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Abstract 

Background:  Smartphones provide opportunities for musculoskeletal research: they are integrated in participants’ 
daily lives and can be used to collect patient-reported outcomes as well as sensor data from large groups of people. 
As the field of research with smartphones and smartwatches matures, it has transpired that some of the advantages 
of this modern technology are in fact double-edged swords.

Body:  In this narrative review, we illustrate the advantages of using smartphones for data collection with 18 studies 
from various musculoskeletal domains. We critically appraised existing literature, debunking some myths around the 
advantages of smartphones: the myth that smartphone studies automatically enable high engagement, that they 
reach more representative samples, that they cost little, and that sensor data is objective. We provide a nuanced view 
of evidence in these areas and discuss strategies to increase engagement, to reach representative samples, to reduce 
costs and to avoid potential sources of subjectivity in analysing sensor data.

Conclusion:  If smartphone studies are designed without awareness of the challenges inherent to smartphone use, 
they may fail or may provide biased results. Keeping participants of smartphone studies engaged longitudinally is a 
major challenge. Based on prior research, we provide 6 actions by researchers to increase engagement. Smartphone 
studies often have participants that are younger, have higher incomes and high digital literacy. We provide advice for 
reaching more representative participant groups, and for ensuring that study conclusions are not plagued by bias 
resulting from unrepresentative sampling. Costs associated with app development and testing, data storage and anal-
ysis, and tech support are substantial, even if studies use a ‘bring your own device’-policy. Exchange of information 
on costs, collective app development and usage of open-source tools would help the musculoskeletal community 
reduce costs of smartphone studies. In general, transparency and wider adoption of best practices would help bring-
ing smartphone studies to the next level. Then, the community can focus on specific challenges of smartphones in 
musculoskeletal contexts, such as symptom-related barriers to using smartphones for research, validating algorithms 
in patient populations with reduced functional ability, digitising validated questionnaires, and methods to reliably 
quantify pain, quality of life and fatigue.
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Background
The worldwide impact of around 200 musculoskeletal 
conditions that affect joints, bones, muscles and soft-
tissues, is large [1–4]. Many musculoskeletal condi-
tions are characterized by pain, stiffness, fatigue, sleep 
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disturbances [5]. These symptoms affect patients’ physi-
cal function andimpede activities of daily living [4, 5]. 
Although the past century has seen advances in diagnosis 
accuracy and treatment options, people with musculo-
skeletal conditions still face high impact of disease, even 
if they achieve clinical remission [1–3].

To improve patients’ quality of life, a better under-
standing of fluctuations in disease state, symptoms and 
wellbeing over time is crucial, also in people with clini-
cal remission. Smartphones could provide opportunities 
to better understand these fluctuations in patients’ every-
day lives [6]. In addition, smartphones can enable moni-
toring, reporting of patient-reported outcomes, better 
patient-provider communication and personalized treat-
ments [7].

The promise of smartphones in musculoskeletal 
research and clinical care has been widely recognized. 
Various studies and publications [6–24] have docu-
mented key benefits of smartphone data collection for 
both research and clinical care, namely that it:

1.	 Offers opportunities to answer research questions 
that were difficult to investigate before.

2.	 Allows recruitment and engagement of large groups 
of participants with a range of musculoskeletal con-
ditions, increasing power to detect associations

3.	 Supports the relatively unobtrusive collection of real-
time, high frequency data for measuring exposures, 
outcomes and behaviour, ranging from daily to multi-
ple times per millisecond.

4.	 Can reduce burden of providing patient-reported 
outcomes and sources of reporting bias.

5.	 Can identify recurring patterns in the symptoms of 
individual participants, detect real-time deviations 
from this baseline and aggregate these to summarize 
populations

6.	 Augment our understanding of patients’ lived experi-
ences by taking more frequent measurements and/or 
combining key symptom domains, disease character-
istics and behavioural patterns

7.	 Can support the development, and eventually deliv-
ery, of patient-centred and personalized care.

Smartphones and mobile health have been hailed as 
‘the biggest technology breakthrough of our time’ with 
‘the potential to change every aspect of the health care 
environment’ [25]. Despite success stories, smartphone 
studies have not delivered on all promises, and are cer-
tainly are no panacea to all limitations of traditional data 
collection methods [18]. Researchers should recognize 
various novel challenges for data collection and analysis, 
as well as various sources of bias [25].

.

After a decade of smartphone research, the research 
community has gained a better understanding of oppor-
tunities and challenges in musculoskeletal research [7, 
26–29]. At the same time, research groups and commer-
cial partners continue developing bespoke apps, poten-
tially ‘reinventing the wheel’. In addition, various pitfalls 
of smartphone studies have been discovered in other 
medical application domains, but are not necessarily 
known to the musculoskeletal research community. In 
this narrative review, we discuss smartphone studies in 
musculoskeletal research and outline the advantages of 
smartphones for data collection. We highlight common 
misconceptions about smartphones, link these to pitfalls 
of smartphone research, and discuss our hope for over-
coming these pitfalls.

Of note, this paper’s scope is limited to the use of 
smartphones for musculoskeletal research. Some of the 
challenges and opportunities we discuss will be applica-
ble on technology more widely (e.g. on wearables, web 
portals or mobile health in general). However, we did not 
actively include literature on these types of technology 
in this article. Similarly, this article does not focus on the 
use of smartphones in clinic to support shared decision-
making, although some of the aspects we discuss general-
ize to that setting [6, 30].

Main text
Smartphones for musculoskeletal research
As smartphones are ubiquitous and typically carried by 
their users, they can be used for unobtrusive measure-
ment of frequent active and passive data [31, 32]. Active 
data include all data types that require input from the 
participant, such as smartphone surveys, audio record-
ings, photos or ‘active tasks’ (e.g. tapping the screen as 
fast as possible).

Passive data include all data types that do not require 
participant action beyond installing a data collection 
app, such as sensor data and metadata [27]. Smartphones 
typically have the following in-built sensors: GPS receiv-
ers, accelerometers, gyroscopes, magnetometers, micro-
phones, barometers, digital compass, and proximity and 
light sensors [33–37]. These sensors can be used to meas-
ure user behaviour and environment, including factors 
such as:

–	 exposure to pollution or weather (e.g. after linkage of 
location data to weather databases individual-level 
[17, 38]),

–	 mobility (e.g. distance travelled, travel patterns, max-
imum distance from home, visits to health clinics 
[39]),

–	 routines (diurnal movements, travel routines, out-of-
home activities, interactions with other people),
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–	 physical activity (walking, standing, running, sitting, 
falling, mode of transportation, gait speed, intensity 
[36, 40])

–	 ambient environment (light, presence of people), and
–	 sociability (locations visited, vicinity to other smart-

phone users)

Passive data collection may also refer to the accrual of 
metadata. Metadata refers to digital information on how 
the device or app is used. These include timestamps for 
tasks including survey completion, passive data, call and 
text logs (timing, duration/length of incoming and out-
going calls and texts), battery status and phone charging 
events [41]. Metadata can be useful to validate data by 
determining the timing of self-report entries, compared 
to the completion time requested. However, metadata 
also offers unique opportunities to collect information 
about participants’ behaviour such as screen use, socia-
bility or help seeking (as measured by call and text logs), 
circadian rhythm (determined based on the timing of 
activities throughout the day) and engagement with a 
digital intervention (as measured by app use) [27, 39].

Table  1 shows 18 examples of studies in people with 
musculoskeletal conditions ranging from rheumatoid 
arthritis and osteoarthritis to juvenile idiopathic arthri-
tis and systemic lupus erythematosus. We included 10 
examples of observational studies and 8 examples of 
interventional studies, to showcase studies across a range 
of musculoskeletal conditions, collecting different types 
of outcome metrics. Of note, for this narrative review we 
did not perform a systematic search of app stores or the 
academic literature, but we merely collected examples 
that showcased the advantages and pitfalls of smartphone 
research well. A systematic review is a great method to 
identify smartphone apps or smartphone studies and 
appraise their quality. We refer readers who are interested 
in such systematic reviews to reviews published here and 
elsewhere, including a review (1) rating the quality of 19 
apps to monitor rheumatoid arthritis [50], (2) describing 
one study using a smartphone app [51], (3) identifying 4 
apps to facilitate physical activity in people with rheuma-
toid arthritis [52], (4) identifying 20 apps for people with 
systemic lupus erythematosus [28], (5) describing 61 apps 
on self-managing low back pain [53], and (6) providing an 
overview of development of 32 apps for self-management 
of musculoskeletal diseases [54].

The intervention studies in Table 1 focused on improv-
ing self-management [9, 10, 15, 48, 49], or targeted more 
specific outcomes including mobility [16], hand function 
[14], fatigue [11], pain [49], physical function [49], or 
serum urate levels in a gout population [8].

