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Abstract 

Background:  The normal knee kinematics during asymmetrical kneeling such as the sitting sideways remains 
unknown. This study aimed to clarify in vivo kinematics during sitting sideways of normal knees.

Methods:  Twelve knees from six volunteers were examined. Under fluoroscopy, each volunteer performed a sitting 
sideways. A two-dimensional/three-dimensional registration technique was used. The rotation angle, varus-valgus 
angle, anteroposterior translation of the medial and lateral sides of the femur relative to the tibia, and kinematic path-
way in each flexion angle was evaluated.

Results:  Bilateral knees during sitting sideways showed a femoral external rotation relative to the tibia with flexion 
(ipsilateral: 13.7 ± 3.5°, contralateral: 5.8 ± 6.8°). Whereas the ipsilateral knees showed valgus movement of 4.6 ± 2.5° 
from 130° to 150° of flexion, and the contralateral knees showed varus movement of -3.1 ± 4.4° from 110° to 150° 
of flexion. The medial side of the contralateral knees was more posteriorly located than that of the ipsilateral knees 
beyond 110° of flexion. The lateral side of the contralateral knees was more anteriorly located than that of the ipsilat-
eral knees from 120° to 150° of flexion. In the ipsilateral knees, a medial pivot pattern followed by a bicondylar rollback 
was observed. In the contralateral knees, no significant movement followed by a bicondylar rollback was observed.

Conclusion:  Even though the asymmetrical kneeling such as sitting sideways, the knees did not display asymmetri-
cal movement.
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Background
Many studies reported the kinematics of normal knees 
is activity-dependent [1–7]. Therefore, it is important to 
evaluate each activity.

Kneeling is one of the most common activities of daily 
living such as sitting on the floor, gardening, and praying. 
Concerning the kinematics, several studies demonstrated 

that a femoral external rotation with a medial pivot is 
observed with the knee flexion during kneeling [3, 4]. 
There are many kinds of sitting styles such as sitting 
cross-legged, seiza-sitting, and sitting sideways. In addi-
tion, the kinematics during sitting cross-legged is dif-
ferent from that of kneeling and squatting [4]. However, 
most of the sitting styles evaluated previously were sym-
metrical [2–4, 8]. Therefore, the kinematics during asym-
metrical sitting such as the sitting sideways remains 
unknown.

Especially in Asian and Middle-Eastern coun-
tries, people habitually performed the sitting with 
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deep-knee-bend. Therefore, the patients after total knee 
arthroplasty (TKA) also desire sitting with deep-knee-
bend [9]. Whereas, many TKA implants did not create 
the normal knee kinematics [10]. Also, several studies 
demonstrated that the achievement of normal-like kin-
ematics following TKA is related to the high clinical out-
come scores [11–14]. Thus, the evaluation of the normal 
knee kinematics of side sitting is meaningful to improve 
the clinical outcome.

Moreover, several studies reported that kneeling is a 
risk factor of knee osteoarthritis (OA) [15, 16]. The evalu-
ation of asymmetrical kneeling is also important to eluci-
date the mechanism of OA.

This study aimed to clarify in vivo kinematics during 
sitting sideways of normal knees. The hypothesis of this 
study was that in vivo kinematics during sitting sideways 
was different between the ipsilateral knees and contralat-
eral knees, in other words, the ipsilateral knees showed 
femoral external rotated, valgus, and medial pivot motion 
with flexion, on the other hand, the contralateral knees 
showed femoral internal rotated, varus, and lateral pivot 
motion with flexion.

Methods
Twelve knees from six volunteers were examined. All of 
the volunteers were Japanese males and provided written 
informed consent to participate in this study. All partici-
pants gave written informed consent to the experimental 
procedure, which was approved by the ethics commit-
tee of Osaka University (Number 13106) in Osaka, Japan 
and in accordance with the Declaration of Helsinki. Inclu-
sion criteria were non-osteoarthritic knees on computed 

tomography (CT) and no symptomatic knees. Exclusion 
criteria were post-injury knees (fracture, ligament injury, 
and meniscus injury) and inflammatory arthritic knees. At 
the time of examination, the mean age was 37.3 ± 7.6 years. 
The mean body height was 169.9 ± 5.2 cm. The mean body 
weight was 64.2 ± 5.2 kg. All of the values were expressed 
as mean ± standard deviation (SD).

