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Abstract 

Background:  A deep convolutional neural network (DCNN) system is proposed to measure the lower limb parame‑
ters of the mechanical lateral distal femur angle (mLDFA), medial proximal tibial angle (MPTA), lateral distal tibial angle 
(LDTA), joint line convergence angle (JLCA), and mechanical axis of the lower limbs.

Methods:  Standing X-rays of 1000 patients’ lower limbs were examined for the DCNN and assigned to training, 
validation, and test sets. A coarse-to-fine network was employed to locate 20 key landmarks on both limbs that 
first recognised the regions of hip, knee, and ankle, and subsequently outputted the key points in each sub-region 
from a full-length X-ray. Finally, information from these key landmark locations was used to calculate the above five 
parameters.

Results:  The DCNN system showed high consistency (intraclass correlation coefficient > 0.91) for all five lower limb 
parameters. Additionally, the mean absolute error (MAE) and root mean squared error (RMSE) of all angle predictions 
were lower than 3° for both the left and right limbs. The MAE of the mechanical axis of the lower limbs was 1.124 mm 
and 1.416 mm and the RMSE was 1.032 mm and 1.321 mm, for the right and left limbs, respectively. The measure‑
ment time of the DCNN system was 1.8 ± 1.3 s, which was significantly shorter than that of experienced radiologists 
(616.8 ± 48.2 s, t = -180.4, P < 0.001).

Conclusions:  The proposed DCNN system can automatically measure mLDFA, MPTA, LDTA, JLCA, and the mechanical 
axis of the lower limbs, thus helping physicians manage lower limb alignment accurately and efficiently.
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Introduction
Knee osteoarthritis, commonly afflicting middle-aged and 
elderly women, is caused by many factors, such as hered-
ity and obesity [1]. There is a high incidence of lower limb 
malalignment in patients that suffer osteotomy around 

the knee joint, unicompartmental replacement, and 
total knee arthroplasty [2, 3]. Additionally, osteotomy, 
lengthening, or both can also be performed on patients 
with unequal lengths of both lower limbs, mal-union and 
non-union fractures of the lower limbs, and on patients 
with chronic osteomyelitis and bone tumours. Therefore, 
preoperative measurements of lower limb alignment in 
the standing position are critical since they may directly 
influence surgical treatment options.
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The most measured parameters in the lower limbs 
include mechanical lateral distal femur angle (mLDFA), 
medial proximal tibia angle (MPTA), lateral distal tibia 
angle (LDTA), joint line convergence angle (JLCA), and 
lower limbs mechanical axis [4]. At present, doctors 
measure these lines and angles on X-ray films manually 
for both lower limbs in the standing position. However, 
the measurement typically takes 10–15  min and has 
low accuracy and repeatability [5]. With the updating of 
software and hardware, digital X-rays are being increas-
ingly used to project the lower limbs. After scanning, the 
image is transmitted to the picture archiving and com-
munication system for measurements, and the repeat-
ability and reliability of the measurement are improved 
[6]. Currently, some commercial software programmes 
can measure these angles with higher stability, but they 
have some shortcomings, such as high cost and inconsist-
ent measurement results [7].

Artificial intelligence (AI) is widely used in medical 
image processing and analysis; furthermore, it has been 
deeply explored and has applications in the musculo-
skeletal system, such as for disease triage, parameter 
optimisation, image segmentation, measurements, diag-
nosis, and prognosis [8–10]. Bier et  al. [11] proposed a 
deep convolutional neural network (DCNN) algorithm 
to detect multiple anatomical landmarks in pelvic X-ray 
images from arbitrary viewing directions. Galbusera 
et al. [12] presented a fully convolutional neural network 
(CNN) algorithm to characterise an additional differen-
tiable spatial-to-numerical layer to measure the param-
eters of T4-T12 kyphosis, L1-L5 lordosis, Cobb angle, 
pelvic incidence, sacral slope, and pelvic tilt.

