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Abstract 

Background:  The analysis of sagittal intervertebral rotational motion (SIRM) can provide important information for 
the evaluation of cervical diseases. Deep learning has been widely used in spinal parameter measurements, however, 
there are few investigations on spinal motion analysis. The purpose of this study is to develop a deep learning-based 
model for fully automated measurement of SIRM based on flexion–neutral–extension cervical lateral radiographs and 
to evaluate its applicability for the flexion–extension (F/E), flexion–neutral (F/N), and neutral–extension (N/E) motion 
analysis.

Methods:  A total of 2796 flexion, neutral, and extension cervical lateral radiographs from 932 patients were analyzed. 
Radiographs from 100 patients were randomly selected as the test set, and those from the remaining 832 patients 
were used for training and validation. Landmarks were annotated for measuring SIRM at five segments from C2/3 to 
C6/7 on F/E, F/N, and N/E motion. High-Resolution Net (HRNet) was used as the main structure to train the landmark 
detection network. Landmark performance was assessed according to the percentage of correct key points (PCK) and 
mean of the percentage of correct key points (MPCK). Measurement performance was evaluated by intra-class cor-
relation coefficient (ICC), Pearson correlation coefficient, mean absolute error (MAE), root mean square error (RMSE), 
and Bland-Altman plots.

Results:  At a 2-mm distance threshold, the PCK for the model ranged from 94 to 100%. Compared with the reference 
standards, the model showed high accuracy for SIRM measurements for all segments on F/E and F/N motion. On N/E 
motion, the model provided reliable measurements from C3/4 to C6/7, but not C2/3. Compared with the radiologists’ 
measurements, the model showed similar performance to the radiologists.

Conclusions:  The developed model can automatically measure SIRM on flexion–neutral–extension cervical lateral 
radiographs and showed comparable performance with radiologists. It may provide rapid, accurate, and comprehen-
sive information for cervical motion analysis.
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Background
Cervical kinematics evaluation plays an indispensable 
role in cervical-related diseases, including neck pain, 
whiplash-associated disorders, and cervical instability 
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[1–3]. As the main part of cervical intervertebral motion 
parameters, sagittal intervertebral rotational motion 
(SIRM) provides precise biomechanical information and 
reveals early abnormal motion patterns [4, 5].

Originally, intervertebral motion parameters were 
measured manually with fine pencils on X-ray films [6]. 
Such handwork resulted in significant observer differ-
ences, which accounted for 38% or more of the value 
being measured [7]. Computer-assisted methods and 
various software have been developed for landmark loca-
tion, parameter measurement, and data analysis to mini-
mize subjective influence and accelerate processing speed 
[8–10]. However, manual annotation of the landmarks 
on vertebral bodies was unavoidable in these methods, 
which brought tedious and time-consuming work for 
operators.

Deep learning has been increasingly applied to the 
measurement of musculoskeletal radiographs [11–13]. 
In the field of spinal disorders, a variety of models have 
demonstrated good to excellent performance in auto-
matically measuring Cobb angle, spinopelvic parameters, 
and sagittal alignment, with the mean absolute error 
(MAE) ranging from 1° to 5° [14–17]. Aside from static 
spinal parameter measurements, there were some stud-
ies focusing on the deep learning-based measurement for 
intervertebral motion. Jacobsen et  al. [18] acquired cer-
vical intervertebral angles on fluoroscopic images with a 
landmark detection algorism for cervical joint movement 
evaluation. Nguyen et al. [19] developed a deep learning 
system to measure lumbar intervertebral angles based on 
flexion and extension radiographs in order to determine 
the instability of the lumbar spondylolisthesis. The above 
studies have some limitations in using static parameters 
measured from a separate view to explore spinal motion 
function. Consequently, it is necessary to carry out a 
measurement derived from the combination of multiple 
views, which may provide more accurate and compre-
hensive information for spinal motion analysis.

The objective of the present study was to develop a fully 
automated deep learning model for the measurement of 
SIRM based on flexion–neutral–extension cervical lat-
eral radiographs and to evaluate its applicability for the 
flexion–extension (F/E), flexion–neutral (F/N), and neu-
tral–extension (N/E) motion analysis.