Under fluoroscopy, each volunteer performed a sitting 
sideways from kneeling position to maximal high flex 
position at a natural pace (Fig.  1). The volunteers were 
instructed only to flex their knees as much as possible. 
The subjects were not instructed regarding the leg posi-
tion because it was found that this resulted in an unnat-
ural motion. They practiced the motion several times 
before recording. The right and left knee motions were 
separately recorded. In other words, a total of 4 motions 
(the right leg on the inside and outside, and the left leg 
on the inside and outside) were recorded in each volun-
teer. The sequential motion was recorded as a series of 
digital X-ray images (1024 × 1024 × 12 bits/pixel, 7.5-Hz 
serial spot images as a DICOM file) using a 17-inch (43-
cm) flat panel detector system. Furthermore, all images 
were processed by dynamic range compression, thereby 
enabling edge-enhanced images. To estimate the spatial 
position and orientation of the knee, a two-dimensional/
three-dimensional (2D/3D) registration technique [4, 17] 
was employed.

Three-D bone models were created from CT and used 
for the computer-aided design (CAD) models. The CT 
was taken from each subject. Estimation accuracy for 
the relative motion between 3D bone models was ≤ 1° in 
rotation and ≤ 1 mm in translation [4].

Fig. 1  Sitting sideways under fluoroscopy. A Evaluation of the ipsilateral knee. B Fluoroscopic image after 2D/3D registration (ipsilateral knee). 
C Axial view after 2D/3D registration (ipsilateral knee). D Evaluation of the contralateral knee. E Fluoroscopic image after 2D/3D registration 
(contralateral knee). F Axial view after 2D/3D registration (contralateral knee)
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A local coordinate system at the bone model was pro-
duced according to a previous study [18]. Knee rotations 
were described using the joint rotational convention of 
Grood and Suntay [19]. Femoral rotation angle relative 
to the tibia, varus-valgus angle, and anteroposterior (AP) 
translation of the medial sulcus (medial side) and lateral 
epicondyle (lateral side) of the femur on the plane that is 
perpendicular to the tibial mechanical axis in each flexion 
angle were evaluated [4]. AP translation was calculated as 
a percentage relative to the proximal AP dimension of the 
tibia [4]. External rotation was denoted as positive and 
internal rotation as negative. Valgus was denoted as posi-
tive and varus as negative. Positive and negative values of 
AP translation were described as anterior and posterior 
to the axis of the tibia, respectively.

Statistical analyses
Results were analysed using SPSS version 24 (IBM 
Corp., Armonk, NY, USA). Repeated measure analysis 

of variance (ANOVA) and post hoc pairwise comparison 
(Bonferroni test) was used to analyse all evaluation items. 
A p-value < 0.05 was considered statistically significant. 
Moreover, a power analysis using EZR [20] indicated that 
11 knees would be required for an alpha set at 0.05 and 
power at 0.8.

Results
Flexion, rotation, and varus‑valgus angle
Ipsilateral knees during sitting sideways were gradually 
flexed from 98.4 ± 6.8° to 150.8 ± 4.5°, and contralateral 
knees during sitting sideways were gradually flexed from 
101.7 ± 6.2° to 155.2 ± 4.8°.

In the ipsilateral knees, the femurs displayed an exter-
nal rotation of 13.7 ± 3.5° relative to the tibia from 110° 
to 150° of flexion. In the contralateral knees, the femurs 
displayed an external rotation of 5.8 ± 6.8° relative to 
the tibia from 110° to 150° of flexion (Fig.  2). From 
120° to 150° of flexion, the femoral external rotation of 

Fig. 2  Rotation angle during sitting sideways. The markers indicate the femoral rotation relative to the tibia. *, significant differences between 
ipsilateral knees and contralateral knees (p < 0.05)

Fig. 3  Varus-valgus angle during sitting sideways. The markers indicate the femoral varus-valgus movement relative to the tibia. *, significant 
differences between ipsilateral knees and contralateral knees (p < 0.05)
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contralateral knees was significantly smaller than that of 
ipsilateral knees (120°: p = 0.008, 130°: p = 0.001, 140°: 
p < 0.001, 150°: p < 0.001).