Therefore, we present a two-stage AI model to auto-
matically locate 20 landmarks in full-length X-ray films of 
the lower limbs. Considering these key points, we calcu-
late and measure several lower limb parameters, includ-
ing mLDFA, MPTA, LDTA, JLCA, and mechanical axis 
of the lower limbs. The contributions of our study are as 
follows:

1) The proposed DCNN model can provide reliable and 
reproducible measurements of lower limb parameters; 2) 
The proposed model can significantly shorten then meas-
urement time.

Materials and methods
All procedures in this study involving human partici-
pants were performed in accordance with the ethical 
standards of the Institutional Review Board and the 1964 
Helsinki Declaration and its later amendments or compa-
rable ethical standards. Approval from the Institutional 
Review Board of our hospital was obtained, with the pro-
ject approval number of “2021 Medical Review 088”. The 

HIPAA requirements were followed. Informed consent 
was not required.

Subjects
In this study, we selected patients who underwent stand-
ing X-ray examinations of the lower limbs from the 
period of March 2021 to June 2021. The exclusion cri-
teria were as follows: (1) patients who could not meet 
the measurement requirements after external fixation 
because of blurring landmarks, (2) patients who had 
repeated examinations, and (3) patients who had poor 
image quality. A total of 1000 patients were enrolled in 
this study (Fig. 1).

X‑ray examinations and ground truth labelling
A double-planar X-ray scanner (Discovery XR656, GE 
Healthcare, Milwaukee, WI, USA) was used to perform 
full-length X-ray examinations of the lower limbs in the 
standing position. The patients stood naturally: both 
hands held both sides of a shelf, kept their feet shoulder-
width apart, the median sagittal plane of the body was 
perpendicular to the detector and the horizontal plane, 
the coronal plane of the body was perpendicular to the 
horizontal plane, the patella was facing forward, and the 
lower limbs were completely extended. Tube voltage, 
tube current, and target-film distance were set to 75 kV, 
25 mAs, and 180 cm, respectively. The height of included 
X-rays ranged from 4411 to 6430 (median = 5638.5, 
standard deviation = 334.4). The width of the included 
X-rays ranged from 1200 to 2020 (median = 2004, stand-
ard deviation = 54.9), and the pixel spacing ranged from 
0.1851 mm to 0.1891 mm (median = 0.1884 mm, stand-
ard deviation = 0.002 mm).

The measurement parameters included: 1) the 
mechanical axis of the femur, the line between the 
centre of the femoral head and the lowest point of the 
intercondylar fossa of the femur, where the centre of the 
femoral head is determined by Mose concentric circles, 
2) the mechanical axis of the tibia, i.e. the line between 
the midpoint of the intercondylar ridge of the tibia and 
the midpoint of the talus, 3) mLDFA: lateral angle of 
the tangent line of the distal femoral articular surface 
intersects the mechanical axis of the femur, 4) MPTA: 
medial angle of intersection of articular surface tangent 
of tibiae plateau with mechanical axis of tibia, 5) LDTA: 
lateral angle of intersection of tangent of distal articular 
surface of tibia and mechanical axis of tibia, 6) JLCA: 
angle of intersection of tangent lines of the distal femur 
and tibial plateau, and 7) mechanical axis of the lower 
limb, i.e. the distance between the centre of the femoral 
head and midpoint of the talus. The ground truth of the 
training, validation, and test sets was measured by two 
experienced radiologists (YQL, experience in imaging 
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diagnosis of musculoskeletal system for 10  years, and 
ZFL, experience in imaging diagnosis of musculoskel-
etal system for 7  years). We considered the average 
values from the two radiologists as the ground truth to 
decrease the individual differences between markers 
[13]. Finally, another senior radiologist (XHM, engaged 
in imaging diagnosis of musculoskeletal system for 
12  years) reviewed all the generated ground truth and 
revised some inconsistent cases.

