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Abstract 

Background: Deep learning (DL) is an advanced machine learning approach used in diverse areas, such as image 
analysis, bioinformatics, and natural language processing. A convolutional neural network (CNN) is a representative 
DL model that is advantageous for image recognition and classification. In this study, we aimed to develop a CNN 
to detect meniscal tears and classify tear types using coronal and sagittal magnetic resonance (MR) images of each 
patient.

Methods: We retrospectively collected 599 cases (medial meniscus tear = 384, lateral meniscus tear = 167, and 
medial and lateral meniscus tear = 48) of knee MR images from patients with meniscal tears and 449 cases of knee MR 
images from patients without meniscal tears. To develop the DL model for evaluating the presence of meniscal tears, 
all the collected knee MR images of 1048 cases were used. To develop the DL model for evaluating the type of menis‑
cal tear, 538 cases with meniscal tears (horizontal tear = 268, complex tear = 147, radial tear = 48, and longitudinal 
tear = 75) and 449 cases without meniscal tears were used. Additionally, a CNN algorithm was used. To measure the 
model’s performance, 70% of the included data were randomly assigned to the training set, and the remaining 30% 
were assigned to the test set.

Results: The area under the curves (AUCs) of our model were 0.889, 0.817, and 0.924 for medial meniscal tears, lateral 
meniscal tears, and medial and lateral meniscal tears, respectively. The AUCs of the horizontal, complex, radial, and 
longitudinal tears were 0.761, 0.850, 0.601, and 0.858, respectively.

Conclusion: Our study showed that the CNN model has the potential to be used in diagnosing the presence of 
meniscal tears and differentiating the types of meniscal tears.
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Background
A meniscus tear resulting from trauma or degeneration 
is a common cause of persistent knee pain [1]. It also 
results in a reduction in function, a low quality of life, 
and early osteoarthritis [2]. Accurate detection of menis-
cal tears is essential for adequate and effective treatment. 
In addition, based on the type of meniscal tear, the treat-
ment options can range from conservative to surgical 
[3, 4]. Magnetic resonance imaging (MRI) is the most 
useful and accurate non-invasive diagnostic tool for the 
diagnosis of meniscal tears. It is typically used as the first 
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method for evaluating suspected meniscal tears and can 
effectively present the location and type of meniscal tear 
[5]. However, the diagnostic accuracy of MRI for evaluat-
ing the presence of meniscal tears and type of tear is dif-
ferent between clinicians specializing in knee disease and 
other clinicians. A system that aids in reading a knee MRI 
would be of great help for clinicians to manage patients 
suspected of having a meniscus tear.

Machine learning (ML) is a computer algorithm that 
automatically learns from data without requiring explicit 
programming [6]. ML enables breakthroughs in several 
fields, such as big data analysis, image analysis, natural 
language processing, and bioinformatics [7–12]. In addi-
tion, the usefulness of ML in the diagnosis of various 
musculoskeletal disorders has been demonstrated [13–
15]. The deep learning (DL) technique is an advanced 
ML approach. DL involves the construction of artificial 
neural networks using numerous hidden layers with 
structures and functions similar to those of the human 
brain [16]. The DL technique can learn unstructured and 
perceptual data, such as images and languages, and over-
come traditional ML techniques. A convolutional neu-
ral network (CNN) is a representative DL model that is 
advantageous, particularly in image recognition and clas-
sification [17]. Previous studies have shown that a CNN 
can be useful for determining the presence of meniscal 
tears in knee MRI images [18–21]. A CNN model that 
can differentiate tear location in the anterior horn, body, 
and posterior horn was recently developed [21]. We 
assumed that the CNN could be useful for classifying tear 
types (horizontal, complex, radial, and longitudinal tears) 
in addition to detecting meniscal tears.

In this study, we developed a CNN model to diag-
nose meniscal tears, classify the types of meniscal tears 
using knee magnetic resonance (tablMR) images of each 
patient, and evaluate its accuracy.