Methods
Dataset preparation
This study was approved by the Institutional Research 
Ethics Committee of Hospital (2022QT041). A total 
of 2247 cases for which flexion, neutral, and extension 
cervical lateral radiographs were taken in inpatient and 
outpatient settings between January 2019 and Decem-
ber 2020 were reviewed. The data of these patients 

were sequentially collected from the Picture Archiv-
ing and Communication System (PACS) of hospital. 
Adult patients (≥18 years) were included to ensure 
skeletal maturity in all cases in this study. The need for 
informed consent was waived due to the use of retro-
spective data. The exclusion criteria were as follows: 
(1) a history of cervical surgery; (2) partial or complete 
obscuration of the C7 vertebral body; (3) obscured 
landmarks due to severe osteophytes or fusion of adja-
cent vertebral bodies; and (4) poor radiograph quality 
and a wide range of aberrant motion out of the sagittal 
plane. From this review, a total of 2796 cervical lateral 
radiographs from 932 patients were collected. Radio-
graphs from 100 cases were randomly assigned to the 
test set, and those from the remaining 832 cases were 
randomly divided in a 4:1 ratio to form the training and 
validation sets, respectively (Fig. 1).

Landmark annotations
The training and validation sets were manually anno-
tated by one musculoskeletal radiologist (R1, 5 years of 
experience), and 100 cases of them were reannotated by 
R1 after a 6-week interval for the assessment of intra-
observer reliability. The test set was independently 
annotated by R1, together with R2 (a radiologist with 
3 years of experience) and R3 (a radiologist with 5 years 
of experience). All radiologists discussed and agreed 
on the annotation method before starting the work. A 
dedicated website was developed for manual annota-
tion (http://​wareh​ouse.​healt​hview​cn.​com/).

Definitions of landmarks and parameter
A total of 22 landmarks were annotated on each radio-
graph on the flexion, neutral, and extension views. For 
the typical vertebrae from C3 to C7, the anterior–supe-
rior, posterior–superior, anterior–inferior, and pos-
terior–inferior vertebral body corners were denoted 
by C-G1 to C-G4, respectively. For C2 vertebrae with 
a unique biological shape, only the anterior–inferior 
and posterior–inferior corners were denoted by B3 
and B4, respectively. To reduce measurement error, all 
annotations of landmarks were made as close to the 
corticomedullary margin of the vertebral body as pos-
sible [7]. The method for measuring SIRM was based 
on the geometric midplanes method, for which excel-
lent agreement and smaller errors have been demon-
strated [20, 21]. The vertebral midplane was defined by 
a line through the two midpoints between the anterior 
and posterior corners. The specific name of each land-
mark and the method for measurement are illustrated 
in Fig. 2.

http://warehouse.healthviewcn.com/
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Measurement model development
The deep learning model for SIRM measurement 
included two parts: a landmark detection network used 
to identify landmarks on flexion, neutral, and extension 
cervical lateral radiographs and mathematical formulae 
to calculate SIRM values.

The main structure of the landmark detection network 
was High-Resolution Net (HRNet), a novel deep con-
volutional neural network with excellent performance 
in localizing anatomical landmarks on medical images 
[22]. HRNet maintains high-resolution representations 
through parallel branches from beginning to end and 
repeatedly fuses features from different scales to achieve 
solid semantics and accurate location. Due to the prox-
imity of the landmarks on cervical radiographs, HRNet’s 
ability to preserve image details is crucial for model train-
ing. The landmark detection network consisted of four 
stages, beginning with a high-resolution branch as the 
first stage and then summing the high-to-low resolution 
branches in parallel to form the subsequent stages. At the 
end of each stage, information was repeatedly exchanged 
between parallel branches [23]. The final output was a 
22-channel heatmap regressed from the high-resolution 
representation of the last stage. The coordinates with the 
maximum values in the heatmap were selected as the 
positions of predicted landmarks, which were mapped 

to the corresponding positions on the original image by 
applying affine transformation. To compare the ground 
truth and prediction heatmaps, the loss function was 
defined as the mean square error.

To build the landmark detection network, we trained 
our model on flexion, neutral, and extension cervical lat-
eral radiographs. All images were preprocessed by resiz-
ing to a resolution of 512 × 512 pixels and augmented 
by random rotation, horizon flip, and random scale. The 
pixel spacing of each image was 0.143 mm. We used the 
stochastic gradient descent (SGD) optimizer with a base 
learning rate of 1e− 6, a momentum of 0.9, and a weight 
decay of 0.0005. The model was trained on PyTorch (Ver-
sion 1.3) for 120 iterations with a batch size of 12 on 
NVIDIA TITAN Xp GPUs. The model with the least loss 
on the validation set was verified using the test set.

