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Abstract 

To determine the current evidence on artificial neural network (ANN) in prognostic studies of musculoskeletal dis-
eases (MSD) and to assess the accuracy of ANN in predicting the prognosis of patients with MSD. The scoping review 
was reported under the Preferred Items for Systematic Reviews and the Meta-Analyses extension for Scope Reviews 
(PRISMA-ScR). Cochrane Library, Embase, Pubmed, and Web of science core collection were searched from inception 
to January 2023. Studies were eligible if they used ANN to make predictions about MSD prognosis. Variables, model 
prediction accuracy, and disease type used in the ANN model were extracted and charted, then presented as a table 
along with narrative synthesis. Eighteen Studies were included in this scoping review, with 16 different types of mus-
culoskeletal diseases. The accuracy of the ANN model predictions ranged from 0.542 to 0.947. ANN models were more 
accurate compared to traditional logistic regression models. This scoping review suggests that ANN can predict the 
prognosis of musculoskeletal diseases, which has the potential to be applied to different types of MSD.
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Introduction
Artificial intelligence (AI) has emerged as an opportunity 
allowing numerous practical applications [1, 2]. Artificial 
neural network (ANN), as an important branch of mod-
ern artificial intelligence technology, have been widely 
used in modern medicine due to their strong learning 
capability and stable feature recognition and prediction 
of functions [3, 4]. ANN is an information processing sys-
tem established by imitating the structure and function 
of the neural network of the brain. Dr. Robert H. Nielsen, 
the inventor of the neural computer, defines a neural 

network as a computational system consisting of many 
simple, highly interconnected processing elements that 
can handle real-world problems by dynamically reacting 
to external inputs [5]. ANN can extract feature informa-
tion from existing clinical experience and massive exter-
nal input data and then perform self-learning, so ANN 
does not require a detailed description of the disease, but 
only basic information about the patients to obtain the 
corresponding diagnosis and treatment plan [6].

The application of ANN may be particularly useful in 
areas such as MSD as various clinical indicators related 
to musculoskeletal diseases are suitable for processing in 
ANN. Since ANN is able to use a large amount of those 
clinical data for machine learning, it may generate a sta-
ble clinical prediction model. In addition, musculoskel-
etal diseases (MSD) are associated with high morbidity 
and mortality and also lead to high healthcare costs [7, 8]. 
Globally, MSDs account for 21% of total morbidity and 
affect more than 25% of the population [9]. In the United 
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States, approximately 130 million health care visits and 
approximately 70 million physician visits are associated 
with MSD each year [10], and MSD patients account 
for more than 25% of emergency department visits [11]. 
MSD is also the second most common cause of disabil-
ity worldwide, with an estimated 45% increase in disabil-
ity due to MSD disease, particularly osteoarthritis (OA), 
from 1990 to 2010, and the number of people suffering 
from MSD is expected to continue to increase with the 
impact of obesity, sedentary immobility, and an aging 
population [12–14].

Given the high prevalence and variety of MSDs (from 
tendon injuries in young athletes to degenerative dis-
eases in the elderly), and the fact that some disease types 
are chronic or even incurable, finding a method that can 
effectively determine prognosis can help MSD patients 
better manage their disease and alleviate the burden of 
disease [15, 16], and may also reduce healthcare costs.

There is emerging evidence, that ANN can be applied 
to predict injury rates or treatment outcome in MSD. 
In postmenopausal women, An ANN model was used 
to predict fragility fractures using the bone strain index 
(BSI) and dual-energy x-ray absorptiometry (DXA), 
achieving a prediction accuracy of 79.56% [17]. In 
patients with chronic plantar fasciitis (CPF), ANN was 
used to determine the predictive factors for minimum 
clinically successful therapy (MCST) after extracorporeal 
shockwave treatment and found that the overall accuracy 
of the predictive model was 92.5% [18]. In patients with 
lumbar disc herniation (LDH), ANN model could pre-
dict the efficiency of hospitalization satisfaction with an 
accuracy of 96% [19]. Prognosis studies aim to predict 
the likelihood of disease progression related to different 
events (e.g., bone fracture, conjunctivitis) or explore the 
factors influencing disease outcomes [20, 21]. The use of 
ANN in prognosis may help doctors and patients to bet-
ter understand the status and progression of the patient’s 
disease, resulting in individualized and more appropriate 
clinical decisions, which may reduce medical costs and 
improve recovery outcomes.

