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Abstract 

Background: Oblique lateral interbody fusion (OLIF) is widely used to treat lumbar degenerative disc disease. This 
study aimed to evaluate the biomechanical stability of OLIF, OLIF including posterior pedicle screw and rod (PSR), and 
OLIF including cortical screw and rod (CSR) instrumentation through finite element analysis.

Methods: A complete L2-L5 finite element model of the lumbar spine was constructed. Surgical models of OLIF, such 
as stand-alone, OLIF combined with PSR, and OLIF combined with CSR were created in the L3-L4 surgical segments. 
Range of motion (ROM), end plate stress, and internal fixation peak stress were compared between different models 
under the same loading conditions.

Results: Compared to the intact model, ROM was reduced in the OLIF model under all loading conditions. The 
surgical models in order of increasing ROM were PSR, CSR, and stand-alone; however, the difference in ROM between 
BPS and CSR was less than 0.4° and was not significant under any loading conditions. The stand-alone model had the 
highest stress on the superior L4 vertebral body endplate under all loading conditions, whereas the end plate stress 
was relatively low in the BPS and CSR models. The CSR model had the highest internal fixation stress, concentrated 
primarily at the end of the screw.

Conclusions: OLIF alone significantly reduces ROM but does not provide sufficient stability. Addition of posterior PSR 
or CSR internal fixation instrumentation to OLIF surgery can significantly improve biomechanical stability of the seg-
ment undergoing surgery.

Keywords: Oblique lumbar interbody fusion, Degenerative disc disease, Biomechanical, Posterior pedicle screw and 
rod, Cortical screw and rod, Finite element analysis
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Background
With the development of minimally invasive spine sur-
gery techniques, oblique lateral interbody fusion (OLIF) 
has become one of the most widely used techniques for 
the treatment of lumbar degenerative disc disease in 
recent years due to the minimal trauma, reduced bleed-
ing, shorter recovery time, and low incidence of neu-
rological complications associated with it [1–3]. Since 
the size of the intervertebral fusion cage used in OLIF 
is much larger than that of the conventional posterior 
fusion cage, and that the fusion cage is placed across the 
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epiphyseal ring of the vertebral body, its biomechanical 
stability is significantly enhanced [4, 5]. Therefore, OLIF 
as a stand-alone technique has been used in the manage-
ment of lumbar spine disorders with some clinical effi-
cacy [6–9]. However, most degenerative disorders of the 
lumbar spine occur in elderly patients and are affected by 
many factors, such as the patient’s age, bone condition, 
intervertebral space management technique, and so on. 
In addition, postoperative complications such as subsid-
ence and displacement of the fusion cage cannot be over-
looked [10]; hence, augmentation with internal fixation 
instrumentation is required in most cases to improve the 
stability of fusion [11, 12].

Internal fixation with posterior pedicle screw and 
rod can result in good biomechanical properties, and 
can maintain the stability of the spine and promote 
intervertebral fusion. Thus, it is now typically used for 
the augmentation of internal fixation of the lumbar 
spine [13–16]. However, postoperative complications 
of internal fixation, such as loosening of pedicle screws, 
rod breakage, and pedicle fracture, have become major 
limiting factors, especially in elderly patients with oste-
oporosis [17, 18]. In view of these factors, Santoni et al. 
proposed the cortical bone trajectory technique in 2009 
and applied it to the surgical treatment of spine disor-
ders. This screw placement method maximizes contact 
with the cortical bone and increases the holding strength 
of the screw [19]. Overall, the choice of posterior internal 
fixation technique in OLIF remains controversial. To the 
best of our knowledge, few studies have investigated the 
biomechanical properties of OLIF combined with poste-
rior augmentation. This study aimed to use finite element 
analysis to construct a model of the intact L2-L5 lumbar 
spine (Intact) and three surgical models: stand-alone 
OLIF (SA), OLIF combined with pedicle screw and rod 
fixation (PSR), and OLIF combined with cortical screw 
and rod fixation (CSR). Further, we compared and ana-
lyzed the biomechanical differences in OLIF combined 
with different posterior internal fixation methods during 
movements such as anterior flexion, posterior extension, 
lateral flexion, and rotation, with the aim of providing a 
reference value for the clinical application of OLIF.

