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Abstract
Background: Whereas the alterations of diverse tissues in cellular and molecular levels have been
investigated during leg lengthening via microscopy and biochemical studies, little is known about
the response of deep fascia. This study aims to investigate the changes of the extracellular matrix
in deep fascia in response to leg lengthening.

Methods: Animal model of leg lengthening was established in New Zealand white rabbits.
Distraction was initiated at a rate of 1 mm/day and 2 mm/day in two steps, and preceded until
increases of 10% and 20% in the initial length of tibia had been achieved. