloaded, and the annotation platform was GPL570, 
with a total of 17 groups of transcriptome data, includ-
ing a control group (n = 9) and disease group (n = 8). The 
SVA algorithm was applied for batch correction of data 
between the chip, and limma package was used to iden-
tify molecular mechanisms associated with disease, with 
genetic screening conditions of | logFC |> 0.585 and p 
values < 0.05.

Functional enrichment analyses of DEGs
The Metascape database (www. metas cape. org) was used 
for annotation and visualization to obtain the biological 
functions and signalling pathways involved in the dis-
ease occurrence process. Gene Ontology (GO) analysis 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis were performed for specific genes [13]. 
A minimum overlap number ≥ 3 and p ≤ 0.05 were con-
sidered statistically significant.

Weighted gene coexpression network analysis (WGCNA)
The WGCNA-R package was used to construct a coex-
pression network of all genes in the downloaded dataset. 
The soft threshold was set to 7, and 10 000 genes with 
the largest variance were screened for the next analysis. 
WGCNA networks were constructed to explore relevant 
coexpression networks in AS [10]. An ROC curve was 
used to verify the diagnostic efficacy, and the AUC value 
was positively correlated with the prediction effect.

GWAS analysis
The Gene Atlas database is a large database document-
ing associations between hundreds of traits and millions 
of variants with the use of the UK Biobank cohort. These 
associations were calculated using 452,264 UK individu-
als in the UK Biobank database, encompassing a total of 
778 phenotypes with a total of 30 million loci [11].

http://www.metascape.org
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Immunoinfiltration analysis
The CIBERSORT method can be used to identify 22 
human immune cell phenotypes, including T cell, B 
cell, plasma cell and myeloid cell subsets. In this study, 
the CIBERSORT algorithm was used to analyse the 
data in the public database, the relative proportion of 
22 immune infiltrating cells was obtained using the 
algorithm, and the correlation between gene expression 
and immune cell content was analysed [12].

GSEA
Core genes were ranked according to their differential 
expression in the two classes of samples using a prede-
fined set of genes, and then, whether the predefined set 
of genes was enriched at the top or bottom of this rank-
ing table was checked. In this study, GSEA was used to 
compare differential signalling pathways between the 
high expression group and the low expression group 
and to explore the molecular mechanism of core genes 
in the two groups of patients.

Analysis of the regulatory network of core genes
All calculations performed using RcisTarget are based on 
motifs. The standardized enrichment scores (NES) for 
motifs depend on the total number of motifs in the data-
base. In addition to the motifs annotated using the source 
data, we also inferred further annotation files based on 
motif similarity and gene sequence. The overexpression 
of each motif in a gene set was estimated by calculating 
the area under the curve (AUC) for each motif-motif pair. 
The NES of each motif was calculated from the AUC dis-
tribution of all motifs in the gene set [14].

CMap drug prediction
Connectivity Map (CMap) [15] is an intervention gene 
expression profile database. It is mainly used to reveal 
functional associations between small molecule com-
pounds, genes, and disease states. It contains 1309 
microarray data sets from five human tumour cell lines 
before and after treatment with small molecule drugs. 
We used DEGs in AS to predict potential targeted ther-
apeutic agents.

Statistical analysis
Statistical analyses were performed with R, version 4.0, 
and p values of less than 0.05 were considered to indi-
cate statistical significance.

Results and discussion
Screening of differentially expressed genes (DEGs)
We downloaded the GSE73754 (Table S1) and 
GSE11886 (Table S2) ankylosing spondylitis-related 

datasets from the GEO database, which included 
expression profile data from 89 groups of patients, 
including the normal group (n = 29) and the dis-
ease group (n = 60). The microarray data were cor-
rected using the SVA algorithm. The results corrected 
by the SVA algorithm showed that the batch effect 
between chips was reduced (Fig. 1a, b). We next calcu-
lated DEGs between the AS-combined control groups 
using the limma package in R language. According to 
the p < 0.05 and | logFC |> 0.585 standard for differ-
ences in gene screening, 48 different genes were finally 
selected (Fig. 1c-d). Among them, 24 genes were highly 
expressed, and 24 genes were expressed at low levels. 
We next searched the PPI network of differentially 
expressed genes using the String database and visual-
ized the PPI network through Cytoscape. (Fig. 1e).

Functional enrichment analyses of DEGs
Next, we performed pathway analysis of DEGs using the 
Metascape (www. metas cape. org) database. Finally, the 
major GO pathways enriched by DEGs were cytolytic 
granule, leukocyte activation, immune receptor activ-
ity regulation of cell killing, adaptive immune response 
and other pathways; the enriched KEGG pathways were 
apoptosis and haematopoietic cell lineage (Fig. 2).