Methods
Finite element (FE) model of L2–L5
A healthy adult male volunteer (height: 175 cm, weight: 
68 kg) was selected. History of spinal deformity and 
lumbar disease was ruled out through X-ray imaging. 
A 64-slice spiral computed tomography (CT, Somatom 
Sensation 64; Siemens, Germany) at Zhuhai People’s 
Hospital was used to scan the whole spine of the vol-
unteer with a slice thickness of 0.625 mm. Acquired CT 
data were imported into Mimics Research 20.0 software 

(Materialise Inc., Leuven, Belgium) in DICOM format. 
Region growing, threshold segmentation, manual edit-
ing, and other operations were used to capture the bone 
structure of the L2-L5 lumbar spine, and a basic three-
dimensional contour model of the lumbar spine was 
generated.

The above data were imported into Geomagic Studio 
2012 (3D Systems, Inc., Rock Hill, South Carolina, USA) 
for smoothing, denoising, curve surface construction, 
and other modifications, and for processing to gener-
ate bony contours of the lumbar vertebrae. Next, solid 
models of cortical bone, cancellous bone, intervertebral 
disc, cartilage end plate, and articular cartilage were con-
structed using SolidWorks 2015 computer-aided design 
software (Dassault Systèmes SolidWorks Corporation, 
Waltham, Massachusetts, USA), and a three-dimensional 
geometric model of the lumbar spine was reverse engi-
neered. The thickness of the cortical bone and cartilage 
end plate was 1 mm, the nucleus pulposus accounted for 
about 30–40% of the intervertebral disc volume, and the 
articular cartilage closely approximated the articular sur-
face and was set to a thickness of 0.2 mm [20–23].

Finally, the constructed solid models were imported 
into ANSYS Workbench 18.0 software (ANSYS, Ltd., 
Canonsburg, Pennsylvania, USA) for ligament recon-
struction, including anterior longitudinal ligament, 
posterior longitudinal ligament, ligamentum flavum, 
capsular ligament, interspinous ligament, supraspinous 
ligament, and intertransverse ligament reconstruction. 
The position and structure of all ligaments were accu-
rately simulated as previously described [24]. LINK180 
elements were used to simulate the function of the liga-
ments, and only bear tensile force. Model meshing was 
conducted using optimal elements, and a high-quality 
mesh was obtained through mesh convergence analysis 
to reduce the calculation error. The lumbar spine struc-
ture was set as an isotropic linear elastic material, and in 
the end, a complete three-dimensional FE model of the 
L2-L5 lumbar spine was constructed by assigning mate-
rial properties to the model (Fig. 1a). The complete model 
comprised 638,146 elements and 347,461 nodes.

Establishment of FE models of OLIF combined 
with posterior instrumentation
In this study, three-dimensional geometric models of 
internal fixation instrumentation were constructed 
based on the actual parameters of screws, connecting 
rods, and cages, using the part interface of SolidWorks 
2015. Specifically, the length and diameter of the pedi-
cle screw were 45 mm and 6.5 mm, respectively; the 
length and diameter of the cortical screw were 35 mm 
and 4.5 mm, respectively; the diameter of the connect-
ing rod was 5.5 mm; and the length, width, and height of 
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the intervertebral fusion cage were 50 mm, 18 mm, and 
12 mm, respectively. The anterior and posterior sides 
differed in height, the upper and lower surfaces formed 
an angle of 6°. For all OLIF models, the “Boolean calcu-
lation” is used to remove the part overlapping with the 
vertebral body, and realized the geometric matching 
between the fuser and the endplate interface. In order 
to simplify the influence of sawtooth on the surface of 
fuser, rectangular surface is used to replace sawtooth 
surface in modeling. The purpose of this study was to 
evaluate the biomechanical effects of surgical segments 
with bone fusion combined with different posterior 
internal fixation. Therefore, the fusion cage and verte-
bral endplate, pedicle screw and vertebral body, pedicle 
screw and connecting rod were regarded as integration. 
The spinal fixation instrumentation used in this study 
were the CLYDESDALE spinal system and the CD 
HORIZON spinal system (Medtronic Sofamor Danek, 
Memphis, Tennessee, USA).

The study design was based on surgical methods. The 
L3/4 vertebral segment was chosen as the surgical seg-
ment, and surgical resection of the L3–4 cartilage end 
plate, nucleus pulposus, and part of the annulus fibro-
sus was simulated. Next, the CLYDESDALE fusion cage 
was inserted into the L3–4 intervertebral space from 
the left side, and the interface was fixed, preserving the 
intact structure of the posterior lumbar spine. Subse-
quently, SolidWorks 2015 was used to assemble three-
dimensional solid models of the L2-L5 segment of the 
lumbar spine, the fusion cage, and the screw and rod 
system. Finally, the models of the intact lumbar spine 
(Intact), stand-alone OLIF (SA), OLIF combined with 
PSR, and OLIF combined with CSR were constructed 

(Fig. 1). The fusion cage was fixed in the target interver-
tebral space, and the same position was used in all sur-
gical models.

The tissue structure and implant material properties 
in this study were as previously described (Table 1) [23, 
25–27]. The articulating surfaces of all joints in the model 
were defined as surface-surface contact elements with 
friction coefficients of 0, and all other contact types were 
set as bonded contacts [23].

Boundary and loading conditions
All directions of movement of the lower surface of the L5 
vertebral body were constrained and fixed, and a verti-
cal load of 400 N was applied to the upper surface of L2 
to simulate the axial load (upright state) of the human 
body’s weight on the spine. A torque of 7.5 N m was 
applied in different directions to simulate six different 
physiological movements of the human body: anterior 
flexion, posterior extension, left and right lateral flexion, 
and left and right rotation [28, 29]. The effects of different 
types of internal fixation instrumentation on the biome-
chanical stability parameters related to OLIF, including 
the range of motion (ROM), end plate stress, and inter-
nal fixation screw and rod stress, were analyzed and 
compared.

Results
Validation of the model
The effectiveness of the complete L2–L5 finite element 
model of lumbar spine was verified according to the 
previous research results of Panjabi et al. [30, 31] Spe-
cifically, three different movements — flexion-exten-
sion, bilateral axial torque, and bilateral axial bending 

Fig. 1 Finite element models in the current study. a Finite element (FE) model of the intact L2-L5 spine, b FE model of the OLIF stand-alone(SA), c 
FE model of the OLIF combined with pedicle screw and rod (PSR), d FE model of the OLIF combined with cortical screw and rod (CSR)
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(2.5 N m, 5 N m, and 7.5 N m) were applied. The ROM 
experimental results for L2/3, L3/4, and L4/5 were 
compared with the data from the cadaveric experi-
ment and FE experiment described above (Fig. 2). The 
results of this study were consistent with data from the 
literature, proving that the FE model is effective and 
reliable.

ROM
The ROM of each surgical model under a combined 
load of 400 N and 7.5 N m is illustrated in Fig. 3a. Com-
pared to the intact FE model, the ROM of the L3-L4 
segment was significantly reduced after OLIF in all 
loading conditions, especially during flexion and rota-
tion. When comparing all the surgical models, the 
stand-alone OLIF (SA) model showed the largest ROM 
value under all loading conditions, whereas the OLIF 
combined with PSR model had the smallest ROM. In 
addition, the ROM of OLIF combined with CSR model 
was also significantly lower than that of the SA model, 
especially during flexion and extension. The difference 
in ROM between OLIF combined with PSR and OLIF 
combined with CSR was less than 0.4°, and was not 
significant under all loading conditions (Fig. 3a).

Stress of the endplate
Under all loading conditions, the maximum stress on 
the superior end plate of the L4 vertebral body in the SA 
model was higher than in the other surgical models, but 
the difference was small compared to the Intact model. 
When the three different surgical models in the study 
were compared, the end plate stress in the PSR model 
was still the lowest in all loading conditions, but there 
was no significant difference in the actual end plate stress 
between the PSR and the CSR models under all loading 
conditions. Figure 3b depicts the peak Von Mises stress 
on the L4 vertebral body end plate under different direc-
tions of motion and in the three different surgical mod-
els. The stress color map of the superior L4 vertebral 
body end plate in the SA model is illustrated in Fig. 4.