Methods
Subjects
We retrospectively collected 599 knee MR images from 
patients with meniscal tears, and 449 knee MR images 
from patients without meniscal tears. All MR images 
were obtained from a single university hospital from 
January 2010 to December 2020 (mean age = 38.7 ± 16.5; 
M:F = 729:319). To develop the DL model for evaluat-
ing the presence of meniscal tears, all collected knee 
MR images of the 599 cases with meniscal tears (medial 
meniscus tear = 384, lateral meniscus tear = 167, medial 
and lateral meniscus tears = 48) and 449 cases with-
out meniscal tears were used. Tear of the meniscus on 
MR images was independently assessed by two board-
certified orthopedic knee specialists and repeated 2 
weeks later. If there was a disagreement between the two 

experts, a third orthopedic knee specialist made the final 
decision on the grade. Reliabilities for all radiographic 
parameters were analyzed using intra-class correlation 
coefficients and were classified as little (correlation coef-
ficient, ≤ 0.25), low (0.26–0.49), moderate (0.50–0.69), 
high (0.70–0.89), or very high (≥ 0.90) [22]. To develop 
a DL model for evaluating the type of meniscal tear, 538 
cases with meniscal tears (horizontal tear = 268, complex 
tear = 147, radial tear = 48, longitudinal tear, 75) (Fig. 1) 
and 449 cases without meniscal tears were used. The 
study protocol was approved by the institutional research 
board of the university hospital. The Institutional Review 
Board waived the requirement for written informed con-
sent because this study was performed retrospectively 
using anonymous data. The Helsinki Declaration was 
adhered to in this study.

Images used for deep learning (input variables)
All MRI examinations were performed using a 1.5 T MR 
scanner (Philips Medical Systems, Eindhoven, Nether-
lands). We used fat-suppressed T2-weighted coronal and 
sagittal images containing the meniscus (repetition time, 
2480–5000 ms; echo time, 19–25 ms; section thickness, 
4 mm; NEX, 3.0; 192 × 2; matrix, 192 × 256).

Deep learning model
This study consisted of two main components: 1) deter-
mining meniscal tears and 2) classifying tear type. In this 
study, we trained the model for tear detection and tear 
type independently.

CNN model for meniscus tear
Coronal and sagittal MR images were used as inputs to 
determine the presence of meniscal tears, and the fea-
tures of coronal and sagittal MRI images were extracted 
using two CNN models. The CNN model used AlexNet 
as the backbone, and the input size of each CNN model 
was s × 224 × 224 × 3 [23]. Here, s indicates the number 
of 2D images included in the MRI and 3 indicates the 
number of RGB color channels. Each CNN model con-
sisted of five convolutional layers and a global average 
pooling layer. The feature maps generated in each model 
are concatenated and delivered to the fully connected 
layer. The fully connected layer of the model consists of 
two layers. These two layers contained a dropout layer 
and used a sigmoid function to classify meniscal tears. 
Figure 2 illustrates the CNN model used to identify the 
meniscal tears. The detailed architecture of the CNN 
model is shown in Table 1.

CNN model for the type of meniscus tear
Coronal MR images were used as inputs to classify 
the type of meniscal tear. Our CNN model extracted 
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image features for the meniscus type using AlexNet as 
the backbone. The input size of this CNN model was 
s × 224 × 224 × 3, and the features of the meniscus image 
were extracted through each of the five convolutional 
layers. The extracted feature maps were averaged using 
image slices, and then transferred to a fully connected 
layer. The fully connected layer comprised of three lay-
ers, and the sigmoid function was used as the last activa-
tion function. Figure 3 illustrates the CNN model used to 
determine the type of meniscal tears. The detailed archi-
tecture of the CNN model is shown in Table 2.

