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Effects of dual-task and walking speed on
gait variability in people with chronic ankle
instability: a cross-sectional study

Shmuel Springer1* and Uri Gottlieb1,2
Abstract

Background: Recent evidence suggests that impaired central sensorimotor integration may contribute to deficits in
movement control experienced by people with chronic ankle instability (CAI). This study compared the effects of
dual-task and walking speed on gait variability in individuals with and without CAI.

Methods: Sixteen subjects with CAI and 16 age- and gender-matched, able-bodied controls participated in this
study. Stride time variability and stride length variability were measured on a treadmill under four different
conditions: self-paced walking, self-paced walking with dual-task, fast walking, and fast walking with dual-task.

Results: Under self-paced walking (without dual-task) there was no difference in stride time variability between CAI
and control groups (P = 0.346). In the control group, compared to self-paced walking, stride time variability
decreased in all conditions: self-paced walking with dual-task, fast speed, and fast speed with dual-task (P = 0.011,
P = 0.016, P = 0.001, respectively). However, in the CAI group, compared to self-paced walking, decreased stride
time variability was demonstrated only in the fast speed with dual-task condition (P = 1.000, P = 0.471, P = 0.008;
respectively). Stride length variability did not change under any condition in either group.

Conclusions: Subjects with CAI and healthy controls reduced their stride time variability in response to challenging
walking conditions; however, the pattern of change was different. A higher level of gait disturbance was required
to cause a change in walking in the CAI group compared to healthy individuals, which may indicate lower
adaptability of the sensorimotor system. Clinicians may use this information and employ activities to enhance
sensorimotor control during gait, when designing intervention programs for people with CAI.
The study was registered with the Clinical Trials network (registration NCT02745834, registration date 15/3/2016).
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Background
Recurrent ankle sprains occur in up to 40% of individ-
uals who have previously experienced a lateral ankle
sprain [1, 2]. Individuals who report residual symptoms,
which include repetitive episodes of ‘giving way’ and
subjective feeling of ankle joint instability are termed as
having chronic ankle instability (CAI) [3]. The cause of
these symptoms and the high frequency of recurrent
ankle sprain is not fully understood [4]. It has been
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suggested that the residual joint instability and the high
reoccurrence rates can be attributed to loss of sensory
input from articular mechano-receptors, decreased
muscle strength, mechanical instability of the ankle joint,
and reduced ankle range of motion [5, 6].
Recent evidence suggests that deficits in central neural

sensorimotor integration can contribute to impaired
movement control in people with CAI [7–14]. For
example, Springer et al. [8] assessed the correlation
between single-limb stance postural control (Overall
Stability Index) and shoulder position sense (Absolute
Error Score) among people with CAI and healthy con-
trols. Correlations between the lower and upper limbs
were observed only in the healthy controls, indicating
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altered sensorimotor integration in the CAI group.
Several studies have observed altered gait mechanism in
people with CAI, which was explained by compromised
central nervous system (CNS) control [9, 14–16]. It was
shown that people with CAI have a typical gait pattern
of increased inversion kinematics and kinetics, lateral
shift of body weight, increased hip flexion during ter-
minal swing to mid stance, reduced hip extension and
increased knee flexion during terminal stance to initial
swing, and slow weight transfer at the beginning and
end of the stance [15–17]. Altered biomechanical strat-
egies during gait initiation and termination tasks (e.g.,
reduced center of pressure displacement), have also been
demonstrated in this population [9, 14]. Studies that
assessed movement variability, such as knee and hip
joint motions during single leg jump landing, identified
differences between individuals with and without CAI,
which may also indicate central motor programming
deficits [10–13]. Hence, further investigation of motor
control adaptations may contribute to understanding the
underlying neurophysiologic mechanisms of CAI.
Gait speed and other spatio-temporal parameters

during daily activities should reflect behavioral goals and
environmental conditions [18]. Studies revealed that
walking speed has a significant effect on joint coordin-
ation pattern and gait variability [18–20]. Therefore,
assessing gait variability under challenging situations
such as walking at different speeds might test CNS flexi-
bility in controlling gait [19, 20]. Moreover, based on the
understanding that for many daily activities even a fully
intact motor control system requires attention and cogni-
tive resources [21], the dual-task paradigm has been used
to provide insight into the demands of postural control
and gait on attention. Performance of a cognitive task has
been shown to decrease postural control in participants
with CAI as compared to healthy controls [7, 22]. How-
ever, no previous study examined the impact of cognitive
task and walking speed on gait performance in subjects
with CAI.
Balance during walking is reflected by precise spatial