All measurements were performed independently on a 
local measuring tool based on Python 3.6. The radiolo-
gist first opened the software and imported full-length 
X-ray images of both lower limbs. Next, the centre of 
the femoral head, the lowest points of the lateral and 
medial condyles of the femur, the lowest point of the 
intercondylar fossa of the femur, the lateral and medial 
point of the tibial plateau, the midpoint of the intercon-
dylar spine of the tibia, and the lowest points of the lat-
eral and medial articular surface of the distal tibia were 
marked. To expand the application scope of the DCNN, 
patients who had total knee arthroplasty (TKA) were also 
enrolled in the study. The total number of the TKA cases 
was 234 patients in the entire dataset. We proportionally 
divided these TKA cases into training (n = 163), valida-
tion (n = 23), and test (n = 48) sets. For the TKA cases, 
we marked the medial and lateral points and the middle 
points between the medial and lateral points of the joint 
prosthesis in the distal femur and proximal tibia. Follow-
ing marking, the software automatically calculated and 

displayed the mLDFA, MPTA, LDTA, JLCA, and the 
mechanical axis of the lower limbs. Finally, the measured 
data were saved and exported to Excel.

Data splitting, pre‑processing, and augmentation
According to examination dates, we divided 70% of the 
enrolled X-rays as the training set (n = 700), 10% as the 
validation set (n = 100), and the remaining 20% of the 
X-rays were treated as the test set (n = 200).

To eliminate the scanning differences between sub-
jects, we applied a series of pre-processing to normal-
ise all the enrolled X-rays. First, we resampled the pixel 
spacing to 1 × 1  mm. Min–max normalisation was next 
used to scale pixel values. We also employed rotation as 
an augmentation strategy to increase the variance of the 
training set. In the training phase, the input X-rays were 
rotated at a random angle in the range of − 5° to 5°.

Deep learning methods of landmark location
In this study, we employed the VB-Net [14] architecture 
as the basic model to build a coarse-to-fine system. The 
architecture of VB-Net is shown in Fig.  2. In the novel 
VB-Net, a bottle-neck structure replaces the conventional 
convolutional layers in the convolutional U-Net and thus 
contributes to a significant decrease in the model size. In 
this study, we considered a 20 × 20 region around each 
ground truth as the network input. In addition, we out-
put the centre of the largest connected component in 

Fig. 1  Flowchart of patient inclusion and exclusion
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probability maps. In this manner, we realised the land-
mark detection using a segmentation network.

As shown in Fig. 2(a), the inputs for the coarse network 
were the full-length X-rays in a resolution of 1 × 1 mm. 
VB-Net first located the greater trochanter, intercondylar 
fossa of the femur, and the lateral malleolus on both the 

left and right sides of the X-ray, respectively. The size of 
the predicted region was 20 × 20 pixels. Then, to enable 
the fine networks to realise more accurate landmark loca-
tion, we resampled the X-rays to 0.25 × 0.25 mm. Three 
pairs of image patches were extracted around the above-
mentioned regions. The cropped field of view (FOV) was 

Fig. 2  Architecture of VB-Net. R: right; L: left. hof: head of femur; gt: greater trochanter; lfc: lateral femoral condyle; mfc: medial femoral condyle; fi: 
fossa intercondyle; ltc: lateral tibial condyle; mtc: medial tibial condyle; ei: eminentia intercondyle; lasdt: lateral articular surface of the distal tibia; 
masdt: medial articular surface of the distal tibia
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180 mm2 for the greater trochanter regions, 128 mm2 
for the intercondylar fossa regions, and 104 mm2 for the 
lateral malleolus regions. The fine VB-Nets were con-
structed to precisely locate the greater trochanter, head 
centre of the femur in greater trochanter-centric patches, 
lateral femoral condyle, intercondylar fossa, medial femo-
ral condyle, lateral tibial condyle, eminentia intercondy-
laris, medial tibial condyle in intercondylar fossa-centric 
patches, lateral malleolus, and medial malleolus in lateral 
malleolus-centric patches. The segmented FOV of the 
fine networks was 5 mm2 (20 × 20 pixels).

In this study, we used the training set to build a two-
stage network. We set the loss function as the focal loss 
and the constant learning rate as 0.0001 based on the 
validation set. We used the test set to evaluate the per-
formance of the proposed AI-aided lower limb measur-
ing system. The deep learning algorithm was developed 
on PyTorch with an NVIDIA GeForce GTX TITAN X 
graphic card.