Implementation details
All of our models were implemented in PyTorch ver-
sion 1.7.0 and were tested on an NVIDIA GeForce RTX 

2080TI. All MR images were normalized between 0 and 
1 (pixel value/255). We retrained the model using the 
weight of the pretrained AlexNet model as the initial 
weight. The batch size and epoch of each model were set 
to 1 and 100, respectively, and the training model was 
optimized using the Adam optimizer method.

Dataset
The MRI data of meniscal tears were categorized as fol-
lows: 1) To develop a model to determine the presence 
of meniscal tears: normal, medial meniscus, lateral 
meniscus, and medial and lateral meniscal tears. 2) To 
develop a model to differentiate between the types of 
meniscal tears: normal, horizontal, complex, radial, and 
longitudinal.

Fig. 1 Representative magnetic resonance images of each type of meniscus tear

Fig. 2 Illustration of the convolutional neural network model determining the presence of a meniscus tear. CNN: convolutional neural network
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The details of the dataset configurations are presented 
in Tables  3 and 4. For each case, 70% of the dataset 
was randomly selected as the training set, whereas the 
remaining 30% was assigned to the test set to evaluate the 
model performance.

Evaluation metrics
The performance of the model was evaluated in terms of 
accuracy, precision, recall, sensitivity, specificity, and area 
under the curve (AUC). The 95% confidence interval for 
the AUC was calculated using the method described by 
DeLong et al. [24].

Results
We evaluated our model performance and compared it 
with MobileNet [25]. We used the same hyper-parame-
ters for MobileNet and our model. In addition, the fully 
connected layer of MobileNet was modified, as in our 
model.

Fig. 3 Illustration of the convolutional neural network model for determining the type of meniscus tear. CNN: convolutional neural network

Table 2 Architecture of the convolutional neural network model 
for differentiating the type of meniscus tear

Layer Kernel size (stride, 
padding)

Feature size

Input – s × 224 × 224 × 3

Convolution + ReLU 11 × 11 (4, 2) s × 55 × 55 × 64

Max pooling 3 × 3 (2, 0) s × 27 × 27 × 64

Convolution + ReLU 5 × 5 (1, 2) s × 27 × 27 × 192

Max pooling 3 × 3 (2, 0) s × 13 × 13 × 192

Convolution + ReLU 3 × 3 (1, 1) s × 13 × 13 × 384

Convolution + ReLU 3 × 3 (1, 1) s × 13 × 13 × 256

Convolution + ReLU 3 × 3 (1, 1) s × 13 × 13 × 256

Max pooling 3 × 3 (2, 0) s × 6 × 6 × 256

Adaptive average pooling, 
max value extraction

7 × 7 s × 1 × 1 × 256,
1 × 1 × 1 × 256

Dens – 1 × 1 × 1 × 128

Dens – 1 × 1 × 1 × 64

Output + sigmoid – 1

Table 1 Architecture of the convolutional neural network model for determining the presence of a meniscus tear