ANN has the potential to predict the prognosis of MSD 
by various variables such as patient’s age, gender, treat-
ment modality and disease severity. Therefore, the aims 
of this scoping review were threefold: (1) compile articles 
on the prognostic application of ANN in MSD, (2) inves-
tigate the accuracy of ANN in predicting the prognosis of 
MSD, (3) whether ANN has better predictive ability than 
other models.

Methods
This scoping review complies with all of the Preferred 
Items for Systematic Reviews and the Meta-Analyses 
extension for Scope Reviews (PRISMA-SCR) guidelines 

[22] and reports the required information accordingly. 
In addition, we also implemented the stages set out by 
Arksey and O’Malley [23] in the current scoping review. 
The protocol for this scoping review (https://​doi.​org/​10.​
17605/​OSF.​IO/​7UGFV) was registered at the Open Sci-
ence Framework Registries (OSF).

Identifying the research question
This scoping review examined peer-reviewed articles 
on the use of ANN for prognosis prediction in MSD. 
Our scoping review identified the following questions: 
1. Can ANN use basic clinical information of patients 
with musculoskeletal disorders to predict the prognosis 
of patients? 2. How effective and accurate was the ANN 
model used in prognosis studies? 3. Was ANN more 
effective than other machine learning methods or logis-
tic regression? 4. What metrics were used in the included 
studies to predict prognostic outcomes?

Identifying relevant studies
Inclusion and exclusion criteria were determined on the 
basis of our study objectives.

Inclusion criteria
Studies applying ANN to predict the prognosis of muscu-
loskeletal diseases, written in English.

Exclusion criteria
Studies not related to musculoskeletal diseases, not 
written in English, duplicate publications, unpublished 
studies, literature review papers, letters to the editor, 
conference abstracts and animal model studies.

Study selection
To ensure an extensive search for the inclusion of rele-
vant articles, we searched the Cochrane library, Embase, 
Pubmed and the Web of science core collection. The 
retrieval time range was from the establishment of the 
database to January 7th, 2023. We use medical subject 
headings (MeSH) to facilitate literature retrieval, with 
three main subject headings: artificial neural networks; 
musculoskeletal diseases; prognosis. We applied different 
search strategies in different databases, and the full docu-
mentation of the final search strategy is available in the 
supplementation file. The database search results were 
imported into Endnote X9 (Thomson Reuters, NY, USA) 
and duplicates were removed. In order to include as 
much relevant literature as possible, we first performed 
Mesh terms searches with artificial neural networks, 
musculoskeletal diseases, and prognosis combined strat-
egy, and then performed keywords researches. Titles and 
abstracts of retrieved articles were independently read 
and reviewed by FJQ and JFL, and any disagreement 
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during the screening process was resolved through dis-
cussion and consensus with the third reviewer (RRZ). 
After the full text was obtained, the data was extracted 
from the paper.

Charting the data
Microsoft Excel (Version 2019) was used for the extrac-
tion of study data. Data charting was performed accord-
ing to our proposed questions and the information 
extracted included (1) basic information about the study 
(authors, region, year of publication, sample size, study 
purpose, study design), (2) characteristic information of 
patients (age, disease type) and (3) ANN effect evaluation 
method, accuracy, and platform for modeling.

Collating, summarizing, and reporting the results
A total of 294 records were retrieved from the four data-
bases, leaving 246 articles after removing duplicates 
and non-English studies. After reviewing the titles and 
abstracts according to inclusion and exclusion criteria, 
205 articles were excluded. After reading the full text, 
23 articles were excluded. The flowchart of the article 
retrieval and screening is shown in Fig.  1. We did not 
perform a quality assessment due to inconsistencies in 
the types of studies included in our study.

Results
Eighteen papers were finally included in the systematic 
analysis (Table 1).

Characteristics of included studies
The included studies were from sixteen journals, with 
only 2 articles each were published in Clinical Orthopae-
dics and Related Research [24, 25] and Medicina [26, 27]. 
Thirty-three percent of these studies (7/18) were con-
ducted in the United States [24, 25, 28–32], with 17% (3) 
in China [26, 33, 34]. Study designs included cohort study 
(83%; 15) and cross-sectional database study (17%; 3). 
The included studies investigated 16 different musculo-
skeletal diseases. The detailed information of study char-
acteristics was shown in Table 2.