The coordinates of the predicted landmarks and the 
mathematical formulae for measurement were used for 
automatic calculations of SIRM by Python (version 3.7). 
An overview of model implementation is presented in 
Fig. 3.

Evaluation and statistical analysis
All analyses were performed using MedCalc software 
(version 20.023) and Microsoft Excel 2020 with statistical 
significance defined by values of P < 0.05.

Fig. 1  Flowchart of the inclusion criteria and dataset distribution for the training, validation, and test sets
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Reliability of landmark annotation
For assessment of the intra- and inter- observer reli-
ability of landmark annotation, the landmark-to-land-
mark distance was represented as percentages within 
1–3-mm thresholds.

Landmark performance
The metrics of percentage of correct key points (PCK) 
and mean of the percentage of correct key points 
(MPCK) were used for evaluating the performance of 
landmark prediction. PCK was defined as the percent-
age of predicted landmarks that fell within the r-radius 
neighborhood of the reference standard landmark [24]. 
MPCK was defined as the mean PCK values of each 
vertebra from C2 to C7 (MC2–MC7) [22]. The refer-
ence standards were the averages of landmark coordi-
nates annotated by the three radiologists [25].

Measurement performance
For further evaluation of measurement performance, 
our model was compared with the reference standards 
on the test set by calculating the intra-class correlation 
coefficient (ICC), the Pearson correlation coefficient 
(r), MAE, and the root mean square error (RMSE). The 
ICC was calculated for the evaluation of consistency, 
and an ICC ≥0.7 was considered adequate for reliabil-
ity. An |r| ≥0.7 indicated a high correlation. MAE was 
defined as 1

m

∑m

i=1
��observedi − predictedi

�� , and RMSE was defined 
as 

�
1

m

∑m

i=1

�
observedi − predictedi

�2 , where i was the number of 
images. Additionally, the mean difference and 95% limit 
of agreement (LoA) were determined on Bland–Altman 
plots. The reference standards were the averages of meas-
urements from the three radiologists [25]. To compare 
the performance of the model with that of each radiolo-
gist, the paired differences between the value from each 
individual radiologist and the average from the other two 

Fig. 2  Landmark annotations and the method for sagittal intervertebral rotational motion (SIRM) measurement. a Annotations of landmarks 
(taking the neutral view as an example). Each landmark has a specific name. b Sagittal intervertebral motion ranges included flexion–extension 
(F/E), flexion–neutral (F/N), and neutral–extension (N/E) motion based on flexion, neutral, and extension views (taking C4/5 as an example). c 
Measurement method for SIRM. For C2/3 (left), the SIRM was the difference in the angles between the plane of C2 and the midplane of C3 on F/E, 
F/N, and N/E motion. For C3/4-C6/7 (right), the SIRM was the difference in the angles between the midplane of Cn and Cn + 1 (3 ≤ n ≤ 6) on F/E, 
F/N, and N/E motion
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radiologists were compared with the difference between 
the same average value and the model value using paired 
t-test for comparing MAE [12].

Results
General data distributions
A total of 932 cases with flexion, neutral, and extension 
cervical lateral radiographs were evaluated. There were 
665, 167, and 100 patients in the training, validation, and 
test sets, respectively. There was no significant difference 
between the three datasets in gender composition and 
age (Table 1).

Reliability of landmark annotation
The percentages of intra-observer landmark distances 
within the 2-mm threshold were 98–99% on the three 
views. The percentages of inter-observer landmark 

distances within the 2-mm threshold were 97–98% (R1 
vs R2), 98% (R1 vs R3), and 97–98% (R2 vs R3) on the 
three views (Table 2).

Landmark performance
The PCKs at the 2-mm distance threshold on the 
flexion, neutral, and extension views were 95–100%, 
94–100%, and 94–100%, respectively (Additional file 1). 
The MPCKs for each vertebra from C2 to C7 at the 
2-mm distance threshold on the flexion, neutral, and 
extension views were 98–99%, 98–99%, and 97–100%, 
respectively (Fig.  4). The average annotating time for 
one cervical lateral radiograph was 0.066 s, which was 
much faster than the annotating time of 2.1 min for 
a radiologist. Representative examples of landmark 
detection by the model are shown in Fig. 5.