The observational studies often examined environ-
mental exposures or behaviour, including weather [17] or 

exercise [22, 43], investigated pain location and intensity 
[22, 42, 43, 55], functional ability [46, 47], disease flares 
[24] or disease activity and its impact [6]. Various studies 
were pilot studies or feasibility studies [22, 43, 46–48].

Ten studies asked participants to perform “active tasks”, 
a predefined activity that provides insight in physical 
functioning, cognition or motor skills. The active tasks 
used in these papers included: a wrist motion test [46], 
yoga exercises and cognitive behavioural therapy exer-
cises [48], obtaining and entering serum urate levels [8], 
a walking exercise [15, 46], performing behavioural inter-
ventions chosen by a health coach [10, 14, 16], sharing 
experiences by answering questions from other partici-
pants [9], or active tasks chosen by the participants [11–
13]. One study asked patients to upload a photo of their 
hand once a month, which was used to monitor inflam-
mation and deformity [49]. Five studies showcase how 
data from smartphone apps can be combined with data 
from a wearable. Four projects used it for sensor data col-
lection only [15, 16, 21, 24] and one for both sensor data 
and patient-reported outcomes [22, 43].

These studies demonstrate some of the advantages of 
using smartphones for data collection. First, frequent 
measurements increase the power of studies to detect 
associations. Four studies recruited hundreds of partici-
pants, showcasing the advantage of remote recruitment 
and lower marginal effort per newly recruited partici-
pant [12, 13, 17, 21, 44, 46, 47]. The included studies 
were able to collect data frequently for sustained periods 
of time, ranging from 30 days to 15 months. In addition, 
high frequency longitudinal data provided insights into 
day-to-day fluctuations in symptoms, and their impact 
on activities of daily living and quality of life [6]. This 
resulted, for example, determination of thresholds for 
flares in axial spondyloarthritis [24].

Moreover, smartphones enable more detailed patient-
reported outcomes. One study collected the patient-
reported outcomes to guide subsequent visits to a 
rheumatologist [6]. Three studies used digital pain mani-
kins to enable participants to locate pain, and specify 
both the extent of pain and the intensity [42, 46, 47]. Pre-
viously, musculoskeletal researchers highlighted the sim-
plicity of existing pain trackers for smartphones, and the 
need for more rigorously tested apps that record loca-
tion-specific pain aspects and convert data into quantita-
tive scores for pain extent and intensity [29, 56].

For intervention studies, the integration of smart-
phones in participants’ daily lives provided an oppor-
tunity to influence behaviour by sending unobtrusive, 
context-aware messages at the right place at the right 
time. This was used in various studies aiming at improv-
ing function, mobility, self-management or coping behav-
iour [8–11, 14–16].
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Second, smartphones offered the opportunity to col-
lect passive data on real-life behaviour, exercise regi-
men and environmental exposures via sensors [17, 27, 
31]. Sensor data is free from the biases associated with 

self-reported data, such as social desirability bias and 
recall bias [57]. The reviewed studies used sensor data 
to determine location where participants were exposed 
to the weather [17], or to quantify their mobility and 
physical functioning [15, 22].

Table 1  Scoping review of smartphone studies, by year of publication and then by alphabetical order of first author name

AxSpa Axial Spondyloarthritis, FM Fibromyalgia, JIA Juvenile Idiopathic Arthritis, NA Not Applicable, NR Not Reported, OA Osteoarthritis, PROs Patient-Reported 
Outcomes, RA Rheumatoid arthritis, RMDs Rheumatic Musculoskeletal Diseases, SLE Systemic Lupus Erythematosus, QoL Quality of Life

Author, year (ref) Study name/
acronym

Study type 
(obvs/int)

Aim Population (n =) Follow-up PROs Active Tasks Wearable

Lalloo et al., 2021 
[9]

iCanCope Intervention Improve coping/
self management

Adolescents with 
JIA (n = 60)

8 weeks X X

Nap-van der Vlist 
et al., 2021 [11]

ProFeel Intervention Reduce fatigue Fatigued adoles-
cents with chronic 
conditions (n = 57)

6 weeks X X

Nowell et al., 2021 
[12, 13]

ArthritisPower app Observational Feasibility to 
inform use of 
future RA study 
design

Rheumatoid arthri-
tis (n = 253)

3 months X X

Khan et al., 2020 
[10]

NA Intervention Improve self-
management

Systemic lupus 
erythematosus 
(n = 50)

16 weeks X X

Lee et al., 2020 MyPainTracker Observational Measure pain 
location

Juvenile idiopathic 
arthritis (n = 14)

8 weeks X

Rodríguez-
Sánchez-Laulhé 
et al., 2020 [14]

Carehand Intervention Improve hand 
function

Hand Rheumatoid 
arthritis (n = NR)

3 months X

Van der Veer et al., 
2020 [42]

Pain manikin Observational Measure pain loca-
tion and intensity

Any musculoskel-
etal condition 
(n = 8)

NA X

Austin et al., 2019 
[6]

REMORA Observational Report disease 
activity and impact

Rheumatoid arthri-
tis (n = 20)

3 months X

Beukenhorst et al., 
2019 [22, 43]

KOALAP Observational Link between exer-
cise and pain

Knee osteoarthritis
(n = 26)

90 days X X

Dixon et al., 2019 
[17, 44, 45]

Cloudy with a 
Chance of Pain

Observational Effect of weather 
on pain

Chronic pain 
(n = 10,584)

15 months X

Gossec et al., 2019 
[24]

ActConnect Observational Predict disease 
flares

Rheumatoid 
arthritis / axial 
spondyloarthritis 
(n = 155)

3 months X X

Tam et al., 2019 
[16]

OPERAS Intervention Improve self-
management

Rheumatoid arthri-
tis (n = 134)

6 months X X X

Crouthamel et al., 
2018 [46, 47]

PARADE Observational Feasibility of meas-
uring functional 
ability

Rheumatoid arthri-
tis (n = 399)

12 weeks X X

De la Vega et al., 
2018 [48]

Fibroline Observational Feasibility of digital 
CBT

Fibromyalgia 
(n = 29)

9 weeks X X

Druce et al., 2018 
[21]

QUASAR Observational Investigate sleep 
quality and QoL

Rheumatoid arthri-
tis (n = 350)

30 days X X

Mollard et al., 2018 
[49]

LiveWith Arthritis Intervention Improve self-
management and 
health outcomes

Rheumatoid 
arthritis (n = 21 
app users; n  = 15 
controls)

6 months X

Day et al., 2017 [8] Healthy.me Intervention Improve control 
over serum urate 
levels

Gout (n = NA) 6 months X X

Skrepnik et al., 
2017 [15]

OA GO Intervention Improve mobility Osteoarthritis 
(n = 211)

90 days X X X



Page 5 of 13Beukenhorst et al. BMC Musculoskeletal Disorders          (2022) 23:487 	

Third, participants used their own device for data col-
lection and even enrol in studies online. In contrast to 
paper-based diaries or research-grade wearables, data 
transfer did not require returning diaries or devices to 
trained research staff. Instead, data transfer was done 
automatically, using WiFi or cellular connection. This 
advantage allowed for recruitment of large sample sizes 
[17], large sample sizes relative to the prevalence of a 
musculoskeletal condition [10], or collection of large 
quantities of data [11–13, 24, 43].

The hype, the reality and the hope
Enthusiasm for using smartphones as tools for data col-
lection has skyrocketed (Fig.  1). Given the tendency 
to focus on advantages of smartphone studies only, it 
may even border on a hype. Many of characteristics of 
smartphones are in fact double-edged swords: they pro-
vide advantages compared to traditional data collection 
methods, but also impose new challenges. For appropri-
ate use of smartphones and maximization of their ben-
efits, researchers need to be aware of and account for 
these new challenges. We will therefore present com-
mon myths, provide a more nuanced overview of both 
the upsides and downsides of smartphone studies and 

outline what further steps are required to harness the 
upsides while handling the downsides.

Hype: smartphone studies enable high engagement
Smartphones are often used to collect self-reported data 
and patient-reported outcomes at a larger scale. Com-
pared to, for example, paper-based diaries, smartphone 
studies make it easier to recruit large sample sizes and 
collect more data, more frequently. Traditionally, self-
reported data was collected multiple times an hour over a 
period of days, or, at the other end of the scale: daily self-
report for months to a year [58]. Paper-based diaries typ-
ically require more effort to completion, which increases 
attrition. Studies using paper-based diaries often face 
low compliance: participants lose diaries, forget to send 
them back, forget to complete them, hoard and backfill 
paper-based surveys, or misdate survey entries [57, 59]. 
Hoarding, backfilling and misdating can influence study 
validity enormously: one study showed apparent compli-
ance rates of 90% (based on participant-reported comple-
tion), while a hidden sensor showed it was actually 11% 
[60].