Characteristics of participants
The mean age of the patients ranged from 12.5 to 
100.0 years [35, 36] (Table 2). Two of the studies included 
exclusively female or male participants [24, 37]. The 
sample size ranged from 58 to 10534 [26, 36]. Two stud-
ies [28, 38] did not provide data on the age and sex of 
participants.

Effects of ANN in prognosis
The areas under the curve (AUC) served as a metric to 
evaluate the accuracy of ANN. The overall accuracy 

ranged from 0.542 to 0.947 (Table  3). 80.0% (8/10) of 
the studies showed that ANN had a better prediction 
accuracy than logistic regression (LR) or other predic-
tion models. Eight studies did not compare ANN with 
other models, and two study found that ANN model 
had lower prediction accuracy than gradient boosting 
machine (GBM) and extreme gradient boosted machine 
(XGBoost). MATLAB was the most frequently (3 times) 
used platform in ANN modeling.

Discussion
In the treatment and rehabilitation of musculoskeletal 
diseases, the consideration of different symptoms and 
demographic data to accurately predict clinical outcomes 
can aid in the clinical decision-making process to pro-
vide effective and adequate treatment for patients. The 
main findings of this scoping review were that in differ-
ent types of musculoskeletal diseases, ANN can provide 
accurate predictions regarding the prognosis of patients 
and more accurate compared to other models.

In the prognostic studies of musculoskeletal diseases, 
ANN was able to make accurate predictions using demo-
graphic characteristics and patient clinical characteristics 
as the main parameters (features). Using bone mineral 
density and the bone strain index as parameters, ANN 
predicted the occurrence of vertebral fractures (VF) in 
postmenopausal women in 79.56% of cases [17]. When 
trabeculae microstructure parameters were used as the 
main variable, ANN models (AUC = 0.928) were more 
accurate than LR and random forest (RF) in predicting 
marginal bone loss [39]. Using disease history and life-
style habits of 1419 patients as parameters to predict the 
risk of osteoporosis in adults, the ANN model was able to 
accurately predict the risk of osteoporosis (AUC = 0.901), 
outperforming the predictive power of Deep Belief Net-
work (DBN), Support Vector Machine (SVM) and combi-
natorial heuristic method (Genetic Algorithm—Decision 
Tree) [40]. It is encouraging that in different types of 
MSD, ANNs are more accurate and outperform other 
prediction models in disease risk prediction.

ANN can also be applied in the area of predicting 
rehabilitation decisions and rehabilitation outcomes, 
with predictions being accurate. In a study using the 
demographic and clinical characteristics of 170 patients 
to predict rehabilitation options for patients with oste-
oarthritis of the knee, the developed medical decision 
support system was able to accurately predict treatment 
options for 87% of patients, thus effectively assisting 
clinical rehabilitation staff to develop OA rehabilita-
tion plans [41]. A study using ANN to predict patient 
function one year after spinal cord injury found that 
ANN were highly accurate in predicting walking sta-
tus (AUC range between 0.86 and 0.90) and moderately 
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accurate when used to predict non-walking outcomes 
(AUC between 0.70 and 0.82), and that models gener-
ated by artificial neural networks performed better 
than LR [42]. The application of ANN in the rehabilita-
tion can simplify the cumbersome manual assessment 

process and allow for accurate prediction of some 
parameters that are difficult to assess quantitatively in 
the clinic, saving clinical diagnosis and treatment time 
and reducing the workload of rehabilitation physicians 
and therapists.

Fig. 1  Study selection process (according to the PRISMA-ScR guidelines [22])
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The accuracy of prognostic prediction using ANN 
models varied among diseases. In patients undergo-
ing elective adult spinal deformity procedures [43], the 
accuracy of ANN in predicting venous thromboembo-
lism (VTE) and wound incidence can be considered as 
poor and failed (AUC​VTE = 0.542; AUC​wound = 0.606) 
according to generally accepted AUC accuracy clas-
sification practice [44, 45]. Compared to the other 
included studies, in which the ANN model prediction 
accuracy was higher than 0.7, a relatively low number 
of features was used in the ANN model. While in this 
study [43] 8 features were used to predict 4 different 
symptoms, other studies used 10 [24] to 25 [37] fea-
tures to predict one symptom. A possible reason for the 
discrepancy in accuracy may thus be that insufficient 
relevant features were included in ANN models.