Automatic measurement of lower limb alignment.
In this study, we aimed to obtain mLDFA, MPTA, 

LDTA, JLCA, and the mechanical axis of the lower limbs 
for preoperative measurements. The related parameters 
of lower limb alignment can be calculated automatically 
using the 10-pairs core regions. The calculations are 
detailed in Fig. 3.

Statistical analysis
Statistical analyses were performed using SPSS 26.0 soft-
ware (version 26.0; SPSS Inc., Chicago, IL, USA). For 
key landmark location estimation, we determined the 
percentage of points of the correct key (PCK) [15] with 
a threshold of 3  mm. Furthermore, some metrics were 
employed to estimate the angle prediction performance 
of the DCNN system and human experts. Intraclass cor-
relation coefficients (ICCs) and Pearson correlation were 
used to analyse the correlation between the measure-
ments of the DCNN system and the ground truth. For the 
variability analysis, the mean absolute error (MAE) and 
root mean squared error (RMSE) were calculated. The 
measurement time of the DCNN system and the ground 
truth were compared using a paired-samples t-test with 
95% confidence interval (CI). Statistical significance was 
set at P < 0.05. Additionally, to visually demonstrate the 
distribution of the metrics, Bland–Altman plots were 
drawn.

Fig. 3  Definition of lower limb alignment parameters. mLDFA: 
mechanical lateral distal femur angle; MPTA: medial proximal tibia 
angle; LDTA: lateral distal tibia angle, JLCA: joint line convergence 
angle; lasdt: lateral articular surface of the distal tibia; masdt: medial 
articular surface of the distal tibia
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Results
Results of key‑point location
We evaluated the key landmark location performance of 
the proposed coarse-to-fine networks on the test set. The 
results are shown in Fig. 4, where the red dots represent 
the radiologists’ annotations, and the blue dots represent 
the DCNN systems’ predictions. We used PCK to explore 
the correct percentage of all the detected points. If the 
absolute distance between the radiologists’ annotations 
and AI predictions was less than 3 mm, we regarded the 
detected point as a desirable output. Table  1 shows the 
PCK of our AI model. From Table 1, we can discover that 
PCK for all the landmarks exceeded 90%. The detailed 
error distributions between AI predicted key points and 
the ground truth for 20 points are shown as a violin plot 
in Fig. 5.

Results of lower limb measurements
Following the key-point detection, the above-men-
tioned parameters were automatically calculated. A 
detailed comparison is presented in Table  2. For all the 
measurements (four angles and the whole length of the 
lower limbs), the P-values of the Mann–Whitney U Test 
showed no significant differences between AI calcula-
tions and the ground truth. ICCs and Pearson correla-
tion also demonstrated a strong correlation between the 
model and radiologists. MAEs for the four angles were all 
smaller than 2.1°. The MAEs for the whole length of the 
lower limbs were 1.124 mm and 1.032 mm for the right 
side and the left side, respectively. The Bland–Altman 
plots of the angles and mechanical axis of the lower limb 
measurements are shown in Fig. 6.

Results of the measurement time
The measurement time of the DCNN system was 
1.8 ± 1.3  s, which was significantly shorter than that of 
the ground truth (616.8 ± 48.2 s, t = -180.9, P < 0.001).

In summary, the proposed coarse-to-fine DCNN can 
significantly enhance the measuring efficiency with a 
comparable accuracy for multi-measurements in lower 
limbs.

Discussion
In this study, we used a coarse-to-fine DCNN system to 
realise ten pairs of key landmark locations in full-length 
X-ray films for the lower limbs. The study demonstrated 
that the DCNN model can automatically and accurately 
measure mLDFA, MPTA, LDTA, JLCA, and mechanical 
axis of the lower limbs. The presented method can pro-
vide reliable and repeatable measurements and signifi-
cantly shorten the measurement time.