Compared to paper-based diaries, smartphones have 
a lower burden of data entry. In addition, they provide 

Fig. 1  Between 2011 and 2021, the number of Pubmed-indexed publications with search term ‘musculoskeletal’ and ‘smartphone’ increased 
sharply from 0 in 2011 to 105 in 2021. In the same period, publications with search term ‘musculoskeletal’ only increased gradually, with drops in 
2016 and 2021
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possibilities to increase compliance and validate it: they 
automatically timestamp and upload (or “send back”) 
data entries. However, high engagement, high compli-
ance and low attrition are by no means a characteristic 
of smartphone studies [20, 61]. Smartphone researchers 
need to be aware of the challenges to engagement, attri-
tion and compliance in smartphone study and account 
for these at study design and during data analysis.

Reality: high engagement requires substantial effort 
and attrition is a significant threat to smartphone study 
validity
Although the burden of data entry on smartphones is 
regarded as low, this does not mean that engagement is 
automatically high in smartphone studies. One challenge 
for smartphone studies is that no universal definition 
of engagement exists. Engagement may refer to days of 
self-reported data entry, days of passive data collection 
(any passive data, or only above a threshold), duration of 
usage (i.e. time between first and last assessment), pro-
portion of days with self-reported data entry, or more 
complex definitions including likelihood of data comple-
tion overtime, thresholds for a minimal amount of data 
collected or, for interventions, the ‘usage half-life’ [20, 43, 
61–64]. This variety of definitions illustrate the complex-
ity of describing smartphone data, which is typically fre-
quent, and includes data from numerous data streams.

Regardless of the definition used, many studies have 
shown that missing data due to attrition and low engage-
ment is common, even a characteristic of smartphone 
studies and smartphone interventions [61, 62, 65, 66]. 
Various reasons have been named for this so-called ‘law 
of attrition’ [61] in smartphone studies, including com-
peting priorities, ease of dropping out, user experience 
and usability issues [43, 61, 66]. This illustrates the dou-
ble-edged sword: although smartphones are unobtrusive 
and integrated in participants’ daily lives, research smart-
phone apps compete for attention with all those other 
apps and activities of daily life.

High attrition and low engagement threaten both the 
internal and external validity of studies. Study results 
may not generalize to participants that drop-out early if 
these dropouts systematically differ from those who stay 
engaged. Various studies have shown that demographic 
characteristics, such as age, sex and socio-economic sta-
tus, are associated with the risk of drop-out [62, 67, 68]. 
As these characteristics are also associated with disease, 
disease severity, comorbidities and other outcomes, dif-
ferential drop-out may introduce attrition bias. Especially 
in musculoskeletal diseases, participants can face addi-
tional barriers when using smartphones. For example, 
some previous studies found that people with rheumatoid 

arthritis had issues of dexterity or data entry issues when 
using a smartphone research app [17, 20, 21, 69].

Hope: researchers design smartphone studies to promote 
engagement, reduce attrition and report attrition rates
Researchers should be aware of the challenges of engage-
ment in smartphone studies and can use various strat-
egies to improve engagement and reduce the risks of 
attrition bias. Previous studies have provided advice for 
better study designs and data analyses. We have grouped 
these in three areas relevant for all smartphone stud-
ies, and two areas relevant for interventional studies 
specifically.

First, researchers can increase the usability of tech-
nology. Pilot studies or feasibility studies in the target 
population can be useful to improve these aspects of 
the smartphone app or study design [21, 22, 32, 69, 70]. 
In healthy populations, high daily smartphone use has 
a weak relationship with lower hand grip strength and 
pinch-grip strength [71, 72]. In people with musculo-
skeletal symptoms and pain, especially in their hands, it 
is therefore important to assess their ability to navigate 
research apps and report symptoms. To increase engage-
ment, researchers should integrate patients’ perspectives 
and needs into their study designs [7]. In addition, it can 
be useful to use the expertise of healthcare providers, 
family members (especially in the case of juvenile idio-
pathic arthritis [70]) and information technology experts 
[73]. Upon the launch of the study, researchers can moni-
tor data collection to diagnose app or device problems 
early [74] and enable participants to be contacted to pre-
vent attrition [20].

Second, researchers can reduce the active data collec-
tion, which requires the participant to enter data or do an 
active task, and increase sensor data collection. Studies 
show that sensor data is often collected for longer peri-
ods than active data like surveys, as it provides less bur-
den to the participants [43, 75].

Third, researchers can design their study to promote 
engagement. They can introduce motivating factors (such 
as rewards or visualisations of inputted data), use both 
in-built reminders and targeted reminders (i.e. in the 
case of likely drop-out), create a study community (e.g 
hosted on social media sites), provide of personal sup-
port from a named member of study personnel, and, if 
resources allow actively target personal motivators [20]. 
In addition, they can provide overviews of participants’ 
self-reported symptoms to share with a clinician or other 
forms of feedback, which have been shown to increase 
participant interest [43, 68]. A currently ongoing rand-
omized clinical trial is evaluating whether skipping clinic 
visits if smartphone data shows low disease activity is 
beneficial to patients [73].
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Fourth, researchers should investigate engagement, 
attrition and its consequences when analysing their 
data. Researchers should not gloss over attrition rates, 
but report engagement and attrition metrics, show 
Kaplan-Meier curves and report attrition rates (more 
information in [61]).

Fifth, interventional studies can use recommenda-
tions from previous interventional studies using smart-
phones [32, 66]. These recommendations include, for 
example, recommendations on pilot studies, on avoid-
ing one-size-fits-all approaches, and on reducing par-
ticipants’ self-care burden. As it is not within our scope 
to provide an exhaustive overview of every recom-
mendation ever done, we refer readers to those source 
publications.

Sixth, interventional studies can use the ‘run-in and 
withdrawal design’, where participants are only rand-
omized if they are still active after a weed-out period 
[61]. Many interventional smartphone studies face an 
exponential dropout early in the study. If randomiza-
tion is postponed until after this phase, the interven-
tion and control groups are less likely to contain early 
dropouts. If the randomized participants stay engaged 
for longer, the study will have higher power and may 
provide a more realistic image of the intervention. Of 
note, results of studies using the run-in and withdrawal 
design may only apply to the ‘hardcore users’, i.e. par-
ticipants that engaged, and may not be generalizable to 
the participants that dropped out early and were never 
randomized.

Hype: smartphone studies reach a more representative 
sample
Smartphones have often been hailed as opportunity to 
reach a more diverse sample. Smartphone usage is wide-
spread: in the UK  it is 98% for people between 16 and 
44 years, 95% between 45 and 54 years and 87% for peo-
ple between 55 and 64 years [76]. The ability to enrol par-
ticipants from distance and collect data from distance, 
remove geographic barriers to participation [68].

Indeed, some smartphone studies have succeeded in 
recruiting participant groups that traditionally are harder 
to reach. This includes younger, more active participants, 
people with mental illnesses, people living in rural loca-
tions, people with severe progressive diseases [77–79]. 
In addition, smartphones have been shown useful for 
data collection during the COVID-19 pandemic, when 
clinical data collection halted [80]. Furthermore, previ-
ous smartphone studies have recruited large numbers of 
participants from distance - in the order of magnitude of 
thousands of participants - by instructing them to down-
load an app and register online [17, 44, 45, 65].

Reality: smartphone studies may not succeed in recruiting 
representative participant groups and impose barriers 
to participation
When people are recruited for smartphone studies in 
clinic, ‘smartphone ownership’ or ‘smartphone usage’ is 
often an inclusion criterium. When people are enrolled 
from distance, this often means that ‘digital literacy’ 
is an implicit prerequisite: only people that succeed in 
downloading an app and registering, will succeed in 
participating in a study.

These inclusion criteria or prerequisites can influ-
ence the representativeness of the final study sample. 
Although smartphones are used widely, their use is less 
prevalent in certain demographic groups, and in certain 
parts of the world. Seldom-heard groups may include 
underprivileged groups [67], people with low socio-
economic status [26], people with low literacy skills or 
low digital literacy [26, 66] and older people [62, 77]. In 
addition, if participants are recruited remotely, it may 
be more difficult to validate that participants belong to 
the target population beyond self-report [20].

The risk of selection bias is especially large if 
researchers develop an app for one operating system 
only. The operating systems Android (Google) and iOS 
(Apple) each cover around half of the smartphone mar-
ket (Android being used slightly more frequently in 
low-income countries, and iOS slightly more in high-
income countries) [81]. Apps that are developed for one 
operating system only (such as apps using the Apple 
Research Kit [77]), will not reach the other half of the 
population. Both halves are not interchangeable: on 
average, the annual income of iOS users is almost 50% 
more than Android users [27].