and temporal control of foot placement. Stride to stride
fluctuations in time and length are related to control of
the rhythmic walking mechanism. Thus, previous
research has suggested that studying gait variability is a
reliable way to quantify locomotion [23]. The mechan-
ism of adjusting movement variability is considered
beneficial for coping with changes, maintaining stability,
preventing injury, and attaining higher motor skills [24].
Performing a cognitive task while walking or while alter-
ing self-paced walking speed has been related to changes
in gait variability in populations with neurological and
musculoskeletal pathologies, as well in healthy young
individuals [25–28]. Yet, there is no consensus in the lit-
erature as to how to interpret these changes. Decreased
variability while performing demanding gait tasks may re-
flect voluntary gait adaptation toward a more conservative
gait pattern [26]. Alternatively, it has been suggested that
increased variability may indicate CNS flexibility and
adaptability to changes in task demands [29]. A possible
central sensorimotor control deficit in people with CAI
may constrain the ability of the CNS to adjust to different
task demands; thus, affecting central control over gait
variability and reducing the ability to cope with varied
tasks. Consequently, testing the mechanism of adjusting
gait variability as a response to complex walking condi-
tions in people with CAI compared to healthy controls
may provide more information on sensorimotor control in
this population.
The present study was designed to compare the effects

of dual-task and walking speed on gait variability in indi-
viduals with and without CAI. Previous reports, including
a meta-analysis, indicated that simple postural tasks do not
always discriminate between participants with CAI and
those without [6, 8, 30]. Consequently, we hypothesized
that gait variability among individuals with and without
CAI will be similar during “normal” self-paced walking,
whereas gait will vary under complex walking conditions.

Methods
Participants
Sixteen participants with CAI and 16 age- and gender-
matched, able-bodied controls volunteered to participate
in the study. All participants were recruited from mili-
tary clinics. The enrollment criteria for the CAI group
were based on inclusion criteria for investigating CAI as
suggested by Delahunt et al. [3] and the position state-
ment of the International Ankle Consortium [31–33].
Participants were recruited for the CAI group if they
met the following criteria: (i) history of at least one sig-
nificant ankle sprain which occurred at least 12 months
prior to enrollment in the study and was diagnosed by a
physician or a physical therapist using clinical examin-
ation classifications described by Malliaropoulos et al.
[34], (ii) a history of at least two episodes of ‘giving way’,
and feelings of ankle joint instability in the previously in-
jured ankle joint [3], (iii) the most recent injury occurred
more than 6 weeks prior to study enrollment, (iv) a posi-
tive response to at least five yes/no questions (question 1,
plus four others) of the Ankle Instability Instrument [35],
and (v) able to bear full weight on the injured lower
extremity with no more than mild discomfort. Exclusion
criteria for this group were evidence of concomitant injury
(such as bony injury or significant muscular/tendon in-
jury), previous ankle surgery, other pathological condi-
tions or surgical procedures in the lower extremity, or
neurological/vestibular or any other balance disorder.
The control group included healthy participants. Enroll-

ment criteria were no history of ankle sprains, no current or
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previous conditions that could affect gait or balance (in par-
ticular ankle joint injury within the past 6 months), chronic
disease (e.g., multiple sclerosis, stroke, Parkinson’s disease,
rheumatoid arthritis, or type 2 diabetes), or history of visual
or vestibular disturbance affecting balance.
The study was approved by the Israel Defense Force

Medical Corps Ethical Review Board (approval number
IDF-1482-2014). All participants provided written informed
consent. The study was registered with the Clinical Trials
network (registration NCT02745834).
Procedure
Gait was evaluated while the subjects walked on a tread-
mill under four different walking conditions: self-paced
walking speed, self-paced walking with dual-task, fast
walking, and fast walking with dual-task. Under the self-
paced walking condition, subjects were instructed to
walk at their normal self-selected pace, whereas under
the fast condition the instruction was to “walk as quickly
as possible without running.” In order to set walking
speed, gait conditions without dual-task were measured
before the same condition with dual-task, while the
order of self-paced/fast walking was randomized.
Stride time variability (STV) [100 X (standard devi-

ation of stride time/mean stride time)] and stride length
variability (SLV) [100 X (standard deviation of stride
length/mean stride length)] were measured using the
OPTOGait system (Microgate, Bolzano, Italy) [36]. The
OPTOGait system consists of a transmitter and receiver
bars, each 1 m long, located on both sides of the tread-
mill. The transmitter bar has 99 infrared LEDs and the
receiver bar has 99 sensors. Stepping between the bars
blocks the infrared rays, allowing the system to obtain
spatio-temporal gait parameters without the use of add-
itional markers. Data were sampled at 1000 Hz and
processed using dedicated software (Optojump Next,
Version 1.3.20.0, Microgate, Bolzano, Italy) [36]. Subjects
Table 1 Subject characteristics

Parameter Group

CAI (n = 16

Age (years) mean ± SD 20.97 ± 4.1

Height (cm) mean ± SD 170.12 ± 6.