Researchers have increasingly paid attention to semi-
automatic and automatic measurements on X-ray films. 
Some authors have utilised commercial software to 
measure the angles and lengths of plain films. Schröter 
et al. [16] found that the two digital planning software 
programmes, mediCAD® and PreOPlan®, showed high 
interrater reliability in deformity analysis and digital 
planning of osteotomies of the knee joint, and experi-
ence of the observer had no influence on the results. 
Segev et  al. [17] found that digital measurements 
with the TraumaCad® system are reliable in terms of 
intra- and inter-observer variability, making it a useful 
method for the analysis of pathology on radiographs in 
paediatric orthopaedics, including pelvic, lower limb, 

Fig. 4  Key points location results of the proposed AI model. Red dot: ground truth; Blue dot: DCNN system
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and spine deformities. Sled et  al. [7] used a Horizon 
Surveyor custom software programme to semi-auto-
matically measure frontal plane lower limb alignment, 
demonstrating that alignment measurements using a 
bone landmark-based approach and a computer pro-
gramme were highly reliable among multiple readers. 

However, these commercial software packages have 
many drawbacks. First, they are expensive, making 
them difficult to popularise. Additionally, they require 
radiologists or clinicians to manually mark the meas-
urement key points on the image, which is time con-
suming. Finally, the measurement errors among these 

Fig. 5  Violin plot of DCNN system and ground truth. hof: head of femur; gt: greater trochanter; lfc: lateral femoral condyle; mfc: medial femoral 
condyle; fi: fossa intercondyle; ltc: lateral tibial condyle; mtc: medial tibial condyle; ei: eminentia intercondyle; lasdt: lateral articular surface of the 
distal tibia; masdt: medial articular surface of the distal tibia

Table 2  The results of parameter calculation of lower limbs

mLDFA, Mechanical lateral angle of distal femur MPTA, Medial angle of proximal tibia LDTA, Lateral angle of distal tibia JLCA, Joint convergent angle of articular surface 
ICC, Intraclass correlation coefficient MAE, Mean absolute error RMSE, Root mean squared error

P value
(95% CI)

ICC Pearson correlation MAE RMSE

mLDFA ( °) Right 0.212 
(0.180, 0.225)

0.982 0.964 0.642 0.849

Left 0.194
(0.163, 0.202)

0.980 0.961 0.656 0.847

MPTA ( °) Right 0.312
(0.193, 0.327)

0.988 0.976 0.638 0.872

Left 0.332
(0.209, 0.344)

0.991 0.982 0.602 0.813

LDTA ( °) Right 0.312
(0.193, 0.327)

0.939 0.887 1.986 2.451

Left 0.394
(0.209, 0.344)

0.915 0.850 2.048 2.512

JLCA ( °) Right 0.194
(0.158, 0.212)

0.949 0.907 0.825 1.092

Left 0.224
(0.207, 0.261)

0.942 0.891 0.716 0.969

mechanical axis of lower 
limbs (mm)

Right 0.234
(0.207, 0.261)

1.000 1.000 1.124 1.416

Left 0.194
(0.167, 0.237)

1.000 1.000 1.032 1.321
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software packages are large and cannot meet clinical 
demands [5, 6].

Therefore, an increasing number of studies have used 
DCNNs to automatically measure these angles and lengths 
on plain films. Schock et al. [18] used a DCNN algorithm 
to measure hip-knee-ankle angle and femoral anatomic-
mechanical angle automatically and quantitatively and the 
measurements were as precise and accurate as manual 
reference measurements with 3–7 s. Recently, Simon et al. 
[19] tested the LAMA software, which was trained on over 
15,000 radiographs from multiple centres using DCNN to 
measure the hip-knee-ankle angle, anatomical mechani-
cal angle, JLCA, mLDFA, LDTA, mechanical lateral proxi-
mal femoral angle, MPTA, mechanical-axis-deviation, 
leg length, femur length, and tibia length. The software 
achieved an overall accuracy of 89.2% when comparing 
the AI outputs to those that were manually measured. AI 
vs. observers revealed a mean absolute deviation between 
0.39° and 2.19° for angles and 1.45–5.00  mm for lengths. 
The ICC between AI and observers showed good reliabil-
ity in all lengths and angles (ICC ≥ 0.87). In this study, PCK 
was used to evaluate the performance of landmark loca-
tion. Table 1 demonstrates that the located accuracies are 
almost 90% for 10 pair candidates with threshold of 3 mm. 
For overall assessment, additional PCK with thresholds of 
2.5 mm, 2 mm, 1.5 mm, and 1 mm are shown in Tables S1, 
S2, S3 and S4, respectively.