Hope: researchers should refrain from generalising 
their results, and undertake active steps to increase 
representation of seldom‑heard groups
With smartphone studies, it is even more important to 
limit inferences to the sample population only, rather 
than extrapolating findings to larger groups. Some limi-
tations to generalizability are intuitive (e.g. absence of 
the oldest age brackets due to lack of smartphone pen-
etration), but others may be less obvious (e.g. selection 
of specific income group because of choice of operat-
ing system). Researchers should undertake action to 
reach people from underprivileged groups [67]. In the 
context of musculoskeletal diseases, this may include 
people of low socio-economic status and people with 
multiple morbidities.
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Hype: sensor data is objective
Passive data collection can provide frequent and granu-
lar information on exposures, outcomes and covariates 
(including time-varying confounders), and day-to-day 
participant behaviour and exposure [17, 33–39, 82–85]. 
Smartphone sensors increase the range of domains 
which can be measured in participants’ daily lives, 
including aspects like time spent at home, minute-to-
minute weather exposures and sleep [37, 86, 87]. In 
addition, smartphone sensors can improve the accu-
racy of reporting: passive data is not plagued by the 
information biases of self-reported data, such as social 
desirability bias (e.g. people under-reporting drug use 
or sedentary time [88, 89]) or recall bias (e.g. people 
misremembering past exposures). It is therefore often 
called ‘objective’ and hailed as gold standard for meas-
uring various constructs.

Reality: sensor data and any metrics derived from it are 
subject to researchers’ choices and can still be biased
However, converting sensor data into summaries of expo-
sures, outcomes and behaviours is still subject to choices 
made during data analysis. For example, algorithms 
for human activity recognition require a multitude of 
choices during pre-processing (dividing time series into 
smaller epochs; the number and type of features that are 
extracted from raw data; the statistical method chosen 
for activity classification) [90]. A review of smartphone 
studies using sensor data showed that it can be difficult 
to assess the ground truth for sensor data, and that some 
studies found little relation between sensor data and 
validation measures [37]. Furthermore, many algorithms 
are developed and tested in a laboratory, and generalize 
poorly to free-living settings [90]. When these algorithms 
are applied to real-life data, results may be far from accu-
rate or objective. Algorithms from commercial devices 
are known to introduce substantial bias when applied in 
free-living settings (especially if the population of interest 
is different from the testing population, which often com-
prises the specific demographic of thirty-year-old healthy 
males) [91].

Second, raw sensor data underlying these analyses can 
be subject to different biases. In ‘bring-your-own-device’ 
studies participants use their personal smartphones, 
which may be from different brands, model types and 
software, potentially with defects to screens or sen-
sors [32, 92]. The software used can, for example, influ-
ence the amount of missing sensor data [93]. In addition, 
smartphones often show heterogeneity in accelerometry 
and gyroscopy data, large enough to potentially influence 
results [94]. Of note, these technological factors change 
over time and are difficult to influence [95]. In addition, 

they can both differ between participants, and within a 
participant over time.

Third, participant behavior can influence the amount 
of data collected, the quality of data or the accuracy of 
summary metrics. For example, accelerometry-based 
markers of physical activity depend on the position of the 
smartphone. Algorithms that assume that a smartphone 
is pocket-worn do not perform as well on data from bag-
worn smartphones [96]. Currently, it is still difficult to 
ascertain whether a smartphone is carried in a position 
appropriate for the event being sensed [36, 96]. As there 
are systematic differences in phone use between partici-
pants - women tend to carry it mostly in a bag whereas 
men carry it in their pocket [97] - this may cause misclas-
sification or bias.

Fourth, conversion of sensor data in meaningful sum-
mary statistics may introduce specific biases in the mus-
culoskeletal context. Studies have shown that algorithms 
that perform well in healthy volunteers, often do not 
perform well in people with musculoskeletal conditions, 
who tend to walk slower and have different gait charac-
teristics [98, 99].

Fifth, sensor data may not always be available. For 
example, location data is not available if participants 
switch their phones off, and may not be available if the 
phones are indoors or out of battery [27, 78, 93, 100]. In 
addition, data may be missing by design: for data streams 
that are battery-intensive, it is not feasible to collect data 
continuously [22, 27, 37, 69]. Missing sensor data is often 
not missing at random, and may be related to the partici-
pants’ exposure status or outcome status [63].

Hope: the analysis of sensor data will be increasingly 
transparent, validated in all patient groups and include 
uncertainty quantification
Researchers should be transparent about the choices they 
make during the processing of sensor data, for example 
by sharing source code [90]. Proprietary apps and algo-
rithms are less suitable for academic research, which 
requires providing the details needed for reproducibility. 
Algorithms should be validated against gold standards, in 
patient groups as well as in healthy volunteers. In some 
cases, researchers might do well to use such a research-
grade wearable rather than a smartphone for sensor data 
collection, for example, if performance of the former is 
better in people with musculoskeletal conditions.

To improve the accuracy of mobility metrics, research-
ers could collect location data alongside accelerometer 
data, although this comes at a cost to privacy [41, 75]. 
Some research smartphone apps, however, provide the 
possibility to (a) record distances rather than locations, 
or (b) add Gaussian noise to location data to de-identify 
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data, providing higher accuracy while preserving privacy 
[75].

Furthermore, research efforts should be diverted to 
algorithms for uncertainty quantification. Any point esti-
mate of someone’s step count is unlikely to be the truth 
(‘you took 8721 steps today’). Algorithms should there-
fore provide a 95% confidence interval, ideally consid-
ering the amount of missing data and considering the 
position of the smartphone on the participants’ body 
[90]. For participants with complete data and a body-
worn smartphone, this confidence interval would be 
much narrower than for participants with high amounts 
of missing data, or who had their phone lying on a desk. 
If accuracy and validity is insufficient, researchers should 
consider using body-worn devices, such as wearable 
activity trackers [101] or smartwatches [22].

Hype: smartphone research is cheap
Smartphone studies are often argued to be a cheap 
option for data collection, as they enable remote enrol-
ment, remote data collection, and participants can use 
their own device and phone subscription or WiFi net-
work. These bring-your-own-device studies can remove 
the need for enrolment events and clinic visits for data 
collection [22, 35]. This reduces costs associated with 
staffing costs during recruitment or data collection, costs 
for consumables or physical storage space. Off-the-shelf 
smartphone apps can be tweaked to specific studies for 
as little as £1000 to £30,000; other apps are freely avail-
able under an open source license [27, 77]. Once an app 
has been developed, the marginal costs of enrolling an 
additional 1000, 10,000 or even 100,000 participants is 
low [36, 77, 102]. As a result, the marginal costs of using 
a smartphone app for data collection may be lower than 
those of using paper-based data collection [58].

Reality: smartphone research can be expensive
Although smartphone studies reduce some costs com-
pared to traditional studies, they create new, often hid-
den costs. First, app development is not necessarily 
cheap. Development of a bespoke research app requires 
collaboration with software engineers and UX designers. 
It can be time-consuming, since app development usu-
ally entails an iterative approach, co-development with 
patients and careful piloting in feasibility studies [18, 32, 
54, 69, 103]. Feasibility studies are essential to determine 
if the target population finds the app easy to use, bal-
ance data collection needs with preservation of battery 
life of participants’ devices, and determine the optimal 
frequency of active and passive data [32, 69, 79]. Modi-
fication of off-the-shelf apps or platforms can be simpler, 
although these may come with licensing fees.

Second, the use of smartphone apps may require 
research budget towards data storage [27, 32, 77], licenses 
for data analysis software, and, especially if high volume 
sensor data is collected, computing infrastructure [27].

Third, smartphone studies require maintenance and 
support. Smartphone models and smartphone software 
(i.e. the operating systems Android and iOS) are fre-
quently updated and these updates can delay or block 
data collection [27, 32]. Costs associated with such 
updates can be substantial and can be, for example, in the 
range of $100,000 per year. In addition, technical support 
may be required in case participants face problems with 
the app.

Hope: smartphone studies will be cost‑effective 
and efficient
It would be helpful if the musculoskeletal research com-
munity could share expected and unexpected costs 
associated with smartphone studies. Cost comparisons 
between studies enable researchers to identify what types 
of apps and infrastructures fit their budget. If researchers 
report costs per expense (e.g. app development, main-
tenance, storage, analysis; separating costs of staff time 
from work by external parties from costs of hardware or 
software) as well as marginal costs per participant, the 
research community can identify sources of variability in 
costs, as well as areas where improvement would lead to 
the highest reduction in costs.

Secondly, we believe that smartphone studies would be 
more efficient if they could use shared platforms. Exam-
ples of app platforms that are suitable for research are 
Beiwe (open source/non-commercial [27, 92],), uMo-
tif [17, 21, 42] and Apple ResearchKit [68, 77]. Re-use 
of high-quality platforms will prevent researchers from 
reinventing the wheel, and from developing apps that 
are unsafe, unsecure or unwell engineered [103]. Espe-
cially open source software should be of interest of the 
research community. Open source apps can be reviewed 
by an unlimited base of software engineers and improve 
reproducibility and transparency of studies [27, 68]. In 
addition, researchers can develop extensions or new fea-
tures and contribute the code so that other groups can 
use those extensions too.