CNN convolutional neural network

Layer Kernel size (stride, padding) Feature size

Coronal CNN model Sagittal CNN model

Input – s × 224 × 224 × 3 s × 224 × 224 × 3

Convolution + ReLU 11 × 11 (4, 2) s × 55 × 55 × 64 s × 55 × 55 × 64

Max pooling 3 × 3 (2, 0) s × 27 × 27 × 64 s × 27 × 27 × 64

Convolution + ReLU 5 × 5 (1, 2) s × 27 × 27 × 192 s × 27 × 27 × 192

Max pooling 3 × 3 (2, 0) s × 13 × 13 × 192 s × 13 × 13 × 192

Convolution + ReLU 3 × 3 (1, 1) s × 13 × 13 × 384 s × 13 × 13 × 384

Convolution + ReLU 3 × 3 (1, 1) s × 13 × 13 × 256 s × 13 × 13 × 256

Convolution + ReLU 3 × 3 (1, 1) s × 13 × 13 × 256 s × 13 × 13 × 256

Max pooling 3 × 3 (2, 0) s × 6 × 6 × 256 s × 6 × 6 × 256

Adaptive average pooling, max value extrac‑
tion

7 × 7 s × 1 × 1 × 256,
1 × 1 × 1 × 256

s × 1 × 1 × 256,
1 × 1 × 1 × 256

Concatenate – 1 × 1 × 1 × 512

Dens + Dropout (0.5) – 1 × 1 × 1 × 256

Dens + Dropout (0.3) 1 × 1 × 1 × 128

Output + sigmoid 1
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Table  5 shows the performance of the models that 
were employed to identify the presence of meniscal 
tears. The AUCs of our model were 0.889, 0.817, and 
0.924 for medial meniscal, lateral meniscal, and medial 
and lateral meniscal tears, respectively, with an accu-
racy of 85.08, 80.54, and 91.95%, respectively. Further-
more, the precisions of the medial meniscal, lateral 
meniscal, and medial and lateral meniscal tears were 
83.93, 62.96, and 55%, respectively. The sensitivity/
specificity of the medial meniscal, lateral meniscal, and 
medial and lateral meniscal tears were 83.19%/86.67, 
68%/85.19, and 78.57%/93.33%, respectively. As com-
pared with MobileNet, the proposed model showed 
improvements in the accuracy, precision, recall, sensi-
tivity, specificity, and AUC by 20.97, 21.93, 28.32, 28.32, 
14.82%, and 0.214, respectively, in identifying medial 
meniscus tears. Further, for lateral meniscus tears, the 
metrics improved by 16.22, 22.96, 4, 4, 20.75%, and 
0.143, respectively, for the proposed model. The met-
rics associated with medial and lateral meniscus tears 
improved by 16.78, 34.49, 21.43, 21.43, 16.29%, and 
0.273, respectively.

Table 6 presents the performance results for the dif-
ferent types of meniscal tears. The AUCs of our model 
were 0.761, 0.85, 0.601, and 0.858 for the horizontal, 
complex, radial, and longitudinal tears, respectively, 
with an accuracy of 72.23, 91.02, 72.48, and 81.53%, 
respectively. Additionally, the precision of the hori-
zontal, complex, radial, and longitudinal tears were 
59.3, 81.48, 15.38, and 40.54%, respectively. The sen-
sitivity/specificity of the horizontal, complex, radial, 
and longitudinal tears were 63.75%/74.07, 68.75%/96.3, 
42.86%/75.56, and 68.18%/83.7%, respectively. We 
observed that, as compared with MobileNet, the accu-
racy, precision, specificity, and the AUC improved by 
20.14, 17.82, 32.59%, and 0.219, respectively, for the 
proposed model in the case of horizontal tears. These 
metrics for complex tears improved by 26.95, 49.43, 
35.56%, and 0.091, respectively, for the proposed 
model. For radial tears, the proposed model performed 
better than MobileNet with improvements of 27.93, 
66.23, 4.46, 4.46, and 33.34% in terms of accuracy, pre-
cision, recall, sensitivity, and specificity, respectively. 
For longitudinal tears, the proposed model showed 

Table 3 Dataset of the presence of meniscal tear

Category Training set Testing set Total

Medial meniscus tear (Normal/Medial meniscus tear) 583 (314/269) 250 (135/115) 833

Lateral meniscus tear (Normal/ Lateral meniscus tear) 431 (314/117) 185 (135/50) 616

Medial and lateral meniscus tear (Normal/Medial and lateral meniscus 
tear)

348 (314/34) 149 (135/14) 497

Table 4 Dataset of the type of meniscal tear

Category Training set Testing set Total

Horizontal tear (Normal/Horizontal) 502 (314/188) 215 (135/80) 717

Complex tear (Normal/Complex) 417 (314/103) 179 (135/44) 596

Radial tear (Normal/Radial) 348 (314/34) 149 (135/14) 497

Longitudinal tear (Normal/Longitudinal tear) 367 (314/53) 157 (135/22) 524

Table 5 Performance of the deep learning model for the presence of a meniscal tear