Regarding the varus-valgus angle, the ipsilateral knees 
showed the valgus movement of 4.6 ± 2.5° from 130° to 
150° of flexion. On the other hand, contralateral knees 
showed varus movement of -3.1 ± 4.4° from 110° to 150° 
of flexion (Fig. 3). From 120° to 150° of flexion, the con-
tralateral knees showed significantly varus position than 
ipsilateral knees (120°: p = 0.006, 130°: p = 0.005, 140°: 
p = 0.001, 150°: p < 0.001).

AP translation
The AP translation of the medial side of the ipsilateral 
femur indicated 10.4 ± 7.0% posterior movement from 
130° to 150° of flexion. The AP translation of the medial 
side of the contralateral femur indicated 11.0 ± 8.6% pos-
terior movement from 130° to 150° of flexion (Fig.  4). 

Beyond 110° of flexion, the medial side of the contralat-
eral knees was significantly more posteriorly located than 
that of the ipsilateral knees (p = 0.011).

The AP translation of the lateral side of the ipsi-
lateral femur indicated 40.0 ± 6.6% posterior move-
ment beyond with 110° of flexion. The AP translation 
of the lateral side of the contralateral femur indicated 
20.2 ± 4.4% posterior movement from 130° to 150° of 
flexion (Fig. 5). From 120° to 150° of flexion, the lateral 
side of the contralateral knees was significantly more 
anteriorly located than that of the ipsilateral knees 
(120°: p = 0.008, 130°: p < 0.001, 140°: p < 0.001, 150°: 
p < 0.001).

Kinematic pathway (Fig. 6)
In the ipsilateral knees, the difference between the 
medial and lateral sides of the femur reflected a medial 

Fig. 4  Anteroposterior (AP) translation of the femoral medial sulcus during sitting sideways. AP translation was calculated as a percentage relative 
to the AP length of the tibia. *, significant differences between ipsilateral knees and contralateral knees (p < 0.05)

Fig. 5  Anteroposterior (AP) translation of the femoral lateral epicondyle during sitting sideways. AP translation was calculated as a percentage 
relative to the AP length of the tibia. *, significant differences between ipsilateral knees and contralateral knees (p < 0.05)
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pivot pattern from 110° to 130° of flexion. From 130° to 
150° of flexion, a bicondylar rollback was observed. In 
the contralateral knees, no significant movement was 
observed from 110° to 130° of flexion. From 130° to 150° 
of flexion, a bicondylar rollback was observed.

Discussion
This is the first study to evaluate the in vivo knee kine-
matics of normal volunteers during asymmetrical kneel-
ing using the CAD model of fluoroscopically captured 
images. Regarding the varus-valgus angle, the ipsilateral 
knees during sitting sideways showed valgus movement, 
on the other hand, the contralateral knees during sit-
ting sideways showed varus movement. This fact was as 
hypothesized. Whereas, regarding rotation angle and AP 
translation, the result of this study was contrary to the 
hypothesis. In other words, the bilateral knees showed 
the femoral external rotation, additionally, the contralat-
eral knees did not show a lateral pivot motion. These 
facts suggest that regardless of the varus-valgus move-
ment, normal knees during asymmetrical kneeling dis-
play a femoral external rotation. Moreover, a lateral pivot 
motion was not observed even though the contralat-
eral knees during asymmetrical kneeling. Namely, even 
though the asymmetrical kneeling, the knees did not dis-
play asymmetrical movement. Previous studies reported 
that the rate of medial OA knees in Asian countries 

was higher than that of Western countries [21]. One of 
the reasons is a difference in their habit. In other words, 
Asian people habitually performed the sitting with deep-
knee-bend. The kneeling performance displayed sharp 
medial pivot motion [4], even though the asymmetrical 
kneeling. These facts might induce a high rate of medial 
OA knees in Asian people. However, the extent of rota-
tion angle and AP translation was significantly different 
between the ipsilateral knees and contralateral knees; 
the femoral external rotation of contralateral knees was 
smaller than that of ipsilateral knees, the medial side of 
contralateral knees was located more posterior than that 
of ipsilateral knees, and the lateral side of contralateral 
knees was located more anterior than that of ipsilateral 
knees. Therefore, although the kinematics of contralat-
eral knees during sitting sideways was not contrasted 
with that of ipsilateral knees perfectly during sitting side-
ways, it might be more laterally constrained movement.