Third, research apps could provide more utility when 
clinically implemented and linked with electronic medi-
cal records [104]. Data from research apps could trans-
form consultations for clinician and patient benefit and 
aid shared decision-making [6, 105]. Furthermore, such 
applications of research apps could open doors to new 
funding opportunities. However, there are few published 
efforts on efficacy, effectiveness and feasibility [105]. 
Integration of research data into the electronic medi-
cal record also requires overcoming various barriers, 
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including issues around sharing, privay and governance 
[18, 26].

Conclusions
Without doubt, smartphone studies represent an excit-
ing and rapidly growing area of research development. 
In this article, we provided an insight in the plethora of 
benefits around size, scale and frequency of data collec-
tion. In musculoskeletal research, smartphones provide 
special benefits, as the target group face chronic condi-
tions (increasing the importance of long-term data col-
lection), characterised by symptoms that affect mobility 
and physical activity (potentially easier to measure with 
smartphones) as well as a range of patient-reported out-
comes (self-reported more frequently at lower burden to 
the participant). We discussed various studies that show-
cased the unique benefits from smartphones in the mus-
culoskeletal context.

However, despite these substantial and exciting ben-
efits, smartphone studies are not free from challenges 
and do not solve all challenges. If smartphone studies are 
designed without awareness of the challenges inherent 
to smartphone use, they may fail or may provide biased 
results. In this article, we therefore reviewed the known 
limitations of smartphones and provided lessons for 
future smartphone studies.

We showed that achieving high engagement of partici-
pants may be a challenge, as well as recruiting represent-
ative samples, including less privileged people, or people 
with low digital literacy. We argued that sensor data is by 
no means objective, even though it removes some biases 
associated with self-reported exposures and outcomes. 
Finally, we discussed the costs of smartphone studies, 
noting that even though participants may bring their own 
device, smartphone studies can still bring substantial 
costs of app development and testing, data storage and 
analysis.

Of note, we conducted a narrative review and did not 
perform a systematic search of smartphone studies, a sys-
tematic quality appraisal of studies or a systematic search 
of hypes and hopes. The examples that we included 
are for illustrative purposes, and this narrative review, 
although hopefully informative to the reader, is unlikely 
to be comprehensive. Where possible, we have provided 
references to reviews both of smartphone studies in mus-
culoskeletal conditions (such as [18, 28, 50–54, 56]) and 
of the hypes and hopes we discussed (such as [20, 36, 
39, 66, 89]). These reviews tend to be narrower in scope 
than our overview, but provide a more comprehensive 
overview of the subject area and often contain systematic 
quality appraisals.

We hope the musculoskeletal research community 
will join us in paving the way forwards. In this journey, 

transparency is key. Smartphone studies in the health-
care context often do not report essential information on 
study design (e.g. details on app development or privacy 
protection [37, 103]), data collection (e.g. the method for 
location data collection [39]) and data analysis (e.g. the 
algorithm used to convert sensor data into human activ-
ity metrics [90]). Better transparency can be stimulated 
through the use of reporting guidelines. For smartphone-
based interventions, two checklists provide reporting 
guidelines, one for trials using web-based health inter-
ventions (CONSORT-EHEALTH statement [106]) and 
one for mobile phone-based health interventions (the 
mERA checklist [107]). For apps aimed at self-man-
agement by people with muskuloskeletal disorders, an 
EULAR task force articulated three overarching princi-
ples and ten points to consider [108]. Various reporting 
guidelines directly relate to the hypes and hopes dis-
cussed in this article. For example, the mERA require-
ment of providing a cost assessment of the intervention 
would fulfil our hope of more insights in the costs and 
savings associated with smartphone studies. Wider adop-
tion of the best practices described in these guidelines 
will contribute to transparency. Transparency will help 
prevent others to re-invent the wheel and to contribute to 
cost-effective and efficient  smartphone studies. Regard-
less of available reporting checklists, we encourage full 
and comprehensive sharing of app development, piloting 
procedures and research methods.

Awareness of the challenges of smartphone studies will 
help researchers anticipate or avoid common pitfalls. In 
addition, it would be useful to bring the musculoskel-
etal research community together to exchange lessons 
learnt on issues specific to our field. These issues may 
include symptom-related barriers to using smartphones 
for research, validating algorithms in patient populations 
with reduced functional ability, digitising validated ques-
tionnaires, and methods to reliably quantify pain, qual-
ity of life and fatigue. We recommend that researchers 
share both the successful and unsuccessful strategies they 
employed for others to learn from. We hope this review 
will support researchers to generate more success stories 
of smartphone studies in musculoskeletal research.

Abbreviations
CONSORT-EHEALTH: Consolidated Standards of Reporting Trials of Electronic 
and Mobile HEalth Applications and onLine TeleHealth; EULAR: European 
Alliance of Associations for Rheumatology; mERA: Mobile health (mHealth) 
evidence reporting and assessment.

Acknowledgements
None.

Authors’ contributions
All authors contributed to this manuscript. The idea was conceived by 
AB with input from KD and DDC. All three authors contributed to writing 



Page 11 of 13Beukenhorst et al. BMC Musculoskeletal Disorders          (2022) 23:487 	

and reviewing the manuscript. The authors read and approved the final 
manuscript.

Funding
ALB is supported by an MRC DTP grant (number MR/N013751/1).

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
No competing interests declared.

Author details
1 Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 
Huntington Avenue, Boston, MA 02115, USA. 2 Centre for Epidemiology Versus 
Arthritis, University of Manchester, Manchester Academic Health Science 
Centre, Manchester, UK. 3 Skeletal Biology and Engineering Research Center, 
Department of Development and Regeneration, KU Leuven, Leuven, Belgium. 

Received: 18 February 2022   Accepted: 10 May 2022

References
	 1.	 Druce KL, Bhattacharya Y, Jones GT, Macfarlane GJ, Basu N. Most 

patients who reach disease remission following anti-TNF therapy 
continue to report fatigue: results from the British Society for Rheuma-
tology biologics register for rheumatoid arthritis. Rheumatol (United 
Kingdom). 2016;55(10).

	 2.	 Olsen CL, Lie E, Kvien TK, Zangi HA. Predictors of fatigue in rheumatoid 
arthritis patients in remission or in a low disease activity state. Arthritis 
Care Res. 2016;68(7).

	 3.	 Michaud K, Pope J, van de Laar M, Curtis JR, Kannowski C, et al. A 
systematic literature review of residual symptoms and unmet need in 
patients with rheumatoid arthritis. Arthritis Care Res. 2020.

	 4.	 Parsons S, Ingram M, Clarke-Cornwell A, Symmons D. A heavy burden: 
the occurrence and impact of musculoskeletal conditions in the United 
Kingdom today; 2011.

	 5.	 March L, Smith EUR, Hoy DG, Cross MJ, Sanchez-Riera L, Blyth F, et al. 
Burden of disability due to musculoskeletal (MSK) disorders. Best Pract 
Res Clin Rheumatol. 2014;28.

	 6.	 Austin L, Sharp CA, van der Veer SN, Machin M, Humphreys J, Mellor P, 
et al. Providing ‘the bigger picture’: benefits and feasibility of integrat-
ing remote monitoring from smartphones into the electronic health 
record. Rheumatology. 2019.

	 7.	 Richardson JE, Reid MC. The promises and pitfalls of leveraging mobile 
health technology for pain care. Pain Med (United States). 2013;14(11).

	 8.	 Day RO, Frensham LJ, Nguyen AD, Baysari MT, Aung E, Lau AYS, et al. 
Effectiveness of an electronic patient-centred self-management tool 
for gout sufferers: a cluster randomised controlled trail protocol. BMJ 
Open. 2017;7.

	 9.	 Lalloo C, Harris LR, Hundert AS, Berard R, Cafazzo J, Connelly M, et al. 
The iCanCope pain self-management application for adolescents with 
juvenile idiopathic arthritis: a pilot randomized controlled trial. Rheu-
matol (United Kingdom). 2021;60(1).

	 10.	 Khan F, Granville N, Malkani R, Chathampally Y. Health-related quality 
of life improvements in systemic lupus Erythematosus derived from a 
digital therapeutic plus Tele-health coaching intervention: randomized 
controlled pilot trial. J Med Internet Res. 2020;22(10).

	 11.	 Nap-van der Vlist MM, Houtveen J, Dalmeijer GW, Grootenhuis MA, 
van der Ent CK, van Grotel M, et al. Internet and smartphone-based 

ecological momentary assessment and personalized advice (PROfeel) 
in adolescents with chronic conditions: a feasibility study. Internet 
Interv. 2021;25.

	 12.	 Nowell WB, Gavigan K, Kannowski CL, Cai Z, Hunter T, Venkatachalam 
S, et al. Which patient-reported outcomes do rheumatology patients 
find important to track digitally? A real-world longitudinal study in 
ArthritisPower. Arthritis Res Ther. 2021;23(1).