Stress on the internal fixation
In the PSR model, the internal fixation instrumentation 
bore less stress during flexion, extension, and rotation, 
and greater during lateral flexion compared with the CSR 
model. In the CSR model, the stress on the pedicle screw 
during flexion-extension and rotation was higher than 
that in the BPS model by 54.2 and 32.0%, respectively. 
The pedicle screw reached peak stress (105.6 MPa) dur-
ing rotation in the axial direction in the CSR model. In 

Table 1 Material properties used in finite element model

NA Not applicable, PEEK Polyetheretherketone

Component Element Type Young Modulus (MPa) Poisson Ratio Cross-
Sectional 
Area  (mm2)

Bone NA

 Cortical bone Solid186 12,000 0.3

 Cancellous bone Solid186 100 0.3

 Posterior bony elements Solid186 3500 0.25

Intervertebral disc NA

 Annulus fibrosus Solid187 1 0.499

 Nucleus pulposus Solid187 4.2 0.45

 Endplate Solid187 1200 0.29

 Cartilage Shell163 35 0.4

Ligaments

 Anterior longitudinal link180 7.8 0.3 63.7

 Posterior longitudinal link180 10 0.3 20

 Ligamentum flavum link180 15 0.3 40

 Capsular link180 7.5 0.3 30

 Interspinous link180 10 0.3 40

 Supraspinous link180 8 0.3 30

 Intertransverse link180 10 0.3 1.8

Implants NA

 Cage (PEEK) Solid186 3600 0.3

 Screws and rods (titanium) Solid186 110,000 0.3
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addition, the maximum stress on the internal fixation 
instrumentation in each surgical model was found to 
be concentrated at the end of the pedicle screw (Fig. 5). 
The peak Von Mises stress of the two surgical models is 
illustrated in Fig. 3c, and the stress color map of the PSR 
model is presented in Fig. 5.

Discussion
Currently, lumbar interbody fusion (LIF) represented 
by posterior lumbar interbody fusion (PLIF) or trans-
foraminal lumbar interbody fusion (TLIF) remains the 
most widely used surgical technique. These procedures 
can directly lead to decompression of the spinal canal, 
which results in good fusion rates and clinical outcomes 
[32–34]. However, fusion cages inserted via a posterior 
approach requires removal of important stabilizing struc-
tures in the spine (such as the facet joints), and repeated 
traction on the dural sac and nerve roots may cause neu-
rological damage [35–37]. In 2012, OLIF was reported 

for the first time as a technique that could reduce surgi-
cal injury and further improve the efficacy of spine fusion 
[38], avoiding the anatomical problems described above. 
OLIF involves direct access to the lesioned intervertebral 
disc via the physiological space between the retroperi-
toneum abdominal vascular and the psoas major mus-
cle. Therefore, the oblique lateral approach allows safer 
placement of a fusion cage into the intervertebral space 
without being limited by the bony structure of the spine, 
the nerve roots, and the dura mater [3, 39]. In addition, 
the OLIF technique provides a number of biomechani-
cal advantages. The surgery completely preserves major 
stabilizing structures such as the anterior longitudinal 
ligament and the anterior annulus fibrosus, allowing the 
anterior longitudinal ligament and the posterior ligamen-
tous complex (PLC) to form a coupled motion response 
[40]. Therefore, the anterior longitudinal ligament pro-
vides greater resistance during flexion-extension and 
axial rotation of the spine [41].

Fig. 2 Comparison of the data of three spinal levels. The mean and standard deviation of ROM in three spinal levels (L2-L3, L3-L4, and L4-L5) were 
obtained by the FE models in this study compared with experimental data (Panjabi et al.1994) and reference FEA data (Ming Xu et al. 2017): a under 
flexion (+) and extension (−), b under right (+)/left (−) lateral bending, c under right (+)/left (−) axial rotation. Note: the dots represent the mean 
of ROM and the error bars indicated standard deviation
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Since the surgical instrumentation of OLIF cannot 
directly decompress the spinal canal laterally, nor can 
compressive objects such as herniated intervertebral 
discs, hypertrophic ligamentum flavum, and hyperplas-
tic facet joints be removed, its clinical efficacy derives 
primarily from indirect decompression, caused by (1) 
opening of the intervertebral space with a wide fusion 
cage, (2) restoring the height of the intervertebral fora-
men, (3) increasing the tension of the posterior longitu-
dinal ligament, and (4) improving the sagittal sequence of 
the spine [8, 42]. A prospective retrospective analysis by 

Tempel et al. [43] involving 297 patients (623 levels) who 
underwent stand-alone lateral fusion found that fusion 
cage subsidence was a major predictor of revision surgery 
following stand-alone lateral fusion. Notably, cage sub-
sidence has become a common complication following 
stand-alone OLIF. Many studies have indicated that cage 
subsidence is related to bone density, fusion level, cage 
position, cage height, and pedicle screw internal fixation 
[44, 45]. Therefore, prevention of cage subsidence fol-
lowing OLIF and maintenance of postoperative efficacy 
have received increasing attention. Several researchers 
have reported the use of OLIF combined with poste-
rior internal fixation instrumentation to maintain sta-
bility at the operated level [34, 46, 47]. However, only a 
few studies have evaluated the biomechanical proper-
ties of OLIF combined with posterior internal fixation 
instrumentation.