Murakami et al. reported that the knees during an asym-
metrical activity such as golf swing displayed asymmetrical 
movement, unlike this study. The golf swing is a closed-
kinetic-chain activity, whereas the sitting sideways is an 
open-kinetic-chain activity. This suggests that even though 
the asymmetrical activities, the kinematics is different 
depending on each activity. Moreover, in sitting sideways, 
the respective movement of femur and tibia may be differ-
ent between the ipsilateral knees and contralateral knees.

Fig. 6  Kinematic pathway of ipsilateral knees and contralateral knees during sitting sideways. Above row indicates it each flexion angle (A: 110°, B: 
120°, C: 130°, D: 140°, E: 150°) Bottom row indicates the whole movement from 110° to 150° of flexion. Blue and orange arrows indicate the direction 
of the movement. Left knee is ipsilateral and right knee is contralateral. Ipsilateral knee Blue arrow: From 110° to 130° of flexion. Orange arrow: From 
130° to 150° of flexion. Contralateral knee Orange arrow: From 130° to 150° of flexion
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The previous study that evaluated the knee kinematics 
during symmetrical kneeling has reported that the range 
of femoral external rotation with flexion was 14.8 ± 3.8°, 
and the range of lateral AP translation with flexion was 
40.2 ± 10.2% [4]. The rotation and lateral AP translation 
of ipsilateral knees during sitting sideways were similar to 
that of normal knees during symmetrical kneeling [3, 4]. 
On the other hand, the rotation and lateral AP transla-
tion of contralateral knees during sitting sideways were 
smaller than those of normal knees during symmetrical 
kneeling [3, 4].

Regarding the kinematic pathway, a bicondylar roll-
back was observed from 130° to 150° of flexion in both 
the ipsilateral and contralateral knees during sitting side-
ways. The previous studies demonstrated that normal 
knee kinematics showed a medial pivot pattern during 
kneeling [3, 4]. These suggest that the normal knee kin-
ematics during kneeling is different between symmetrical 
activity and asymmetrical activity in high-flexion.

Gladnick et  al. reported that although from exten-
sion to 90° of flexion normal knee exhibited an increase 
in varus-valgus laxity as the flexion angle increase, the 
variability of AP translation in response to the varus 
and valgus load was small [22]. On the other hand, in 
the current study, the ipsilateral knees displayed valgus 
movement, whereas the contralateral knees displayed 
varus movement. Furthermore, the AP translation was 
different between the ipsilateral knees and contralateral 
knees. These suggest that during a high-flexion activity 
more than 90° of flexion, because the varus-valgus lax-
ity increase additionally, the varus and valgus load may 
affect the AP translation.

This study has some limitations. First, this study ana-
lyzed the knee joint kinematics of only Japanese normal 
males. The knee kinematics of females, OA patients, or 
the other races may be different. Also, that kinemat-
ics may provide additional understandings. However, 
a previous study demonstrated that the female knee 
kinematics did not differ from the male kinematics at 
high flexion [23]. Therefore, the kinematics during sit-
ting sideways in the current study may apply to both 
genders. Second, in the current study, the right and 
left knee motion were separately recorded because it 
is impossible to record the bilateral knees in the flat 
panel. Therefore, it is capable not to be reflected in 
the simultaneous knee motion during sitting side-
ways. Third, a previous study reported that the range of 
motion (ROM) of the hip joint was related to that of the 
knee joint during kneeling [2]. Therefore, the ROM of 
the hip joint may also affect the knee kinematics during 
sitting sideways. However, the effect of ROM on the hip 
joint could not be evaluated because it was impossible 
to record the hip joint in the flat panel.

Conclusions
Even though the contralateral knee during sitting side-
ways, the femoral external rotation relative to the tibia 
was observed. Moreover, a lateral pivot motion was not 
observed. In other words, the knees during asymmetrical 
kneeling did not display asymmetrical movement.
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