Weight (kg) mean ± SD 65.44 ± 9.7

Gender (F/M) 9/16

SP speed (m/s) mean ± SD 1.32 ± 0.15

Fast speed (m/s) mean ± SD 1.70 ± 0.19

Ankle with recurrent sprains (RT/LT/BIL) 3/6/7

Time since last sprain (weeks) mean ± SD 21.25 ± 16.

Ankle Instability Instrument score 6.81 ± 1.38

CAI chronic ankle instability, SP self-paced, RT right, LT left, BIL bilateral
performed one, 2-min trial, of each of the 4 walking
conditions, with 2 min rest between tests. In addition,
subjects were provided with an opportunity for condi-
tioning by taking several steps on the treadmill before
data were collected. During the dual-task conditions,
subjects walked while reciting out loud serial subtrac-
tions of 7, starting from a different 3 digit number at
each trial. No instructions regarding priority of walking
vs. cognitive task were given. Before performing the task
while walking, the arithmetic task was measured for
120 s while sitting, to examine the effects of walking on
this cognitive task. To assess the dual-task performance, a
normalized response index was calculated based on num-
ber of correct responses/number of total responses × 14,
as described by Hayman [37].

Statistical analysis
Descriptive statistics included means and standard devi-
ations (M ± SD). A t-test was used to compare baseline
characteristics (age, gender, height, weight, and self-
paced/fast gait speed) between the CAI and control
groups. Two separate 2 × 2× 2 (group × task × speed)
mixed model ANOVAs were performed to examine the
effect of group, and 2 within subject factors (dual-task
and gait speed) on STV and SLV. Analyses of variance
were followed by post hoc analyses with Bonferroni
corrections, as appropriate. Additional 2× 3 (group ×
testing condition) mixed model ANOVA was done to
examine the effects of group and testing conditions as
repeated measures (sitting, normal walking, and fast
walking) on the serial-7 task performance. Significance
was determined at P < 0.05. The analysis was conducted
using IBM SPSS V22 (SPSS, Inc., Chicago, Illinois).

Results
Subject characteristics
Subject characteristics are summarized in Table 1. There
were no differences in baseline characteristics (age, gender,
P-value

) Control (n = 16)

9 21.41 ± 4.94 0.521

66 169.25 ± 9.29 0.215

7 62.00 ± 11.38 0.804

9/16 —

1.38 ± 0.18 0.288

1.65 ± 0.17 0.457

— —

57 — —

— —



Springer and Gottlieb BMC Musculoskeletal Disorders  (2017) 18:316 Page 4 of 8
height, weight, and self-paced/fast gait speed) between
groups. The average time since last sprain in the CAI
group was 21.25 ± 16.57 weeks and the average Ankle
Instability Instrument score was 6.81 ± 1.38.
Serial-7 task performance
Table 2 summarizes performance in the serial-7 subtrac-
tion task. ANOVA showed no significant effects of group
or testing condition, indicating that the serial-7 perform-
ance was similar between groups and during sitting and
self-paced/fast dual-task walking conditions.
Gait variability
Table 3 presents the means and standard deviations of
the gait variability outcomes (STV/SLV) under each walk-
ing condition in both groups, as well as post hoc compari-
sons between groups, where appropriate. STV results of
the two groups under all 4 gait conditions are also pre-
sented in Fig. 1. The ANOVA that examined the effects of
group, dual-task, and gait speed on SLV indicated that
none of these 3 parameters had a significant effect.
The ANOVA that examined the effect of group, dual-

task, and gait speed on STV yielded significant effects
for all 3 parameters (P = 0.022, P = 0.014, and P = 0.008,
respectively). An interaction effect was also found for
group × dual-task × speed (P = 0.007).
Under the self-paced walking condition without dual-

task, there was no difference in STV between groups
(P = 0.346; Table 3).
In the control group, compared to self-paced walk-

ing, STV decreased in all conditions: self-paced walk-
ing with dual-task, fast speed, and fast speed with
dual-task (P = 0.011, P = 0.016, and P = 0.001, respect-
ively). However, in the CAI group, compared to self-
paced walking, STV was decreased only in the fast
speed with dual-task condition (P = 1.000, P = 0.471,
and P = 0.008, respectively).
Additional comparisons indicated decreased STV in

the CAI group when the fast speed dual-task condi-
tion was compared to fast speed (P = 0.0015), and
self-paced speed with dual-task (P = 0.007). No
change was observed in the control group (P = 0.264
and P = 0.256, respectively).
Table 2 Serial-7 performance