WGCNA
To further identify the core genes affecting ankylos-
ing spondylitis, we constructed WGCNA networks by 
combining expression profile data to explore relevant 
coexpression networks in the disease. The soft threshold 
was set to 7, and then, the gene modules were detected 
according to the TOM matrix (Table S3). The correla-
tions between modules and traits were further analysed, 
and we finally found the highest correlation for the pur-
ple module (cor = 0.44, p = 2e-05). We further intersected 
the differentially expressed genes with the genes in the 
purple module and obtained seven intersecting genes: 
DYSF, BASP1, PYGL, SPI1, C5AR1, ANPEP, and SORL1 
(Fig. 3a-e).

ROC curves for the seven key genes
The diagnostic efficacy was verified by ROC curve anal-
ysis. A high AUC represents a good prediction effect. 
The AUC values for the seven key genes were as fol-
lows: DYSF-AUC: 0.753 (0.645–0.862), BASP1-AUC: 
0.761 (0.657–0.864), PYGL-AUC: 0.729 (0.611–0.846), 
SPI1-AUC: 0.786 (0.691–0.882), C5AR1-AUC: 0.739 
(0.632–0.846), ANPEP -AUC: 0.735 (0.630–0.840) and 
SORL1-AUC: 0.786 (0.681–0.886). The AUC values for 
the seven candidate biomarkers suggest their good pre-
dictive performance for AS. (Fig. 4).

http://www.metascape.org
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GWAS to confirm the pathogenic regions of core genes 
in ankylosing spondylitis
Next, we analysed GWAS data for ankylosing spondy-
litis to identify the pathogenic regions of 7 key genes in 
ankylosing spondylitis. As shown in Fig.  5A, the Q-Q 
plots show the significant single nucleotide polymor-
phism (SNP) loci associated with ankylosing spondylitis 

identified in the GWAS data (Fig. 5a). The key SNP loci 
distributed in the enriched region were described by pre-
cise spotting of the GWAS data (Fig. 5b). The SNP patho-
genic regions corresponding to seven genes are shown, 
including DYSF in the pathogenic region of chromosome 
2, BASP1 in the pathogenic region of chromosome 5, 
PYGL in the pathogenic region of chromosome 14, SPI1 

Fig. 1 Identification of differentially expressed genes in AS. a and b The interchip batch effect was reduced after SVA algorithm correction. c and 
d Volcano plot and heatmap of DEGs between normal and disease groups, with differentially expressed gene screening conditions of P < 0.05 and 
|logFC|> 0.585; (e) PPI network of DEGs
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in the pathogenic region of chromosome 11, C5AR1 in 
the pathogenic region of chromosome 19, ANPEP in the 
pathogenic region of chromosome 15, and SORL1 in the 
pathogenic region of chromosome 11 (Fig. 5c-i). The cor-
responding significant SNP loci for the seven genes are 
shown in the supplementary materials (Table S4).

Immune cell infiltration analysis
The role of the immune microenvironment in disease 
diagnosis and prognosis is important in clinical practice. 
By analysing the relationship between the key genes and 
immune infiltrating cells in the dataset, the mechanism 
by which the key genes affect the progression of ankylos-
ing spondylitis was identified. The immune cell content 
of each patient is shown in Fig. 6a. There were multiple 
significant correlation pairs between immune infiltration 
levels (Fig. 6b). The CD4 naive T-cell and neutrophil lev-
els were significantly increased in the AS group (Fig. 6c). 
We performed Spearman correlation analysis of 7 core 
genes with immune cells and found that these 7 key genes 
had a strong correlation with immune cells (Fig.  7a-g). 
This indicates that the key genes we obtained are closely 

related to the degree of infiltration of immune cells and 
play an important role in the immune response.

Signalling pathways associated with the characteristic 
genes
We further performed GSEA to determine which signal-
ling pathways the key genes were involved in. The results 
of GSEA showed that the main enriched pathways of 
DYSF were KEGG FOCAL ADHESION, KEGG GNRH 
SIGNALING PATHWAY, KEGG MAPK SIGNAL-
ING PATHWAY, and KEGG STARCH AND SUCROSE 
METABOLISM SIGNALING PATHWAY. The main 
enriched pathways of BASP1 were KEGG LEUKOCYTE 
TRANSENDOTHELIAL MIGRATION, KEGG MAPK 
SIGNALING PATHWAY, KEGG NEUROTROPHIN 
SIGNALING PATHWAY, and KEGG STARCH AND 
SUCROSE METABOLISM. The main enriched path-
ways of PYGL were KEGG AXON GUIDANCE, KEGG 
FOCAL ADHESION, KEGG MELANOGENESIS, and 
KEGG STARCH AND SUCROSE METABOLISM. The 
main enriched pathways of SPI1 were KEGG AXON 
GUIDANCE, KEGG FOCAL ADHESION, KEGG MEL-
ANOGENESIS, and KEGG STARCH AND SUCROSE 