ACC  accuracy, Pre precision, Rec recall, Sen sensitivity, Spe specificity, AUC  area under the curve, CI confidence interval

Model Acc Pre Rec Sen Spe AUC (95% CI) Time (sec)

Medial tear MobileNet 64.11% 62% 54.87% 54.87% 71.85% 0.675 (0.608–0.742) 6.02

Ours 85.08% 83.93% 83.19% 83.19% 86.67% 0.889 (0.845–0.933) 3.64

Lateral tear MobileNet 64.32% 40% 64% 64% 64.44% 0.674 (0.592–0.756) 4.48

Ours 80.54% 62.96% 68% 68% 85.19% 0.817 (0.744–0.889) 2.77

Medial and lateral tear MobileNet 75.17% 20.51% 57.14% 57.14% 77.04% 0.651 (0.476–0.825) 3.15

Ours 91.95% 55% 78.57% 78.57% 93.33% 0.924 (0.863–0.985) 1.88
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improvements of 15.29, 18.72, 13.63, 13.63, 15.55%, 
and 0.178 in terms of accuracy, precision, recall, sen-
sitivity, specificity, and AUC, respectively. Figure  4 
shows the receiver operating characteristic curve 
results for test dataset. The meniscal tears assessed by 
two orthopedic surgeons (GBK and OS) showed very 
high intra- and inter-observer reliabilities (Table 7).

Discussion
In this study, we developed a CNN model for detecting 
the presence and type of meniscal tears using MR images 
as input data.

The AUCs for detecting the presence of tears in the 
medial meniscal, lateral meniscal, and both medial and 
lateral meniscal were 0.889, 0.817, and 0.924, respectively 
(Fig. 4a). Considering that an AUC ≥ 0.9, 0.9 > AUC ≥ 0.8, 
and 0.8 > AUC ≥ 0.7 are generally outstanding, excellent, 
and acceptable [26], respectively, our model trained using 
knee MRI as input data can be potentially applied for 
diagnosing meniscal tears in clinical practice. Regarding 
the capacity to differentiate the type of meniscal tear, the 
AUCs were 0.761, 0.850, 0.601, and 0.858 for horizon-
tal, complex, radial, and longitudinal tears, respectively 
(Fig. 4b). In addition to radial tears, determination of the 
other three types of meniscal tears was acceptable.

A DL model consists of a multilayer perceptron with 
multiple hidden layers, or a feedforward neural network. 
It has a greater ability to learn the characteristics of input 
data in detail than traditional shallow neural networks 

Table 6 Performance of the deep learning model for the type of a meniscal tear

ACC  accuracy, Pre precision, Rec recall, Sen sensitivity, Spe specificity, AUC  area under the curve, CI confidence interval

Model Acc Pre Rec Sen Spe AUC (95% CI) Time (sec)

Horizontal tear MobileNet 52.09% 41.48% 70% 70% 41.48% 0.542 (0.463–0.621) 2.45

Ours 72.23% 59.3% 63.75% 63.75% 74.07% 0.761 (0.694–0.828) 1.26

Complex tear MobileNet 64.07% 32.05% 78.12% 78.12% 60.74% 0.759 (0.682–0.835) 1.91

Ours 91.02% 81.48% 68.75% 68.75% 96.3% 0.850 (0.759–0.941) 1.01

Radial tear MobileNet 63.09% 15.25% 64.29% 64.29% 62.96% 0.651 (0.517–0.785) 1.76

Ours 72.48% 15.38% 42.86% 42.86% 75.56% 0.601 (0.433–0.768) 0.95

Longitudinal tear MobileNet 66.24% 21.82% 54.55% 54.55% 68.15% 0.680 (0.561–0.798) 1.71