	 13.	 Nowell WB, Curtis JR, Nolot SK, Curtis D, Venkatachalam S, Owensby 
JK, et al. Digital tracking of rheumatoid arthritis longitudinally (digital) 
using biosensor and patient-reported outcome data: protocol for a 
real-world study. JMIR Res Protoc. 2019;8(9).

	 14.	 Rodríguez-Sánchez-Laulhé P, Luque-Romero LG, Blanquero J, Suero-
Pineda A, Biscarri-Carbonero Á, Barrero-Garciá FJ, et al. A mobile app 
using therapeutic exercise and education for self-management in 
patients with hand rheumatoid arthritis: a randomized controlled trial 
protocol. Trials. 2020;21(1).

	 15.	 Skrepnik N, Spitzer A, Altman R, Hoekstra J, Stewart J, Toselli R. Assessing 
the impact of a novel smartphone application compared with standard 
follow-up on mobility of patients with knee osteoarthritis follow-
ing treatment with Hylan G-F 20: a randomized controlled trial. JMIR 
mHealth uHealth. 2017;5(5):e64.

	 16.	 Tam J, Lacaille D, Liu-Ambrose T, Shaw C, Xie H, Backman CL, et al. Effec-
tiveness of an online self-management tool, OPERAS (an on-demand 
program to EmpoweR active self-management), for people with 
rheumatoid arthritis: a research protocol. Trials. 2019;20(1).

	 17.	 Dixon WG, Beukenhorst AL, Yimer BB, Cook L, Gasparrini A, El-Hay T, 
et al. How the weather affects the pain of citizen scientists using a 
smartphone app. npj Digit Med. 2019.

	 18.	 Solomon DH, Rudin RS. Digital health technologies: opportunities and 
challenges in rheumatology. Nat Rev Rheumatol. 2020;16.

	 19.	 Catarinella FS, Bos WH. Digital health assessment in rheumatology: cur-
rent and future possibilities. Clin Exp Rheumatol. 2016;34.

	 20.	 Druce KL, Dixon WG, McBeth J. Maximizing engagement in Mobile 
health studies: lessons learned and future directions. Rheum Dis Clin 
N Am. 2019;45:159–72. https://​doi.​org/​10.​1016/j.​rdc.​2019.​01.​004 [cited 
2021 Mar 10].

	 21.	 Druce KL, Cordingley L, Short V, Moore S, Hellman B, James B, et al. 
Quality of life, sleep and rheumatoid arthritis (QUASAR): a protocol for a 
prospective UK mHealth study to investigate the relationship between 
sleep and quality of life in adults with rheumatoid arthritis. BMJ Open. 
2018;8(1).

	 22.	 Beukenhorst AL, Parkes MJ, Cook L, Barnard R, van der Veer SN, Little 
MA, et al. Collecting symptoms and sensor data with consumer 
Smartwatches (the knee OsteoArthritis, linking activity and pain study): 
protocol for a longitudinal, observational feasibility study. JMIR Res 
Protoc. 2019.

	 23.	 Radin JM, Quer G, Jalili M, Hamideh D, Steinhubl SR. The hopes and 
hazards of using personal health technologies in the diagnosis and 
prognosis of infections. Lancet Digit Heal. 2021;3(7).

	 24.	 Gossec L, Guyard F, Leroy D, Lafargue T, Seiler M, Jacquemin C, et al. 
Detection of flares by decrease in physical activity, collected using 
wearable activity trackers in rheumatoid arthritis or axial Spondyloar-
thritis: An application of machine learning analyses in rheumatology. 
Arthritis Care Res. 2019.

	 25.	 Steinhubl SR, Muse ED, Topol EJ. Can mobile health technologies trans-
form health care? JAMA - J Am Med Assoc. 2013;310(22):2395–6.

	 26.	 Pisaniello HL, Dixon WG. What does digitalization hold for the 
creation of real-world evidence? Rheumatology (United Kingdom). 
2020;59(1):39–45.

	 27.	 Onnela J-P. Opportunities and challenges in the collection and analysis 
of digital phenotyping data. Neuropsychopharmacology. 2020.

	 28.	 Dantas LO, Weber S, Osani MC, Bannuru RR, McAlindon TE, Kasturi S. 
Mobile health technologies for the management of systemic lupus 
erythematosus: a systematic review. Lupus. 2020;29(2):144–56.

	 29.	 Lalloo C, Jibb LA, Rivera J, Agarwal A, Stinson JN. There’s a pain app for 
that. Clin J Pain. 2015;31(6).

	 30.	 Shaw Y, Courvoisier DS, Scherer A, Ciurea A, Lehmann T, Jaeger VK, et al. 
Impact of assessing patient-reported outcomes with mobile apps on 
patient-provider interaction. RMD Open. 2021;7(1).

https://doi.org/10.1016/j.rdc.2019.01.004


Page 12 of 13Beukenhorst et al. BMC Musculoskeletal Disorders          (2022) 23:487 

	 31.	 Amor JD, James CJ. Setting the scene: Mobile and wearable technology 
for managing healthcare and wellbeing. Proc Annu Int Conf IEEE Eng 
Med Biol Soc EMBS. 2015;2015:7752–5.

	 32.	 Ben-Zeev D, Schueller SM, Begale M, Duffecy J, Kane JM, Mohr DC. 
Strategies for mHealth research: lessons from 3 Mobile interven-
tion studies. Adm Policy Ment Health Ment Health Serv Res. 
2015;42(2):157–67.

	 33.	 Apple. iOS Developers’ Documentation. 2019. [cited 2019 Aug 11]. 
Available from: https://​devel​oper.​apple.​com/​docum​entat​ion/

	 34.	 Google. Android API Developers Guide. 2019 [cited 2019 Aug 11]. 
Available from: https://​devel​oper.​andro​id.​com/​guide/

	 35.	 Lane ND, Miluzzo E, Lu H, Peebles D, Choudhury T, Campbell AT. A 
survey of Mobile phone sensing. IEEE Commun Mag. 2010;(Septem-
ber):140–50 Available from: http://​www1.​folha.​uol.​com.​br/​merca​do/​
2016/​05/​17674​80-​conte​udo-​patro​cinado-​e-​saida-​para-​tornar-​marca-​
relev​ante-​diz-​susini.​shtml.

	 36.	 Incel OD, Kose M, Ersoy C. A review and taxonomy of activity recogni-
tion on Mobile phones. Bionanoscience. 2013;3(2):145–71.

	 37.	 Cornet VP, Holden RJ. Systematic review of smartphone-based pas-
sive sensing for health and wellbeing. J Biomed Inform. 2018.

	 38.	 Bhaskaran K, Gasparrini A, Hajat S, Smeeth L, Armstrong B. Time series 
regression studies in environmental epidemiology. Int J Epidemiol. 
2013.

	 39.	 Fraccaro P, Beukenhorst A, Sperrin M, Harper S, Palmier-Claus J, Lewis 
S, et al. Digital biomarkers from geolocation data in bipolar disorder 
and schizophrenia: a systematic review. J Am Med Inform Assoc. 
2019.

	 40.	 Espay AJ, Bonato P, Nahab FB, Maetzler W, Dean JM, Klucken J, et al. 
Technology in Parkinson’s disease: challenges and opportunities. Mov 
Disord. 2016;31(9):1272–82.

	 41.	 De Montjoye YA, Shmueli E, Wang SS, Pentland AS. OpenPDS: protect-
ing the privacy of metadata through SafeAnswers. PLoS One. 2014;9(7).

	 42.	 van der Veer SN, Beukenhorst AL, Ali SM, James B, Silva P, McBeth J, et al. 
Development of a mobile digital manikin to measure pain location and 
intensity. In:  Studies in health technology and informatics; 2020.

	 43.	 Beukenhorst AL, Howells K, Cook L, McBeth J, O’Neill TW, Parkes MJ, 
et al. Engagement and participant experiences with consumer Smart-
watches for Health Research: longitudinal, observational feasibility 
study. JMIR mHealth uHealth. 2020.

	 44.	 Schultz DM, Beukenhorst AL, Yimer BB, Cook L, Pisaniello HL, House T, 
et al. Weather patterns associated with pain in chronic-pain sufferers. 
Bull Am Meteorol Soc. 2020.

	 45.	 Birlie B, Schultz D, Beukenhorst A, Lunt M, Pisaniello HL, House T, et al. 
Heterogeneity in the association between weather and pain severity 
among patients with chronic-pain: a Bayesian multilevel regression 
analysis. Pain Reports. 2022.

	 46.	 Hamy V, Garcia-Gancedo L, Pollard A, Myatt A, Liu J, Howland A, et al. 
Developing smartphone-based objective assessments of physical func-
tion in rheumatoid arthritis patients: the PARADE study. Digit Biomark-
ers. 2020;4(1).