Fig. 2 Functional enrichment analysis of DEGs
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METABOLISM. The main enriched pathways of C5AR1 
were KEGG ADHESION, KEGG FOCAL ADHESION, 
KEGG MELANOGENESIS, and KEGG STARCH AND 
SUCROSE METABOLISM. The main enriched pathways 

of ANPEP were KEGG AXON GUIDANCE, KEGG 
LEUKOCYTE TRANSENDOTHELIAL MIGRATION, 
KEGG MELANOGENESIS, and KEGG STARCH AND 
SUCROSE METABOLISM. Finally, the main enriched 

Fig. 3 WGCNA. a Clustering heatmap of the control and AS groups; (b) scale-free exponent and mean connectivity; (c) dendrogram of gene 
clusters; (d) heatmap of the correlations. The purple module had the highest correlation. (e) A Venn diagram was generated to show the 
intersection of the purple module with differentially expressed genes
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pathways of SORL1 were KEGG ALDOSTERONE REG-
ULATED SODIUM REABSORPTION, KEGG FOCAL 
ADHESION, KEGG MELANOGENESIS, and KEGG 
REGULATION OF ACTIN CYTOSKELETON (Fig. 8a-g 
and Table S5).

Analysis of the regulatory network of key genes
We analysed the regulatory networks of key genes and 
showed that they are regulated by multiple transcription 
factors. Therefore, we used cumulative recovery curves 

for enrichment analysis of these transcription factors 
(Fig.  9a-b). Motif-TF annotation and important gene 
selection analysis showed that cisbp__M2110 was the 
motif with the highest standardized enrichment score 
(NES: 5.09). Four key genes were enriched in this motif 
(Fig. 9c).

Differential analysis of pathogenic genes in AS
We obtained the pathogenic genes associated with anky-
losing spondylitis through the GeneCards database. 

Fig. 4 Predictive efficacy of key genes for the disease. The AUC values of the seven key genes suggest their good predictive performance for AS
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Fig. 5 Confirmation of key genes in the pathogenic region of ankylosing spondylitis using GWAS data. a Q-Q plot showing significant single 
nucleotide polymorphism (SNP) loci associated with AS; (b) key SNP loci distributed in the enriched region; (c-i) SNP pathogenic regions 
corresponding to each of the seven genes (DYSF, BASP1, PYGL, SPI1, C5AR1, ANPEP, SORL1)
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Differential analysis of AS pathogenic genes revealed that 
the expression of the IL10, IL17A, IL23R, TLR4, TNF, 
and TNFRSF1A genes differed between the two groups 
(Fig. 10a). Next, we performed correlation analysis of key 
genes and regulatory genes of AS, and the expression 
levels of key genes and several ankylosing spondylitis-
related genes were significantly correlated, with SORL1 
significantly negatively correlated with TNF (Pearson 
r = -0.3) and BASP1 significantly positively correlated 
with TNFRSF1A (Pearson r = 0.77). The correlation of 
disease-related regulatory genes is shown in Fig.  10b. 

We also reverse predicted 7 key genes using the miRcode 
database and obtained 85 miRNAs with 234 mRNA‒
miRNA relationship pairs (Fig. 11).

Prediction of potential drugs against AS
In addition, differentially upregulated and downregulated 
genes were used in the Connectivity Map database for 
drug prediction, and the results showed that the expres-
sion profiles of ibuprofen, forskolin, bongkrek-acid, and 
cimaterol drug perturbations were most significantly 
negatively correlated with the expression profiles of 

Fig. 6 Immune cell infiltration analysis. a Immune cell volume; (b) Pearson correlation between 22 immune cells. c Violin plot of the differences in 
infiltrating immune cells between the AS (red) and control (blue) groups
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disease perturbations, suggesting that the drugs are use-
ful for inhibiting or even reversing the progression of AS 
(Fig.  12). Drug prediction results are in the supplemen-
tary material (Table S6).

Discussion
AS is a genetic disease with a complex pathogenesis 
and poor treatment outcome. Although there are many 
studies on AS in which associated episodic or suscepti-
bility genes have been reported, the pathogenesis is still 
unclear and needs to be further explored. Among the 

many susceptibility genes for AS, HLA-B27 is by far the 
most important [1, 16]. There are two most likely expla-
nations for the pathogenic mechanism of HLA-B27 in 
AS: one may be its involvement in antigen presentation 
and arthritogenic peptide production, and the other may 
be its involvement in endoplasmic reticulum stress and 
the autophagic response [17]. However, the fact that 
many individuals with human leukocyte antigen B27 
will never develop ankylosing spondylitis suggests that 
there might be other susceptibility factors that influence 
the development and progression of AS [18]. Therefore, 

Fig. 7 Correlation between key genes (DYSF, BASP1, PYGL, SPI1, C5AR1, ANPEP, SORL1) and immune cells (a–g)
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further searching for other potential susceptibility factors 
is needed. This study explores the potential molecular 
mechanisms of AS using a comprehensive bioinformat-
ics analysis approach to provide ideas for new treatment 
strategies.