Fig. 3  Overview of model implementation. SIRM: sagittal intervertebral rotational motion

Table 1  Characteristics of patients in the training, validation, and test sets

Data are expressed as numbers of patients, with percentages in parentheses

P < 0.05 indicates significant difference between the training, validation, and test sets
a Data are expressed as medians, with 95% confidence intervals (CI) in parentheses

Characteristic Training set (n = 665) Validation set (n = 167) Test set (n = 100) P

Male 283 (42.6) 59 (35.3) 42 (42) 0.234

Female 382 (57.4) 108 (64.7) 58 (58)

Age(y)a 49 (47,50) 49 (46,52) 49 (45,54) 0.646

  Male 47 (45,49) 49 (43,54) 47 (38.5,52.5) 0.836

  Female 50 (48,51) 49 (46,53) 52.5 (45,58) 0.326
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Measurement performance
Measurement values from three radiologists and model 
estimates for SIRM were shown in Table 3. No significant 
differences were observed in the SIRM produced by the 
model estimates and the reference standards, except for 
the values for C2/3 (F/E motion), C3/4 (F/N motion), and 
C3/4 (N/E motion) (P < 0.05).

With regard to consistency and accuracy, the 
model yielded accurate measurements of all seg-
ments on F/E motion (ICC = 0.86–0.95, r = 0.88–0.95, 
RMSE = 1.64–2.11, MAE = 1.22–1.59) and F/N motion 
(ICC = 0.73–0.93, r = 0.74–0.93, RMSE = 1.50–2.27, 
MAE = 1.19–1.69). On N/E motion, the model provided 
reliable measurements from C3/4 to C6/7 (ICC = 0.73–
0.88, r = 0.75–0.88, RMSE = 1.59–2.05, MAE = 1.28–
1.49), but not C2/3 (ICC = 0.60, r = 0.61, RMSE = 1.61, 
MAE = 1.21; Table 4). The Bland–Altman plots with 95% 
LoAs and scatter diagrams of correlation analysis are 
shown in Fig. 6 (F/E motion) and Additional files 2 and 3 
(F/N and N/E motion).

On F/E motion, the MAEs of the model were signifi-
cantly lower than those of R1 and R2 at C2/3 (P < 0.05) 
and those of R2 at C3/4 and C6/7 (P < 0.05). On F/N 
motion, the MAEs of the model were significantly lower 
than that of R3 at C2/3 (P < 0.05) and those of R1, R2, 
and R3 at C6/7 (P < 0.05). On N/E motion, the MAE of 
the model was significantly lower than that of R1 at C2/3 
(P < 0.05; Table 5).

Discussion
In the present study, we developed a deep learning-based 
model to detect landmarks necessary for measuring cer-
vical SIRM. On the test set, we found that our landmark 
detection network achieved the PCKs ranging from 94 to 
100% at the 2-mm distance threshold. Based on this net-
work, the developed model for automatic SIRM measure-
ments was comparable in performance to radiologists’ 
calculations.

Manual annotation is the main source of observer dif-
ferences in spinal measurement. The reliability depends 
on the experience and judgment of radiologists. A land-
mark-to-landmark distance of 2.98 mm for inter-observer 
observations was reported to be acceptable for clinical 

analysis [26]. In the present study, the PCKs of our devel-
oped model at a 2-mm distance threshold ranged from 97 
to 98% on the three views, which was similar to the per-
centage of inter-observer landmark distance from three 
radiologists. As a result, both the model and the radi-
ologists were able to provide reliable landmark annota-
tions. On all three views, the PCKs of C2 within a 2-mm 
distance threshold were relatively higher than other 
segments, which might be contributed to fewer degen-
erations occurring at C2 [27].

Measurement performance is mostly evaluated by 
calculating various measurement errors. In the appli-
cations of the spine, the MAEs could be less than 2° or 
close to 10° [19, 28]. This indicates the performance of 
models varying greatly in different spinal landmarks 
and parameters. For SIRM, the interobserver variabil-
ity of manual measurement could be up to 5.2°, which 
might not provide accurate evaluations for instability, 
abnormality, and preoperative motion function [29]. A 
study conducted by Frobin  et al. reported that the error 
(standard deviation, SD) of approximately 2° was satis-
factory for clinical cervical motion analysis [21]. In our 
test set, the model demonstrated excellent measure-
ment performance and reliable clinical application with 
MAEs and SDs ranging from 1.19° to 1.69° and 1.50° to 
2.27°, respectively. In the comparison of the model and 
radiologists, the MAEs of our model were equal to or 
significantly lower than those of the radiologists, indi-
cating that our model showed similar or smaller errors 
compared to the radiologists. The model also achieved 
satisfactory agreement from C3/4 to C6/7, but the ICCs 
and rs at C2/3 were not sufficient to guarantee reli-
able consistency, especially on N/E motion (ICC = 0.60, 
r = 0.61). This might be due to the extremely small range 
of motion at C2/3, resulting in even slight differences 
(MAE = 1.21–1.40) having significant impacts [20].