Sitting Self-pac

CAI Control CAI

Attempts 24.94 ± 14.28 23.19 ± 9.79 26.88 ±

Correct 23.31 ± 14.75 19.75 ± 11.76 25.50 ±

Error 1.63 ± 1.54 3.44 ± 3.44 1.38 ±

Response Index 12.80 ± 1.12 11.15 ± 3.55 13.07 ±
Discussion
The results of the present study show that subjects with
CAI and healthy controls reduced their STV in response
to challenging walking conditions, although the pattern
of change differed. In the healthy control group, de-
creased STV was observed when the normal self-paced
walking speed condition was compared to the more
challenging conditions such as self-paced speed with
dual-task or fast speed; however, additional complexity
in walking, such as fast walking with dual-task did not
further change gait rhythmicity. In contrast, among sub-
jects with CAI the degree of STV in normal self-paced
speed was maintained in self-paced speed with dual-task
and the fast speed conditions; yet, a significant decrease in
STV was demonstrated in fast walking with dual-task. As
gait variability reflects CNS control of walking [23, 29],
these findings could indicate differing CNS adaptability
patterns in the two groups. It seems that a higher level of
gait disturbance is required to cause reduced STV in the
CAI group compared to healthy individuals. The present
investigation extends the growing body of evidence sug-
gesting that altered movement control in people with CAI
may be attributed to CNS deficits [7–9].
It was suggested that reduced STV during complex

walking conditions reflects a reorganization of the sensori-
motor system toward a more stable pattern of movement
execution [38]. This coping mechanism of adjusting vari-
ability may assist in preventing injury during complex
walking tasks [24]. The higher degree of gait disturbance
required to initiate STV change in the CAI group could
indicate CNS difficulty in reorganizing the movement pat-
tern. While healthy subjects might react to slight changes
in task and environmental circumstances, subjects with
CAI might have delayed or insufficient reactions, which
might impair their ability to balance gait and could explain
the tendency towards repeated ankle sprains, as well as
associated recurring symptoms.
Our findings are consistent with previous studies,

which demonstrated that individuals with CAI have re-
duced ability to cope spontaneously with changes in task
and environment due to constraints in the sensorimotor
system [30, 39]. For example, McKeon et al. [40] tested
postural control during single limb stance with eyes
open and eyes closed, in people with and without CAI.
Differences between groups manifested only when vision
ed walking Fast walking

Control CAI Control

11.46 27.38 ± 12.82 27.13 ± 11.79 25.31 ± 13.51

11.71 23.63 ± 12.84 25.38 ± 12.37 23.19 ± 13.60

1.45 3.69 ± 4.95 1.75 ± 1.84 2.13 ± 2.36

1.12 11.74 ± 2.28 12.82 ± 1.41 12.37 ± 1.95



Table 3 Means ± standard deviations of gait variability outcomes under each walking condition in both groups, and post hoc
comparisons between groups@a

Group Stride time variability (%)

SP speed SP speed DT Fast speed Fast speed DT

CAI 1.53 ± 0.35 1.53 ± 0.43 1.47 ± 0.34 1.31 ± 0.32

Control (n = 16) 1.42 ± 0.32 1.22 ± 0.26 1.20 ± 0.29 1.13 ± 0.24

Between group comparisons 0.346 0.019 0.024 0.079

Group Stride length variability (%)

SP speed SP speed DT Fast speed Fast speed DT

CAI 1.57 ± 0.38 1.53 ± 0.41 1.44 ± 0.35 1.45 ± 0.65

Control (n = 16) 1.43 ± 0.39 1.18 ± 0.40 1.18 ± 0.26 1.15 ± 0.42

@aAs the ANOVA that examined the effect of group, dual-task, and gait speed on stride length variability had no significant effect, no post hoc comparisons were made
CAI chronic ankle instability, DT dual-task, SP self-paced
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was removed. The authors suggested that the behavior
observed in the CAI group could arise from the unique
interactions between an impaired sensorimotor system
and the task of maintaining single limb stance in the ab-
sence of visual input.
It has been demonstrated that altered gait mechanics

are associated with CAI and that ankle sprains commonly
occur during gait [9, 14–16]. Based on our results, clini-
cians may want to consider training subjects with CAI
under varied gait conditions, such as walking at different
speeds and with dual-task, in order to prevent recurrent
injury. This practice may improve the ability of the sen-
sorimotor system to reorganize movement and to adapt to
varied conditions. Nevertheless, it should be emphasized
that while balance training programs have been shown to
improve function in people with CAI [13, 39], evidence to
support training to improve functional activities, such as
gait performance, is currently lacking [41]. Thus, further
investigations should be performed to test the efficacy of
such training.
While the pattern of decreased STV during the fast and