Many previous studies have found that certain 
immune-related pathways are significantly enhanced 
in AS patients [19, 20]. Consistently, in our study, the 

results of functional enrichment analysis showed that 
DEGs were significantly associated with immune-related 
functions and inflammatory signals. The enriched KEGG 
pathways were cytolytic granule and leukocyte activa-
tion. The enriched KEGG pathways were cytolytic gran-
ule, leukocyte activation, immune receptor activity, 
regulation of cell killing, and adaptive immune response. 
The enriched KEGG pathways were apoptosis and 

Fig. 8 GSEA. a-g Specific signalling pathways associated with the seven key genes (DYSF, BASP1, PYGL, SPI1, C5AR1, ANPEP, and SORL1)
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haematopoietic cell lineage. These results suggest that the 
immune response plays a key role in the course of AS.

Focus must be placed on the immune microenviron-
ment in the diagnosis and treatment of diseases. To 
further explore the potential mechanisms of key genes 
in AS, using the CIBERSORT algorithm, we found 
that naive CD4 T-cell and neutrophil levels were sig-
nificantly increased in the disease group samples. Our 
study also found that most of the key genes were posi-
tively correlated with neutrophils and M0 macrophages 

and negatively correlated with resting NK cells and CD8 
T cells, further confirming that immune disorders are 
important for the progression of AS.

CD4 + T cells have been implicated in the pathogen-
esis of many types of inflammatory arthritis and produce 
the pro-inflammatory cytokine IL-17 (Th17) [21]. The 
reciprocal influence between CD4 + T cells and human 
leukocyte antigen B27 leads to a cascade of chemokines 
and cytokines that promote inflammatory responses and 
bone erosion in AS [22]. Previous studies have confirmed 

Fig. 9 Analysis of key gene regulatory network. a and b Results of enrichment analysis of cumulative recovery curves. c Sequences of enriched 
genes and their corresponding transcription factors
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that naive CD4 + /CD8 + T cells are increased, while 
memory CD4 + /CD8 + T cells and terminally differen-
tiated CD4 + /CD8 + cells are decreased in AS patients 
[23], and the course of disease has been found to be posi-
tively correlated with the initial CD4 + level [24]. TNF-α 
inhibitors, clinically used anti-AS drugs, act by increas-
ing the proportion of negative regulatory T cells and 
decreasing the proportion of naive CD4 + T cells in AS 
patients. (e.g., Tregs and Bregs) [23, 25]. Leukocytes are 
an important component of the innate immune system 
and usually play a key role in the chronic inflammatory 

response of autoimmune diseases [26], and GSEA results 
indicated that most key genes were enriched in the leu-
kocyte migration pathway, consistent with previously 
reported results [27, 28].

According to previous reports, glycogen phosphory-
lase (PYGL) and complement component 5a receptor 
(C5aR1) promote the inflammatory response in psoriasis 
[29]. Neutrophils can store large amounts of glycogen, 
and inhibition of PYGL reduces the number of neu-
trophil extracellular traps [30]. C5a/C5aR1 is essen-
tial for neutrophil re-recruitment in tissues in response 

Fig. 10 Differential analysis of pathogenic genes in ankylosing spondylitis. a Differential expression of AS pathogenic genes between the control 
(blue) and AS (pink) groups. b Correlation analysis between AS-related genes and key genes
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to immunoglobulin autoantibody deposition [31]. The 
results from Zheng et al. showed that C5a/C5aR1 signal-
ling enhanced the recruitment of plasmacytoid dendritic 
cells, monocytes and neutrophils [32]. Sortilin-related 
receptor 1 (SORL1) is now known to be closely related 
to the pathogenesis of familial and sporadic Alzhei-
mer’s disease [33, 34]. A recent study found that SORL 
is closely associated with AS and may be a key factor in 
the pathogenesis of AS. In that study, neutrophil counts 
were significantly higher in AS patients than in con-
trols, and neutrophil counts were positively correlated 

with the expression of SORL. This is consistent with our 
findings [35]. In the past, desmoplakin (DYSF) has been 
studied as one of the most common subgroups causing 
dysferlinopathy (autosomal recessive limb-girdle mus-
cular dystrophy) [36]. STAT3 has been reported to be a 
possible upstream regulator of DYSF [37], and the two 
are strongly correlated. STAT3 is involved in the regula-
tion of Th17 cell development and thus in activation of 
the IL-23/IL-17 axis and contributes to the development 
of several inflammatory diseases [38, 39]. It has recently 
been reported that STAT3 and SPI1 may be involved 