Based on the landmark location, five measurements of 
the lower limbs were calculated. Table S1 shows that there 
was no significant difference between manual annotation 
and DCNN system calculation. Figure S1 shows a patient 
with malalignment of left knee with genu varum. The 

distances between AI predictions and ground truth for left 
lateral femoral condyle, medial femoral condyle, intercon-
dylar fossa, lateral tibial condyle, medial tibial condyle, and 
eminentia intercondyle were 2.56 mm, 2.98 mm, 2.16 mm, 
1.47 mm, 1.21 mm, and 2.81 mm, respectively. The abso-
lute errors between proposed method and ground truth for 
mLDFA, MPTA, LDTA, JLCA, and the mechanical axis of 
the lower limbs on the left side were 1.14°, 0.86°, 1.98°, 2.54°, 
and 0.04 mm. The above metrics illustrate that pathological 
changes may decrease the landmark location accuracy and 
further influence relative measurements. Therefore, includ-
ing more extreme deformity cases is expected to enhance 
the robustness of the DCNN.

The ICCs between the ground truth and the DCNN 
predictions indicate a high consistency. Specifically, the 
MAE of the predicted mLDFA was 0.642° for the right 
limbs and 0.656° for the left limbs, and the errors were 
much lower, similar to a previous report. Nguyen et  al. 
[20] reported that the MAE for mLDFA was 0.899° for 
the right limbs and 1.137° for the left limbs. In our study, 
the predicted MAE for MPTA of the right and left limbs 
was 0.638° and 0.602°, respectively, which are also better 
than the ones reported by Nguyen et  al. [20] (the MAE 
for MPTA of right and left limbs was 1.146° and 1.032°, 
respectively). Additionally, Zheng et  al. [21] determined 
the mechanical axis of the lower limbs using the AI 
model with an MAE of 4.5 mm, and our corresponding 
MAE values for the right and left legs were 1.124  mm 
and 1.032  mm, respectively. To further explore the dif-
ferent measuring performance, Tables S5 and S6 dis-
play the measurements for preoperative X-ray and TKA 
patients, respectively. The results in Tables S5 and S6 and 

Fig. 6  Bland–Altman plots of angles and mechanical axis of lower limb measurements
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the predicted landmarks of right leg in Figure S1 demon-
strate that our model can show equivalent ability in lower 
limbs alignment for knee prosthesis inserting X-rays.

Some authors have also developed DCNN algorithms 
to measure other indices on plain films. Ye et  al. [22] 
developed a deep learning-based system for automatic 
patellar height measurements using knee radiographs, 
which can predict the Insall–Salvati, Caton–Deschamps, 
modified Caton–Deschamps, and Keerati indexes auto-
matically with high accuracy. Li et  al. [23] used a mask 
regional CNN model to detect four key points that delin-
eate the Sharp’s angle. Python-based utility software was 
applied to automatically draw and calculate the Sharp’s 
angle. The AI model can automatically measure the 
Sharp’s angle with a performance similar to that of ortho-
paedic surgeons but requires considerably less time.

This study has some limitations. First, the data of the 
study were derived from a single hospital; we did not use 
multi-centre measurement data, so the generalisation of 
the DCNN model needs to be confirmed in the future. 
Second, the sample size was relatively small, and the 
DCNN model may perform insufficiently; thus, we must 
expand the sample size, especially with data of patients 
with severe deformities of the lower limbs.

Conclusions
In this paper, we proposed a DCNN system to automatically 
provide multiple measurements (mLDFA, MPTA, LDTA, 
JLCA, and length of mechanical axis) for lower limb align-
ment in X-rays. The MAEs of the four angles were all less 
than 2.1°. The MAE for the entire length of the lower limbs 
was approximately 1  mm. The total measured time was 
1.8 ± 1.3 s. The results demonstrated that our method is reli-
able and repeatable with a significant increase in efficiency.

In the future, we will focus on the validation of the pro-
posed lower limb alignment method in more medical 
centres and enhance the robustness of the DCNN system.
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