dual-task walking conditions differed between groups,
STV during self-paced walking did not. Similarly, recent
Fig. 1 Stride time variability results of the two groups under all gait condit
systematic reviews [6, 30] indicated that simple postural
stability tests such as single-leg stance may not always
discriminate between individuals with CAI and healthy
controls. Therefore, assessments with more challenging
tasks, such as dual-task or fast walking, and evaluation of
gait kinematics and kinetics may be more appropriate for
testing impairments related to CAI.
The similarity of the tests in the present study to nor-

mal function enhances their ecological validity. Never-
theless, it should be noted that while gait assessments
may replicate normal function, they do not provoke
movement patterns that occur during sports and other
high-risk activities (e.g., landing from a jump). A com-
prehensive assessment should include such functional
tasks when appropriate.
The present findings of decreased STV in response to

challenging walking conditions support the suggestion
that in young adults, changes in task and environment
might redirect gait toward a more stable, less varied
mechanism. However, previous investigations reporting
the effects of cognitive load and speed on gait variability
in young adults had conflicting results. Several studies
reported increased variability during dual-task [42, 43]
ions. CAI- chronic ankle instability, SP- self-paced, DT- dual task
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or fast/slow paced gait speed [19, 44], some reported
decreased variability with dual-task [26, 27] or slow gait
speed [27], while others demonstrated no effect of dual-
task on gait variability [45, 46]. Wrightson et al. [27]
suggested that the disparities between the results could
be related to the method of measuring gait and the
differences between over-ground and treadmill walking.
Other explanations could be related to difference in the
cognitive task employed or to the instruction provided
for how to decrease or increase self-paced walking
speed. None of the above provides a comprehensive ex-
planation for the diverse results. Thus, further investiga-
tion is required to fully understand the effects of
changes in the task and environment on gait mechanism
in young adults.
Our results indicated no effects of group or testing con-

dition on performance in the serial-7 subtraction dual-
task. This may indicate that participants in both groups
prioritized the cognitive task. Previous research suggested
that while simultaneously performing another task, young
adults prioritized the postural assignment, known as ‘pos-
ture first’ paradigm [47]. However, a recent integrated
model of task prioritization proposed by Yogev-Seligmann
et al. [48] suggested that task prioritization might be re-
lated to factors such as postural reserve. In consonance
with this model, it can be assumed that the participants in
both groups had sufficient postural reserve (i.e., muscle
strength and anticipatory mechanisms). Yet, as mentioned
above, the ability to adjust dynamic posture strategy ac-
cording to walking complexity differed between groups.
Although the cognitive dual-task and gait speed had a

significant effect on STV, it did not influence SLV. This
finding is in agreement with previous studies [42, 43]
that showed that dual cognitive task provoked significant
changes in STV but not in length variability among
healthy adults. As suggested by Beauchet et al. [42] this
may indicate that control of the spatial rhythmic step-
ping mechanism requires less CNS resources than does
temporal control.
The present study had several limitations. One potential

limitation was related to measuring self-paced gait speed
and variability while subjects walked on a treadmill. Yet, it
has been demonstrated that self-paced treadmill walking
provides a reliable record of typical self-paced gait speed
[49], and that variability measured by treadmill walking
may be an acceptable representation of over-ground walk-
ing [50]. It should also be noted that as all subjects were
measured under the same conditions, it could be expected
that the same differences would be observed in over-
ground walking. Another limitation is related to the
complexity of the gait conditions. While the present inves-
tigation augmented the complexity of self-paced walking
by increasing gait speed, adding a serial-7 dual-task, or
both, many situations challenge the regular self-paced gait.
Future investigations should examine the effect of varied
gait conditions on gait performance in people with CAI.
Finally, this study included young subjects with a narrow
age range, as well as subjects who had bilateral and unilat-
eral ankle sprains. CAI is common in older adults as well
as in children [51] and the mixed cohort of the CAI group
might have affected the results. Further studies that will
test the influence of these factors are warranted.
Conclusions
The present study demonstrated that both subjects with
CAI and healthy controls reduced STV in response to
challenging walking conditions. However, a more complex
walking condition was required for the subjects with CAI
to reduce their STV. This may be explained by a limited
ability of the sensorimotor system to reorganize move-
ment patterns under varying gait conditions. Clinicians
should consider how to address this issue when designing
intervention programs for people with CAI.
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