The purpose of the present study was to analyze and 
compare the biomechanical stability of OLIF combined 
with different posterior internal fixation instrumentation 
using three-dimensional FE analysis. Standard lumbar 
posterior internal fixation instrumentation includes PSR 
and CSR. Previous studies have reported that laterally 
inserted interbody cages significantly decrease ROM at 
the operated segment compared to PLIF, TLIF, and ante-
rior LIF [48]. The present study also demonstrated that 
stand-alone OLIF significantly reduced ROM in all direc-
tions of motion compared to the Intact model, indicating 
that stand-alone OLIF provides some degree of stability 
at the operated segment.

The CLYDESDALE interbody fusion cage provides 
immediate stability to the operated segment through 
“distraction-compression stabilization,” making the 
stand-alone OLIF technique possible [49, 50]. This is due 
to the use of a wide fusion cage in OLIF, which not only 
increases the contact area with the end plate, but the 6° 
angle between the superior and inferior surfaces helps to 
restore the height of the intervertebral space and improve 
the lumbar spine sequence. Clinical trials have also 
similarly concluded that stand-alone fusion fixation can 
improve stability of the operated segment in all direc-
tions of motion [12]. However, the study also found that 
the SA model had the highest stress on the superior L4 
vertebral body end plate among all surgical models and 
in all directions of movement, suggesting that the supe-
rior end plate may bear the highest reaction force from 
the fusion cage in stand-alone OLIF, which also signifi-
cantly increases the risk of cage subsidence. Andrea et al. 
[51] reported that a wider cage and a more anterior posi-
tion reduces mobility but also increases the risk of cage 
subsidence. Therefore, we use OLIF combined with a 
posterior internal fixation system as a routine surgical 
procedure in clinical practice. Related biomechanical and 

Fig. 3 Comparison of experimental results among all models. 
Comparisons of a range of motion, b L4 superior endplate stress, 
and c posterior instrumentation stress for the intact model and 
surgical procedures. ROM, range of motion; Intact, intact model; SA, 
stand-alone; PSR, pedicle screw and rod; CSR, cortical screw and rod
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Fig. 4 Stress distributions in the L4 superior endplate of OLIF stand-alone (SA) model. L, left; R, right

Fig. 5 Distributions of instrumentation stress for OLIF combined with pedicle screw and rod (PSR) model. L, left; R, right
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clinical studies have demonstrated that posterior instru-
mentation provides strong fixation to the operated seg-
ment, not only sharing most of the load on the superior 
end plate but also significantly reducing the load on the 
anterior spinal column [20, 52, 53].

In the traditional sense, laterally inserted intervertebral 
fusion cages combined with posterior internal fixation 
instrumentation can significantly improve the biome-
chanical stability of the operated segment, and not only 
effectively prevent subsidence and displacement of the 
fusion cage, but also considerably promote intervertebral 
fusion. Recently, anterior stand-alone interbody fusion 
cages have been used in clinical practice, and both their 
fusion rate on imaging and success rate are acceptable. 
However, fusion cages inserted through the oblique lat-
eral approach combined with posterior internal fixation 
instrumentation can result in a stronger and more sta-
ble structure [41, 54, 55]. The results of our study indi-
cated that the PSR model not only had the smallest ROM 
among all surgical models under the same loading condi-
tions, but also had the lowest stress on the L4 superior 
end plate stress (Fig.  3a, b), suggesting that vertebral 
pedicle screw fixation in OLIF surgery has significant bio-
mechanical advantages with respect to both ROM of the 
fixed segment and stress on the end plates of the adjacent 
vertebral bodies. Consistent with previous reports [56], 
the present study did not find significant biomechanical 
differences in the relative mobility and end plate stress in 
the PSR and CSR structures, indicating that the combina-
tion of OLIF with posterior internal fixation instrumen-
tation can significantly limit the mobility of the operated 
segment, further improving its stability. Posterior inter-
nal fixation instrumentation not only reduces stress on 
the end plate and the cage, but also maintains the indirect 
decompression effect after OLIF. The PSR and CSR struc-
tures in OLIF have good biomechanical stability in all 
directions of motion, suggesting that both CSR and PSR 
can be used with OLIF. Alternative or mixed posterior 
lumbar internal fixation methods can be used if cortical 
bone screws or pedicle screws cannot be inserted due to 
technical problems such as anatomical variation or intra-
operative complications.