Fig. 11 Inverse prediction of seven key genes using the miRcode database yielded 85 miRNAs, with a total of 234 mRNA‒miRNA relationship pairs
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in osteoblast differentiation and bone formation in AS 
patients through the MAPK signalling pathway, JAK/
STAT and Wnt receptors [40]. The GSEA results showed 
that the DYSF gene was enriched in the MAPK signal-
ling pathway, suggesting that DYSF may be involved in 
osteoblast differentiation and bone formation in AS. In 
addition, SPI1 plays an important role in the osteoblast 
differentiation of dental pulp stem cells by binding to 
the noggin promoter and repressing noggin expression 
[41]. This may explain the occurrence of ectopic ossifica-
tion in AS, which in turn leads to spinal fusion. Recently, 
many researchers have found that PU.1, encoded by the 
SPI1 gene, affects the differentiation and function of a 
variety of myeloid cells and plays an important role in 
the transcriptional control of certain immune cells and 
susceptibility to immune diseases [42, 43]. For example, 
PU.1 can facilitate the progression of rheumatoid arthri-
tis by inducing fibroblast-like synoviocytes and inhibiting 
macrophages [44] and promotes the expression of pro-
inflammatory cytokines by inhibiting miR-150 in autoim-
mune encephalitis macrophages [45]. Brain acid-soluble 
protein 1 (BASP1) is highly expressed in brain tissue 
and promotes brain tissue development by participating 
in axon regeneration. In essence, Basp1 is a membrane-
bound protein [46, 47] that plays a role in apoptosis, 
differentiation and transcriptional regulation and is a 
potential tumour suppressor [48, 49]. As an enzyme, 
ANPEP (CD13) plays an important role in the patho-
genesis of multiple inflammatory diseases by regulating 
the activity of several cytokines through cleavage of the 
N-terminus and by cutting down the polypeptides bound 
to MHC II involved in antigen processing, which can reg-
ulate the development and activity of immune cells [50].

The GSEA results revealed that key genes may influ-
ence the development of AS through multiple biologi-
cal processes and signalling pathways. These pathways 
mainly include leukocyte transendothelial migration, 
focal adhesion signalling pathway, MAPK signalling 

pathway, axon guidance, and neurotrophic factor sig-
nalling pathway. These results suggest that the patho-
genesis of AS is closely related to the immune and 
inflammatory responses, and lay the foundation for fur-
ther studies of AS immunotherapy.

Through differential analysis of known ankylos-
ing spondylitis morbigenous genes in the Gene Cards 
database, we found that the expression of the IL10, 
IL17A, IL23R, TLR4, TNF, and TNFRSF1A genes dif-
fered between the two groups of patients, with BASP1 
expression levels significantly and positively correlated 
with TNFRSF1A expression levels (Pearson r = 0.77), 
and that SORL1 was significantly negatively correlated 
with TNF (Pearson r = -0.3). A total of 85 miRNAs and 
234 mRNA‒miRNA relationship pairs were obtained 
via reverse prediction of 7 core genes through the miR-
code database. However, more studies are required to 
explore the specific molecular mechanisms involved.

Genetics plays a significant role in the pathogenesis 
of AS, and in recent years, there has been an increas-
ing focus on genetic factors in AS, leading to the dis-
covery of several drugs [51]. The Gene Atlas genetic 
mapping database uses the UK Biobank cohort to docu-
ment relevance between hundreds of traits and mil-
lions of variants, with ankylosing spondylitis having 
the greatest SNP genetic power and a high susceptibil-
ity [11]. Disease-associated variants can be identified 
through GWAS, and GWAS have recorded more than 
100 motifs, including those involved in antigen presen-
tation, Th17 response, macrophages and T cells, espe-
cially HLA-B27 and ERAP1, with strong associations 
with AS pathogenesis [52–54]. It is difficult to iden-
tify the SNP sites of pathogenic genes, which limits 
the translation of genetic research results to clinical 
practice [55]. In this study, we analysed GWAS data in 
ankylosing spondylitis and identified the pathogenic 
regions of seven core genes in ankylosing spondylitis, 
described the key SNP loci distributed in the enriched 

Fig. 12 Chemical structures of the four potential drugs: (a) ibuprofen; (b) forskolin; (c) bongkrek-acid; (d) cimaterol
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regions, and demonstrated the SNP pathogenic regions 
corresponding to the seven genes.