Flexion, neutral, and extension cervical lateral 
radiographs are essential tools in the assessment of 
cervical SIRM and there will be great translational 
potentials in future clinical practice. The model will 
automatically generate parameter measurement 
reports for doctors and patients to facilitate clinical 
diagnosis and treatment guidance. With the expansion 

Table 2  Inter-observer reliability of landmark annotation (%) on flexion, neutral, and extension views

F Flexion, N Neutral, E Extension

Threshold 1 mm 2 mm 3 mm
F N E F N E F N E

R1 vs R2 84 85 84 97 98 97 99 99 99

R1 vs R3 85 86 85 98 98 98 99 99 99

R2 vs R3 79 81 81 98 98 97 99 99 99
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Fig. 4  The ability of landmark prediction. The prediction ability of our model is shown for each vertebra from C2 to C7. The first to third rows show 
the performance on flexion, neutral, and extension views, respectively
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of the database, the obtained measurement results will 
be used to build population-based models to provide 
personalized reference intervals for cervical SIRM of 
different genders and ages in asymptomatic and symp-
tomatic individuals.

The present study does have several limitations. First, 
for the correctness and integrity of landmark annota-
tion, we excluded a large number of patients based on 
postoperative status and obscuration of the C7 verte-
bral bodies. Second, because of inherent variations 
in manual annotation and the lack of a gold standard, 

some difficulties remain in accurately comparing per-
formance between radiologists and the model. Third, 
the category and size of the training dataset are insuf-
ficient to represent the complex clinical environment. 
In future research, we will include more kinds of cases, 
with particular inclusion of patients with implanted 
surgical devices. For unsatisfactory landmark predic-
tion due to anatomical variation or overlap, radiologists 
could slightly adjust the landmarks, and the feedback 
could be used to enhance model performance in efforts 
to further improve our model.

Fig. 5  Representative images illustrating landmark detection by our model. a, b, and c are examples of flexion, neutral, and extension views, 
respectively
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Table 3  Measurement values from three radiologists and model estimates for sagittal intervertebral rotational motion (SIRM) (°)

Data are expressed as the means ± SDs

F/E Flexion–extension, F/N Flexion–neutral, N/E Neutral–extension

P < 0.05 (paired t-test) indicates significant difference between the model and reference standard