	 47.	 Crouthamel M, Quattrocchi E, Watts S, Wang S, Berry P, Garcia-Gancedo 
L, et al. Using a researchkit smartphone app to collect rheumatoid 
arthritis symptoms from real-world participants: feasibility study. JMIR 
mHealth uHealth. 2018;6(9).

	 48.	 de la Vega R, Roset R, Galán S, Miró J. Fibroline: a mobile app for improv-
ing the quality of life of young people with fibromyalgia. J Health 
Psychol. 2018;23(1).

	 49.	 Mollard E, Michaud K. A mobile app with optical imaging for the self-
management of hand rheumatoid arthritis: pilot study. JMIR mHealth 
uHealth. 2018;6(10).

	 50.	 Grainger R, Townsley H, White B, Langlotz T, Taylor WJ. Apps for people 
with rheumatoid arthritis to monitor their disease activity: a review of 
apps for best practice and quality. JMIR mHealth uHealth. 2017;5(2).

	 51.	 Seppen BF, Den Boer P, Wiegel J, ter Wee MM, Van der Leeden M, De 
Vries R, et al. Asynchronous mhealth interventions in rheumatoid arthri-
tis: systematic scoping review. JMIR mHealth uHealth. 2020;8(11):1–11.

	 52.	 Bearne LM, Sekhon M, Grainger R, La A, Shamali M, Amirova A, et al. 
Smartphone apps targeting physical activity in people with rheuma-
toid arthritis: systematic quality appraisal and content analysis. JMIR 
mHealth uHealth. 2020;8(7):1–13.

	 53.	 Machado GC, Pinheiro MB, Lee H, Ahmed OH, Hendrick P, Williams C, 
et al. Smartphone apps for the self-management of low back pain: a 
systematic review. Best Pract Res Clin Rheumatol. 2016;30(6):1098–109. 
https://​doi.​org/​10.​1016/j.​berh.​2017.​04.​002.

	 54.	 Najm A, Gossec L, Weill C, Benoist D, Berenbaum F, Nikiphorou E. Mobile 
health apps for self-management of rheumatic and musculoskeletal 
diseases: systematic literature review. JMIR mHealth uHealth. 2019;7.

	 55.	 Lee RR, Shoop-worrall S, Rashid A, Thomson W. “ Asking too much ?”: a 
randomised N-of-1 trial exploring patient preferences and measure-
ment reactivity to frequent use of remote multi- dimensional pain 
assessments in children and young people with juvenile idiopathic. 
Arthritis. 2019.

	 56.	 Ali SM, Lau WJ, McBeth J, Dixon WG, van der Veer SN. Digital manikins to 
self-report pain on a smartphone: a systematic review of mobile apps. 
Eur J Pain (United Kingdom). 2021;25.

	 57.	 Shiffman S, Stone AA, Hufford M. Ecological momentary assessment; 
2008. p. 1–32.

	 58.	 Shiffman S, Stone AA, Hufford M. Ecological momentary assessment. 
Annu Rev Clin Psychol. 2008;4:1–32.

	 59.	 Tourangeau R. Remembering what happened: memory errors and 
survey reports. The science of self-report: implications for research and 
practice; 2000.

	 60.	 Stone AA, Shiffman S, Schwartz JE, Broderick JE, Hufford MR. Patient 
compliance with paper and electronic diaries. Control Clin Trials. 2003.

	 61.	 Eysenbach G. The law of attrition. J Med Internet Res. 2005;7(1):1–9.
	 62.	 Druce KL, McBeth J, van der Veer SN, Selby DA, Vidgen B, Georgatzis K, 

et al. Recruitment and ongoing engagement in a UK smartphone study 
examining the association between weather and pain: cohort study. 
JMIR mHealth uHealth. 2017;5(11):e168 Available from: http://​mheal​th.​
jmir.​org/​2017/​11/​e168/.

	 63.	 Kiang MV, Chen JT, Krieger N, Buckee CO, Alexander MJ, Baker JT, et al. 
Sociodemographic characteristics of missing data in digital Phenotyp-
ing. medRxiv. 2021:2012–20.

	 64.	 Trister AD, Neto EC, Bot BM, Perumal T, Pratap A, Klein A, et al. mPower: 
a smartphone-based study of Parkinson’s disease provides personalized 
measures of disease impact. Mov Disord. 2016.

	 65.	 Bot BM, Suver C, Neto EC, Kellen M, Klein A, Bare C, et al. The mPower 
study, Parkinson disease mobile data collected using ResearchKit. Sci 
Data. 2016;3.

	 66.	 O’Connor S, Hanlon P, O’Donnell CA, Garcia S, Glanville J, Mair FS. 
Understanding factors affecting patient and public engagement and 
recruitment to digital health interventions: a systematic review of quali-
tative studies. BMC Med Inform Decis Mak. 2016;16(1):1–15Available 
from:. https://​doi.​org/​10.​1186/​s12911-​016-​0359-3.

	 67.	 Lee EWJ, Viswanath K. Big data in context: addressing the twin perils of 
data absenteeism and chauvinism in the context of health disparities 
research. J Med Internet Res. 2020;22(1):e16377.

	 68.	 Dorsey ER, Chan YF, Mcconnell MV, Shaw SY, Trister AD, Friend SH. The 
use of smartphones for health research. Acad Med. 2017;92(2):157–60.

	 69.	 Reade S, Spencer K, Sergeant JC, Sperrin M, Schultz DM, Ainsworth J, 
et al. Cloudy with a chance of pain: engagement and subsequent attri-
tion of daily data entry in a smartphone pilot study tracking weather, 
disease severity, and physical activity in patients with rheumatoid 
arthritis. JMIR mHealth uHealth. 2017;5(3):e37 Available from: http://​
mheal​th.​jmir.​org/​2017/3/​e37/.

	 70.	 Cai RA, Beste D, Chaplin H, Varakliotis S, Suffield L, Josephs F, et al. 
Developing and evaluating JIApp: acceptability and usability of a 
smartphone app system to improve self-management in young people 
with juvenile idiopathic arthritis. JMIR mHealth uHealth. 2017;5(8).

	 71.	 Osailan A. The relationship between smartphone usage duration 
(using smartphone’s ability to monitor screen time) with hand-grip and 
pinch-grip strength among young people: an observational study. BMC 
Musculoskelet Disord. 2021;22(1):1–8.

	 72.	 Shen S, Suzuki K, Kohmura Y, Fuku N, Someya Y, Miyamoto-Mikami 
E, et al. Associations of voluntary exercise and screen time during 
the first wave of COVID-19 restrictions in Japan with subsequent 
grip strength among university students: J-fit+ study. Sustainability. 
2021;13(24):13648.

	 73.	 Seppen BF, Wiegel J, L’ami MJ, dos Santos Rico SD, Catarinella FS, 
Turkstra F, et al. Feasibility of self-monitoring rheumatoid arthritis with 

https://developer.apple.com/documentation/
https://developer.android.com/guide/
http://www1.folha.uol.com.br/mercado/2016/05/1767480-conteudo-patrocinado-e-saida-para-tornar-marca-relevante-diz-susini.shtml
http://www1.folha.uol.com.br/mercado/2016/05/1767480-conteudo-patrocinado-e-saida-para-tornar-marca-relevante-diz-susini.shtml
http://www1.folha.uol.com.br/mercado/2016/05/1767480-conteudo-patrocinado-e-saida-para-tornar-marca-relevante-diz-susini.shtml
https://doi.org/10.1016/j.berh.2017.04.002
http://mhealth.jmir.org/2017/11/e168/
http://mhealth.jmir.org/2017/11/e168/
https://doi.org/10.1186/s12911-016-0359-3
http://mhealth.jmir.org/2017/3/e37/
http://mhealth.jmir.org/2017/3/e37/


Page 13 of 13Beukenhorst et al. BMC Musculoskeletal Disorders          (2022) 23:487 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

a smartphone app: results of two mixed-methods pilot studies. JMIR 
Form Res. 2020;4(9):1–10.

	 74.	 Park JY, Lee G, Shin SY, Kim JH, Han HW, Kwon TW, et al. Lessons learned 
from the development of health applications in a tertiary hospital. 
Telemed e-Health. 2014;20(3):215–22.

	 75.	 De Montjoye YA, Hidalgo CA, Verleysen M, Blondel VD. Unique in the 
crowd: the privacy bounds of human mobility. Sci Rep. 2013;3:1–5.

	 76.	 O’Dea S. Smartphone usage by age UK 2012-2019 | Statista. Statista; 
2020.

	 77.	 Jardine J, Fisher J, Carrick B. Apple’s ResearchKit: smart data collection 
for the smartphone era? J R Soc Med. 2015;108(8):294–6.