We used the Connectivity Map database to predict 
potentially useful drugs for AS treatment and found that 
the expression profiles of ibuprofen, forskolin, bongkrek-
acid, and cimaterol drug perturbations were most signifi-
cantly negatively correlated with the expression profiles 
of disease perturbations. These results indicate that these 
drugs may have an inhibitory effect on the progression of 
AS.

It must be admitted that our research has certain limi-
tation. First, our results were based on bioinformatics 
analysis of public databases, which may have incomplete 
or poorly updated data. Second, we have not yet vali-
dated our results with clinical samples or cellular assays. 
It is anticipated that further studies will include addi-
tional clinical samples and our results will be validated in 
laboratory analyses.

Conclusions
Through the present bioinformatics analysis, we iden-
tified seven key genes as potential markers of AS and 
further explored the various biological functions and 
pathways through which they affect AS progression, 
especially playing an important role in immune-related 
pathways. This provides a new direction for further 
exploring the pathogenesis of AS and improving the diag-
nosis and management of AS cases.

Abbreviations
AS  Ankylosing spondylitis
DEGs  Differentially expressed genes
GEO  Gene Expression Omnibus
GSEA  Gene set enrichment analysis
GO  Gene Ontology
KEGG  Kyoto Encyclopedia of Genes and Genomes
WGCNA  Weighted gene coexpression network analysis
PPI  Protein‒protein interaction
GWAS  Genome-wide association studies
ROC  Receiver operating characteristic
CMap  Connectivity Map

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12891- 023- 06550-3.

Additional file1: Table S1. Dataset GSE73754. Table S2. Dataset 
GSE11886. Table S3.Gene profile of each module in WGCNA analysis. 
Table S4. The significance SNP sites corresponding to the sevengenes. 
Table S5. GSEA pathways forkey genes. Table S6. Drug predictionresults.

Acknowledgements
Thanks to the GEO database for sharing data and code.

Authors’ contributions
Dongxu Li designed the study, analysed the data and wrote the manuscript; 
Jie Hao was responsible for proofreading the manuscript; Ruichao Cao, Wei 

Dong, Minghuang Cheng, Xiaohan Pan, and Zhenming Hu wrote the manu-
script. All authors reviewed the manuscript. The author(s) read and approved 
the final manuscript.

Funding
This study received no external funding.

Availability of data and materials
This study analyses publicly available datasets. These data can be found at 
GSE73754 and GSE11886 (https:// www. ncbi. nlm. nih. gov/ geo/).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no conflicts of interest.

Received: 25 January 2023   Accepted: 19 May 2023

References
 1. Taurog JD, Chhabra A, Colbert RA. Ankylosing Spondylitis and Axial Spon-

dyloarthritis. N Engl J Med. 2016;374(26):2563–74.
 2. Lindström U, et al. Impact of extra-articular spondyloarthritis manifesta-

tions and comorbidities on drug retention of a first TNF-inhibitor in 
ankylosing spondylitis: a population-based nationwide study. RMD Open. 
2018;4(2): e000762.

 3. Dean LE, et al. Global prevalence of ankylosing spondylitis. Rheumatol-
ogy (Oxford). 2014;53(4):650–7.

 4. Brown MA, et al. Recurrence risk modelling of the genetic susceptibility 
to ankylosing spondylitis. Ann Rheum Dis. 2000;59(11):883–6.

 5. Brown MA, Kenna T, Wordsworth BP. Genetics of ankylosing spondylitis–
insights into pathogenesis. Nat Rev Rheumatol. 2016;12(2):81–91.

 6. van der Heijde D, et al. Referral patterns, diagnosis, and disease man-
agement of patients with axial spondyloarthritis. J Clin Rheumatol. 
2014;20(8):411–7.

 7. Zuckerman SL, Goldberg JL, Riew KD. Multilevel anterior cervical osteoto-
mies with uncinatectomies to correct a fixed kyphotic deformity associ-
ated with ankylosing spondylitis: technical note and operative video. 
Neurosurg Focus. 2021;51(4):E11.

 8. Ritchlin C, Adamopoulos IE. Axial spondyloarthritis: new advances in 
diagnosis and management. BMJ (Clin Res ed).  2021;372:m4447.

 9. Wu B, et al. Potential pathogenic genes and mechanism of ankylosing 
spondylitis: a study based on WGCNA and bioinformatics analysis. World 
Neurosurg. 2022;158:e543–56.

 10. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation 
network analysis. BMC Bioinformatics. 2008;9:559.

 11. Canela-Xandri O, Rawlik K, Tenesa A. An atlas of genetic associations in UK 
Biobank. Nat Genet. 2018;50(11):1593–9.

 12. Newman AM, et al. Robust enumeration of cell subsets from tissue 
expression profiles. Nat Methods. 2015;12(5):453–7.