R1 R2 R3 Mean Model t P

F/E motion

  C2/3 5.07 ± 3.36 6.19 ± 3.32 5.29 ± 3.33 5.52 ± 2.98 5.01 ± 3.29 −3.327 0.001

  C3/4 10.95 ± 4.81 10.46 ± 4.72 10.82 ± 4.61 10.74 ± 4.49 10.78 ± 4.77 0.218 0.827

  C4/5 12.40 ± 5.36 12.56 ± 5.63 12.66 ± 5.35 12.54 ± 5.23 12.68 ± 5.66 0.683 0.496

  C5/6 11.46 ± 6.17 11.39 ± 5.93 11.44 ± 6.10 11.43 ± 5.90 11.21 ± 6.23 −1.028 0.307

  C6/7 9.84 ± 5.18 9.73 ± 5.17 9.85 ± 5.05 9.81 ± 4.95 9.59 ± 5.21 −1.311 0.193

F/N motion

  C2/3 3.71 ± 2.71 4.02 ± 2.64 3.87 ± 2.60 3.87 ± 2.19 3.94 ± 2.64 −0.392 0.696

  C3/4 6.13 ± 3.95 6.36 ± 3.39 6.22 ± 3.89 6.24 ± 3.49 6.79 ± 3.73 −3.118 0.002

  C4/5 6.96 ± 4.08 6.98 ± 4.09 7.20 ± 3.71 7.05 ± 3.69 7.22 ± 4.29 0.748 0.456

  C5/6 7.55 ± 4.28 7.49 ± 4.25 7.47 ± 4.38 7.50 ± 4.08 7.32 ± 4.51 −0.881 0.381

  C6/7 7.86 ± 4.39 7.72 ± 4.15 7.80 ± 4.22 7.79 ± 4.01 7.65 ± 3.93 −0.952 0.344

N/E motion

  C2/3 2.84 ± 2.29 3.00 ± 2.37 2.77 ± 2.07 2.87 ± 1.74 2.69 ± 1.88 −1.095 0.276

  C3/4 5.06 ± 3.80 4.38 ± 3.63 4.76 ± 3.69 4.73 ± 3.47 4.27 ± 3.39 −2.789 0.006

  C4/5 5.91 ± 4.11 5.81 ± 4.05 5.57 ± 3.95 5.76 ± 3.84 5.64 ± 4.04 −0.585 0.560

  C5/6 4.57 ± 3.51 4.25 ± 2.94 4.47 ± 3.25 4.43 ± 2.93 4.65 ± 3.38 1.127 0.262

  C6/7 2.71 ± 2.09 2.62 ± 2.21 2.76 ± 2.36 2.70 ± 1.90 2.72 ± 2.41 0.123 0.902

Table 4  Comparison of model estimates and reference standards for sagittal intervertebral rotational motion (°)

ICC Intra-class correlation coefficient, r Pearson correlation coefficient, SD Standard deviation, RMSE Root mean square error, MAE Mean absolute error, CI Confidence 
interval, F/E Flexion–extension, F/N Flexion–neutral, N/E Neutral–extension

ICC (95% CI) r (95% CI) Mean Difference SD RMSE (95% CI) MAE (95% CI)

F/E motion

  C2/3 0.86 (0.79, 0.91) 0.88 (0.83,0.92) −0.52 1.57 1.64 (1.44,1.90) 1.23 (1.01,1.45)

  C3/4 0.93 (0.90,0.95) 0.93 (0.90, 0.96) 0.04 1.70 1.70 (1.49,1.97) 1.22 (0.99,1.46)

  C4/5 0.93 (0.90,0.95) 0.93 (0.90, 0.96) 0.14 2.02 2.01 (1.77,2.33) 1.57 (1.32,1.82)

  C5/6 0.94 (0.91, 0.96) 0.94 (0.91, 0.96) −0.22 2.10 2.11 (1.85,2.45) 1.59 (1.32,1.87)

  C6/7 0.95 (0.92, 0.96) 0.95 (0.92, 0.96) −0.22 1.68 1.69 (1.48,1.96) 1.29 (1.08,1.51)

F/N motion

  C2/3 0.73 (0.62, 0.81) 0.74 (0.64, 0.82) 0.07 1.79 1.78 (1.56,2.07) 1.40 (1.18,1.62)

  C3/4 0.87 (0.81, 0.92) 0.88 (0.83, 0.92) 0.55 1.75 1.83 (1.61,2.12) 1.37 (1.13,1.61)

  C4/5 0.84 (0.77, 0.89) 0.85 (0.78, 0.90) 0.17 2.27 2.27 (1.99,2.63) 1.69 (1.39,1.99)

  C5/6 0.87 (0.84, 0.92) 0.89 (0.84, 0.93) −0.18 2.05 2.05 (1.80,2.38) 1.66 (1.42,1.90)

  C6/7 0.93 (0.90, 0.95) 0.93 (0.90, 0.95) −0.14 1.50 1.50 (1.32,1.74) 1.19 (1.00,1.37)

N/E motion

  C2/3 0.60 (0.46, 0.71) 0.61 (0.46, 0.72) −0.18 1.61 1.61 (1.41,1.87) 1.21 (1.00,1.43)

  C3/4 0.88 (0.82, 0.92) 0.88 (0.83, 0.92) −0.46 1.66 1.71 (1.50,1.98) 1.34 (1.13,1.55)

  C4/5 0.87 (0.81, 0.91) 0.87 (0.81, 0.91) −0.12 2.05 2.05 (1.80,2.38) 1.49 (1.21,1.77)

  C5/6 0.80 (0.72, 0.86) 0.81 (0.73, 0.87) 0.22 1.98 1.99 (1.75,2.31) 1.43 (1.16,1.71)

  C6/7 0.73 (0.62, 0.81) 0.75 (0.65, 0.82) 0.02 1.60 1.59 (1.40,1.85) 1.28 (1.10,1.47)
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Fig. 6  Bland–Altman plots (left) and correlation scatter diagrams (right) showing the differences and correlations between the model and 
reference standards on flexion–extension (F/E) motion
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Conclusions
A deep learning-based model was developed for auto-
mated SIRM measurement on flexion–neutral–extension 
cervical lateral radiographs and showed comparable per-
formance with radiologists. It may provide rapid, accu-
rate, and comprehensive information for cervical motion 
analysis.
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