ANN has higher accuracy compared to traditional 
logistic regression models. Research in the field of bio-
engineering has demonstrated that ANN are superior 
to traditional statistical models in terms of their ability 
to analyze nonlinear relationships, their ability to han-
dle relevant independent variables, and their classifica-
tion accuracy [46]. The advantages of ANN are mainly 
in the following three aspects:

1. Multi-layer network structure: ANN individual 
neurons cooperate with each other and form a net-
work synergy when processing information, main-
taining their independence while sharing and cas-
cading the output results with other neurons, and 
making the results more reliable through the use of 
multiple hidden layers [47, 48];
2. Adaptive: According to the characteristics of the 
information in the input neural network, ANN can 
continuously establish new structures consistent 
with external changes through learning, extract-
ing, and collecting information required for specific 
tasks from the data, and summarize the acquired 
knowledge, thereby improving the ability of data 
processing [49];
3. Accommodating data deficiencies: In contrast to 
traditional models that require data completeness, 
artificial neural networks can maintain the validity of 
the model even when the patient’s data is incomplete 
[50–52].

Limitations
Only 56% (10/18) of the studies included in this scoping 
review compared the accuracy between ANN and other 
models, which may have limited the judgment of the 
effectiveness of ANN applications. This study also found 
that although ANN has shown excellent accuracy in its 
application, applying it to construct predictive models 
may be problematic and cause over-fitting. As a conse-
quence, the results in the receiver operating curve may 
be better than actual, as patients are highly selected for 
inclusion. Therefore, the ANN model still needs to be 
externally validated after its construction to demonstrate 
its generalizability in patients.

Prospective

1. Promote the application of ANN in the MSD. 
Incorporating artificial neural networks into clini-
cal settings can enable clinicians to predict disease 
progression and functional recovery faster and more 
accurately.
2. Optimize the quality of the data set. The model 
should be built by selecting samples with different 
etiology, disease duration, age, ethnicity, and sex, 
the number of layers and complexity of the algo-
rithm model should be determined according to 
the amount of data to ensure that the trained ANN 
models have better clinical adaptability and benefit 
the clinical treatment.
3. Adjust legal regulations. The artificial intelligence 
technology represented by ANN requires a large 

Table 2  Demographics of subjects

f Female, m Male
a  Age was presented as Mean, Mean (SD) and Mean (Range)

Study Sample size (n) Age (Yearsa) Sex

Alfieri et al 72 22.0 (21.0, 26.0) m

Alfieri et al 2571 - -

Bevevino et al 134 24.0 (22.0, 28.0) 130 m / 4f

Bowman et al 885 66.0 (21.0–93.0) m, 
62.0 (20.0–100.0) f

306 m / 579f

Chen et al 10,534 68.3 (14.6) 4469 m / 6065f

Eller-Vainicher 
et al

372 68.0 (8.5) f

Jalali et al 2143 - -

Kim et al. (Korea) 503 59.2 (14.4) 226 m / 277f

Kim et al. (USA) 5794 59.5 2376 m / 3418f

Lu et al 654 21.7 (17.0, 29.0) 500 m / 154f

Miyoshi et al 179 - 36 m / 143f

Norgeot et al 820 57.0(15.0)-
60.0(15.0)

148 m / 672f

Salgueiro et al 72 41.50 (21.0–59.0) 3 m / 69f

Scheer et al 557 57.5 (15.3) 118 m / 439f

Shin et al 74 67.27 (11.18) 47 m / 27f

Su et al 236 67 (60–70) 90 m / 146

Wang et al 838 53.4 (12.5) -

Yahara et al 58 12.5 (1.4) 9 m / 49f
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amount of data input related to clinical parameters 
(e.g., images, and videos). Adequate laws related 
to the use of ANN in healthcare are necessary to 
ensure the protection of patient privacy, while 
reasonably allocating the responsibility in case of 
errors in artificial neural network models.

Conclusion
This scoping review provides preliminary evidence 
that ANN can provide accurate prognosis prediction 
for MSDs by demographic information of patients 
and clinical characteristics of diseases. ANN mod-
els are superior to other traditional prediction models 
such as LR and deserve to be tested and replicated in 
other MSD types. The weaknesses highlighted must be 
addressed in future studies to enable ANNs models to 
better contribute to clinical decision making.
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