 13. Kanehisa M, et al. KEGG for taxonomy-based analysis of pathways and 
genomes. Nucleic Acids Res. 2023;51(D1):D587–92.

 14. Huang P, et al. Identification of biomarkers associated With CD4+ T-cell 
infiltration with gene coexpression network in dermatomyositis. Front 
Immunol. 2022;13: 854848.

 15. Subramanian A, et al. A Next Generation Connectivity Map: L1000 Plat-
form and the First 1,000,000 Profiles. Cell. 2017;171(6):1437-1452.

 16. Ermoza K, et al. Tolerogenic XCR1(+) dendritic cell population is dysregu-
lated in HLA-B27 transgenic rat model of spondyloarthritis. Arthritis Res 
Ther. 2019;21(1):46.

 17. Bowness P. HLA-B27. Annu Rev Immunol. 2015;33:29–48.

https://doi.org/10.1186/s12891-023-06550-3
https://doi.org/10.1186/s12891-023-06550-3
https://www.ncbi.nlm.nih.gov/geo/


Page 17 of 17Li et al. BMC Musculoskeletal Disorders          (2023) 24:413  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 18. McVeigh CM, Cairns AP. Diagnosis and management of ankylosing spon-
dylitis. BMJ (Clin Res ed). 2006;333(7568):581–5.

 19. Blair HA. Secukinumab: A Review in Ankylosing Spondylitis. Drugs. 
2019;79(4):433–43.

 20. Zhu W, et al. Ankylosing spondylitis: etiology, pathogenesis, and treat-
ments. Bone Res. 2019;7:22.

 21. Bowness P, et al. Th17 cells expressing KIR3DL2+ and responsive to 
HLA-B27 homodimers are increased in ankylosing spondylitis. J Immunol 
(Baltimore, Md 1950). 2011;186(4):2672–80.

 22. Han Y, et al. Identification of diagnostic mRNA biomarkers in whole blood 
for ankylosing spondylitis using WGCNA and machine learning feature 
selection. Front Immunol. 2022;13: 956027.

 23. Yang M, et al. TNF-alpha inhibitor therapy can improve the immune 
imbalance of CD4+ T cells and negative regulatory cells but not CD8+ T 
cells in ankylosing spondylitis. Arthritis Res Ther. 2020;22(1):149.

 24. Fessler J, et al. Premature senescence of T-cell subsets in axial spondyloar-
thritis. Ann Rheum Dis. 2016;75(4):748–54.

 25. Dulic S, et al. The impact of Anti-TNF therapy on CD4+ and CD8+ cell 
subsets in ankylosing spondylitis. Pathobiology. 2018;85(3):201–10.

 26. Herrero-Cervera A, Soehnlein O, Kenne E. Neutrophils in chronic inflam-
matory diseases. Cell Mol Immunol. 2022;19(2):177–91.

 27. Yang Z, et al. Comparisons of neutrophil-, monocyte-, eosinophil-, and 
basophil- lymphocyte ratios among various systemic autoimmune rheu-
matic diseases. APMIS. 2017;125(10):863–71.

 28. Zhou C, et al. Immune cell infiltration-related clinical diagnostic model for 
Ankylosing Spondylitis. Front Genet. 2022;13: 949882.

 29. Martinez-Navarro FJ, et al. The vitamin B6-regulated enzymes PYGL and 
G6PD fuel NADPH oxidases to promote skin inflammation. Dev Comp 
Immunol. 2020;108: 103666.

 30. Borella R, et al. Metabolic reprograming shapes neutrophil functions in 
severe COVID-19. Eur J Immunol. 2022;52(3):484–502.

 31. Sadik CD, et al. The critical role of C5a as an initiator of neutrophil-medi-
ated autoimmune inflammation of the joint and skin. Semin Immunol. 
2018;37:21–9.

 32. Zheng QY, et al. C5a/C5aR1 pathway is critical for the pathogenesis of 
psoriasis. Front Immunol. 2019;10:1866.

 33. Campion D, Charbonnier C, Nicolas G. SORL1 genetic variants and Alz-
heimer disease risk: a literature review and meta-analysis of sequencing 
data. Acta Neuropathol. 2019;138(2):173–86.

 34. Monti G, et al. Expression of an alternatively spliced variant of SORL1 in 
neuronal dendrites is decreased in patients with Alzheimer’s disease. Acta 
Neuropathol Commun. 2021;9(1):43.

 35. Jiang J, et al. Upregulated of ANXA3, SORL1, and Neutrophils May Be 
Key Factors in the Progressionof Ankylosing Spondylitis. Front Immunol. 
2022;13: 861459.