Ours 81.53% 40.54% 68.18% 68.18% 83.7% 0.858 (0.787–0.930) 1.03

Fig. 4 Receiver operating characteristic curve and area under the curve for the test dataset. AUC: area under the curve

Table 7 Intra‑ and inter‑class correlation coefficients of the 
meniscal tear on magnetic resonance images

Values are presented as absolute values. The data showed almost perfect intra- 
and inter-observer agreement for the measured parameters [12]

Intra-observer Inter-observer

Normal 0.98 0.96

Horizontal tear 0.96 0.93

Complex tear 0.91 0.90

Radial tear 0.93 0.91

Longitudinal tear 0.94 0.93
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[16]. A CNN is a representative deep learning (DL) model. 
It receives multiple channels of two-dimensional data as 
input and transforms them repeatedly using convolution 
and pooling operations [17]. These processes allow the 
extraction of valuable features from the input data. There-
fore, CNNs have been used to recognize image patterns 
and process image data [17]. Our developed model rec-
ognized the valuable characteristics of knee MR images, 
identified meniscal tears, and classified the images based 
on the type of meniscal tear. However, our model has a 
low capacity for detecting and diagnosing radial meniscal 
tears. This could be because a small number of cases of 
radial tears were used to develop the DL model compared 
to other types of meniscal tears. In addition, the relatively 
small size of the lesion observed on MRI in radial tears 
could be attributed to the low AUC result.

To the best of our knowledge, four previous studies 
have evaluated the diagnostic efficacy of the DL model for 
detecting meniscal tears on knee MRI [18–21]. In 2018, 
Bien et al. developed a CNN model using 1370 cases of 
knee MRI (coronal, sagittal, and axial MR images; menis-
cus tear, 397) [18]. The AUC value for determining the 
presence of meniscal tears was 0.847. In 2020, Fritz et al. 
used a training set of 18,520 MR images, 1000 MR images 
for the validation set, and 1000 MR images for testing 
data. They developed a DCNN consisting of two 3D con-
volutional blocks (coronal and sagittal) to determine the 
presence of meniscal tears [19]. The AUC value for diag-
nosing medial meniscal tears was 0.882, that for lateral 
meniscal tears was 0.781, and that for overall meniscal 
tears was 0.961. Moreover, Rizk et  al. used coronal and 
sagittal knee MR images from 11,353 examinations [20]. 
The AUC value for diagnosing medial meniscal tears was 
0.93 and that for lateral meniscal tears was 0.84. Most 
recently, in 2021, Tack et al. used 2399 sagittal 3-dimen-
sional MRI scans from the publicly available database 
of the Osteoarthritis Initiative [21]. The AUC values for 
medial meniscal tears in the anterior horn, body, and 
posterior horn were 0.94, 0.93, and 0.93, respectively, 
whereas those for lateral meniscal tears were 0.96, 0.94, 
and 0.91, respectively. Recent studies have reported an 
enhancement in the accuracy of DL models for diagnos-
ing meniscal tears [20, 21]. This can be attributed to the 
large number of MRI scans required. However, previ-
ous studies did not diagnose the type of meniscal tear. 
Therefore, our study is the first to develop a DL model to 
classify meniscal tears based on knee MRI. Table 8 sum-
marizes related work on meniscal tears.

Conclusions
In conclusion, using coronal and sagittal knee MR 
images, we developed a CNN model to diagnose the 
presence of meniscal tears and differentiated types of 

meniscal tears. The diagnostic accuracy is generally 
acceptable. Although our CNN model is limited in its 
low accuracy for diagnosing radial tears, we believe 
that our study is meaningful because it is the first to 
distinguish the types of meniscal tears and show the 
possibility that the CNN model can differentiate types 
of meniscal tears and detect the presence of menis-
cal tears. In the future, diagnostic accuracy should be 
increased by using a larger amount of knee MRI data.

Abbreviations
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