The yield strength of internal fixation with a titanium 
alloy screw has been previously reported as 795–827 MPa 
[57]. In the present study, the peak stress on the screw 
and rod in each surgical model was less than this yield 
strength. In addition, according to previous research, 
the fatigue strength of titanium alloy internal fixation 
is 500 MPa [58]. In this study, we compared the static 
stress and yield strength of internal fixation after lumbar 
spine surgery. The results in Fig.  3 show that the maxi-
mum stress is less than the yield strength of the inter-
nal fixation and far less than the fatigue strength of the 

titanium alloy, which indirectly proves that the internal 
fixation method in this study has good fatigue resistance. 
However, fatigue intensity is a stress limit for multiple 
repeated loads. Thus, static stress cannot directly rep-
resent fatigue strength. It is necessary to test the fatigue 
strength of internal fixation in vivo in future study. There-
fore, the surgical model did not suffer from long-term 
stress concentration resulting in postoperative fatigue 
and fracture of the screw and rod, which in turn could 
affect the clinical efficacy of the procedure. The results 
of FE analysis revealed that except for lateral flexion, the 
stress on the screw and rod in the PSR model was lower 
than that in the CSR model during flexion, extension, and 
rotation, but the difference between the two was small. 
This indicates that when OLIF is combined with posterior 
internal fixation, the biomechanical differences between 
different types of posterior internal fixation instrumenta-
tion are only minor. Therefore, in clinical practice, corti-
cal screws or pedicle screws can be used as an augmented 
posterior fixation for OLIF. The peak stress of 105.6 MPa 
on internal fixation with the screw and rod was attained 
during axial rotation, but this was also far lower than the 
yield strength. This can be attributed to the fact that the 
surgical models constructed in the present study were all 
models of bone graft fusion, and the screw and rod sys-
tem and the interbody fusion cage each share part of the 
stress. This also suggests that patients must wear a waist-
band to restrict waist movement in the early stages after 
OLIF to prevent postoperative failure of internal fixation. 
In addition, the internal fixation stress color map reveals 
that the stress on internal fixation is often concentrated 
at the end of the screw in both CSR and PSR, (Fig.  5), 
which is consistent with the sites commonly fractured by 
screw and rod internal fixation after lumbar spine sur-
gery [59].

Limitation
FE analysis has many advantages when applied to biome-
chanical studies of the spine, but it currently cannot be 
used to construct a full lumbar spine model that includes 
the paravertebral muscles. As a result, the effects of the 
surrounding muscles and soft tissues on the biomechan-
ics of the spine have not been evaluated. Second, human 
tissues are composed of complex, biologically active 
structures. Material properties were assigned based 
on the parameters given in the literature, but a gap still 
exists between these values and those from biomechanics 
experiments in actual humans. In addition, actual lumbar 
spine models vary between individuals, and the model 
in the present study does not account for the degree of 
degeneration and other individual biological variations. 
Although the FE model in the present study has been val-
idated in previous studies, it requires further validation 
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by in vitro biomechanical experiments to serve as a true 
biomechanical simulation.

Conclusions
Surgeons should consider both the biomechanics of the 
spine and the individual condition of the patient when 
selecting the appropriate augmented supplemental fixa-
tion technique for OLIF. Posterior lumbar fixation instru-
mentation provides the most reliable biomechanical 
stability in OLIF, while stand-alone OLIF does not pro-
vide sufficient stability. Second, OLIF combined with dif-
ferent posterior fixation instrumentation (CSR and PSR) 
exhibits no obvious biomechanical difference in all direc-
tions of motion. Therefore, OLIF combined with CSR or 
PSR structures can provide similar biomechanical stabi-
lization efficacy for fusion and fixation of the operated 
segment.
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