 36. Liu J, et al. Dysferlin, a novel skeletal muscle gene, is mutated in 
Miyoshi myopathy and limb girdle muscular dystrophy. Nat Genet. 
1998;20(1):31–6.

 37. Zhang X, et al. DYSF promotes monocyte activation in atherosclerotic 
cardiovascular disease as a DNA methylation-driven gene. Transl Res. 
2022;247:19–38.

 38. Schinocca C, et al. Role of the IL-23/IL-17 pathway in rheumatic diseases: 
an overview. Front Immunol. 2021;12:637829.

 39. Konya C, et al. Update on the role of Interleukin 17 in rheumatologic 
autoimmune diseases. Cytokine. 2015;75(2):207–15.

 40. Liang T, et al. STAT3 and SPI1, may lead to the immune system dysregula-
tion and heterotopic ossification in ankylosing spondylitis. BMC Immunol. 
2022;23(1):3.

 41. Xia C-P, et al. Sp1 promotes dental pulp stem cell osteoblastic differentia-
tion through regulating noggin. Mol Cell Probes. 2020;50: 101504.

 42. Hosokawa H, Rothenberg EV. How transcription factors drive choice of 
the T cell fate. Nat Rev Immunol. 2021;21(3):162–76.

 43. Watt S, et al. Genetic perturbation of PU.1 binding and chromatin looping 
at neutrophil enhancers associates with autoimmune disease. Nat Com-
mun. 2021;12(1):2298.

 44. Tu, J., et al., PU.1 promotes development of rheumatoid arthritis via 
repressing FLT3 in macrophages and fibroblast-like synoviocytes. Ann 
Rheum Dis, 2022.

 45. Shakerian L, et al. MicroRNA-150 targets PU.1 and regulates macrophage 
differentiation and function in experimental autoimmune encephalomy-
elitis. J Neuroimmunol. 2018;323:167–74.

 46. Korshunova I, et al. Characterization of BASP1-mediated neurite out-
growth. J Neurosci Res. 2008;86(10):2201–13.

 47. Bomze HM, et al. Spinal axon regeneration evoked by replacing two 
growth cone proteins in adult neurons. Nat Neurosci. 2001;4(1):38–43.

 48. Hartl M, et al. Inhibition of Myc-induced cell transformation by brain acid-
soluble protein 1 (BASP1). Proc Natl Acad Sci USA. 2009;106(14):5604–9.

 49. Sanchez-Niño MD, et al. BASP1 promotes apoptosis in diabetic nephropa-
thy. J Am Soc Nephrol. 2010;21(4):610–21.

 50. Lu C, Amin MA, Fox DA. CD13/Aminopeptidase N is a potential therapeu-
tic target for inflammatory disorders. J Immunol. 2020;204(1):3–11.

 51. Ellinghaus D, et al. Analysis of five chronic inflammatory diseases identi-
fies 27 new associations and highlights disease-specific patterns at 
shared loci. Nat Genet. 2016;48(5):510–8.

 52. van de Bunt M, et al. Evaluating the performance of fine-mapping strate-
gies at common variant GWAS Loci. PLoS Genet. 2015;11(9): e1005535.

 53. Wordsworth BP, et al. Perspectives on the Genetic Associations of Anky-
losing Spondylitis. Front Immunol. 2021;12: 603726.

 54. Evans DM, et al. Interaction between ERAP1 and HLA-B27 in ankylosing 
spondylitis implicates peptide handling in the mechanism for HLA-B27 in 
disease susceptibility. Nat Genet. 2011;43(8):761–7.

 55. Nancy Z, et al. From the genetics of ankylosing spondylitis to new biol-
ogy and drug target discovery. Front Immunol. 2021;12:624632.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Identification of potential biomarkers for ankylosing spondylitis based on bioinformatics analysis
	Abstract 
	Objective 
	Methods 
	Results 
	Conclusion 

	Introduction
	Materials and methods
	Prepare the data
	Functional enrichment analyses of DEGs
	Weighted gene coexpression network analysis (WGCNA)
	GWAS analysis
	Immunoinfiltration analysis
	GSEA
	Analysis of the regulatory network of core genes
	CMap drug prediction
	Statistical analysis

	Results and discussion
	Screening of differentially expressed genes (DEGs)
	Functional enrichment analyses of DEGs
	WGCNA
	ROC curves for the seven key genes
	GWAS to confirm the pathogenic regions of core genes in ankylosing spondylitis
	Immune cell infiltration analysis
	Signalling pathways associated with the characteristic genes
	Analysis of the regulatory network of key genes
	Differential analysis of pathogenic genes in AS
	Prediction of potential drugs against AS

	Discussion
	Conclusions
	Anchor 31
	Acknowledgements
	References