	 78.	 Ben-Zeev D, Wang R, Abdullah S, Brian R, Scherer EA, Mistler LA, et al. 
Mobile behavioral sensing for outpatients and inpatients with schizo-
phrenia. Psychiatr Serv. 2016;67(5):558–61.

	 79.	 Berry JD, Paganoni S, Carlson K, Burke K, Weber H, Staples P, et al. Design 
and results of a smartphone-based digital phenotyping study to quan-
tify ALS progression. Ann Clin Transl Neurol. 2019.

	 80.	 Beukenhorst AL, Collins E, Burke KM, Rahman SM, Clapp M, Konanki SC, 
et al. Smartphone data during the COVID-19 pandemic can quantify 
behavioral changes in people with ALS. Muscle Nerve. 2021.

	 81.	 StatCounter. Market share of leading Mobile operating Systems in 
Europe from 2010 to 2019. Statista. 2019; [cited 2019 Oct 21]. Available 
from: https://​www.​stati​sta.​com/​stati​stics/​639928/​market-​share-​mobile-​
opera​ting-​syste​ms-​eu/.

	 82.	 Onnela JP, Rauch SL. Harnessing smartphone-based digital Phenotyp-
ing to enhance behavioral and mental health. Neuropsychopharmacol-
ogy. 2016;41(7):1691–6Available from:. https://​doi.​org/​10.​1038/​npp.​
2016.7.

	 83.	 Torous J, Staples P, Onnela JP. Realizing the potential of Mobile mental 
health: new methods for new data in psychiatry. Curr Psychiatry Rep. 
2015.

	 84.	 Gasparrini A. The case time series design A new tool for big data analy-
sis Environment & Health Research Group seminar The last decades 
have witnessed an intense methodological research on. 2017.

	 85.	 Salathé M, Bengtsson L, Bodnar TJ, Brewer DD, Brownstein JS, Buckee C, 
et al. Digital epidemiology. PLoS Comput Biol. 2012;8(7):1–5.

	 86.	 Jackowska M, Dockray S, Hendrickx H, Steptoe A. Psychosocial factors 
and sleep efficiency: discrepancies between subjective and objective 
evaluations of sleep. Psychosom Med. 2011;73(9).

	 87.	 Landry GJ, Best JR, Liu-Ambrose T. Measuring sleep quality in older 
adults: a comparison using subjective and objective methods. Front 
Aging Neurosci. 2015;7(SEP).

	 88.	 Rothman KJ, Greenland S, Associate TLL. Modern epidemiology, 3rd 
edition. Hast Cent Rep. 2014.

	 89.	 Dyrstad SM, Hansen BH, Holme IM, Anderssen SA. Comparison of 
self-reported versus accelerometer-measured physical activity. Med Sci 
Sports Exerc. 2014;46(1):99–106.

	 90.	 Straczkiewicz M, James P, Onnela JP. A systematic review of smart-
phone-based human activity recognition for health research. arXiv. 
2019;

	 91.	 Murakami H, Kawakami R, Nakae S, Nakata Y, Ishikawa-Takata K, Tanaka 
S, et al. Accuracy of wearable devices for estimating total energy 
expenditure: Comparisonwith metabolic chamber and doubly labeled-
water method. JAMA Intern Med. 2016;176(5):702–3.

	 92.	 Torous J, Kiang MV, Lorme J, Onnela J-P. New tools for new research 
in psychiatry: a scalable and customizable platform to Empower data 
driven smartphone research. JMIR Ment Heal. 2016.

	 93.	 Beukenhorst AL, Schultz DM, McBeth J, Lakshminarayana R, Sergeant 
JC, Dixon WG. Using smartphones for research outside clinical settings: 
how operating systems, app developers, and users determine geoloca-
tion data quality in mHealth studies. In:  Studies in health technology 
and informatics; 2017.

	 94.	 Kuhlmann T, Garaizar P, Reips U-D. Smartphone sensor accuracy varies 
from device to device in mobile research: the case of spatial orienta-
tion. Behav Res Methods. 2021;53:22–33.

	 95.	 Beukenhorst AL, Burke KM, Berry JD, Onnela J-P. Using smartphones 
to reduce research burden in a neurodegenerative population and 
assessing participant adherence:a randomized clinical trial and two 
observational studies. JMIR mHealth uHealth. 2022;10(1):e31877.

	 96.	 Arase Y, Ren F, Xie X. User activity understanding from mobile phone 
sensors. UbiComp’10. Proc 2010 ACM Conf Ubiquitous Comput. 
2010:391–2.

	 97.	 Cui Y, Chipchase J, Ichikawa F. A cross culture study on phone carrying 
and physical personalization. In:  Lecture notes in computer science 
(including subseries lecture notes in artificial intelligence and lecture 
notes in bioinformatics); 2007.

	 98.	 Backhouse MR, Hensor EMA, White D, Keenan AM, Helliwell PS, Red-
mond AC. Concurrent validation of activity monitors in patients with 
rheumatoid arthritis? Clin Biomech. 2013;28(4):473–9Available from:. 
https://​doi.​org/​10.​1016/j.​clinb​iomech.​2013.​02.​009.

	 99.	 Ishikawa Y, An Q, Nakagawa J, Oka H, Yasui T, Tojima M, et al. Gait 
analysis of patients with knee osteoarthritis by using elevation angle: 
confirmation of the planar law and analysis of angular difference in the 
approximate plane. Adv Robot. 2017;31(1–2):68–79.

	100.	 Beukenhorst AL, Sergeant J, Schultz DM, McBeth J, Yimer BB, Dixon WG. 
Understanding predictors of missing location data to inform smart-
phone study design: an observational study. Under Rev. 2021.

	101.	 Davergne T, Kedra J, Gossec L. Wearable activity trackers and artificial 
intelligence in the management of rheumatic diseases: where are we in 
2021? Z Rheumatol. 2021;80(10):928–35.

	102.	 Onnela JP, Rauch SL. Harnessing smartphone-based digital Phenotyp-
ing to enhance behavioral and mental health. Neuropsychopharmacol-
ogy. 2016.

	103.	 Magrabi F, Habli I, Sujan M, Wong D, Thimbleby H, Baker M, et al. Why 
is it so difficult to govern mobile apps in healthcare? BMJ Health Care 
Informatics. 2019.

	104.	 Studenic P, Karlfeldt S, Alunno A. The past, present and future of 
e-health in rheumatology. Jt Bone Spine. 2021;88(4).

	105.	 Gandrup J, Ali SM, McBeth J, van der Veer SN, Dixon WG. Remote symp-
tom monitoring integrated into electronic health records: a systematic 
review. J Am Med Inform Assoc. 2020;27(11):1752–63.

	106.	 Eysenbach G, Stoner S, Drozd F, Blankers M, Crutzen R, Tait R, et al. 
ConSORT-eHealth: improving and standardizing evaluation reports 
of web-based and mobile health interventions. J Med Internet Res. 
2011;13(4).

	107.	 Agarwal S, Lefevre AE, Lee J, L’engle K, Mehl G, Sinha C, et al. Guidelines 
for reporting of health interventions using Mobile phones: Mobile 
health (mHealth) evidence reporting and assessment (mERA) checklist. 
BMJ. 2016;352:1–10.

	108.	 Najm A, Nikiphorou E, Kostine M, Richez C, Pauling JD, Finckh A, et al. 
EULAR points to consider for the development, evaluation and imple-
mentation of mobile health applications aiding self-management in 
people living with rheumatic and musculoskeletal diseases. RMD Open. 
2019;5(2):1–7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.statista.com/statistics/639928/market-share-mobile-operating-systems-eu/
https://www.statista.com/statistics/639928/market-share-mobile-operating-systems-eu/
https://doi.org/10.1038/npp.2016.7
https://doi.org/10.1038/npp.2016.7
https://doi.org/10.1016/j.clinbiomech.2013.02.009

	Smartphones for musculoskeletal research – hype or hope? Lessons from a decennium of mHealth studies
	Abstract 
	Background: 
	Body: 
	Conclusion: 

	Background
	Main text
	Smartphones for musculoskeletal research
	The hype, the reality and the hope
	Hype: smartphone studies enable high engagement
	Reality: high engagement requires substantial effort and attrition is a significant threat to smartphone study validity
	Hope: researchers design smartphone studies to promote engagement, reduce attrition and report attrition rates
	Hype: smartphone studies reach a more representative sample
	Reality: smartphone studies may not succeed in recruiting representative participant groups and impose barriers to participation
	Hope: researchers should refrain from generalising their results, and undertake active steps to increase representation of seldom-heard groups
	Hype: sensor data is objective
	Reality: sensor data and any metrics derived from it are subject to researchers’ choices and can still be biased
	Hope: the analysis of sensor data will be increasingly transparent, validated in all patient groups and include uncertainty quantification
	Hype: smartphone research is cheap
	Reality: smartphone research can be expensive
	Hope: smartphone studies will be cost-effective and efficient

	Conclusions
	Acknowledgements
	References


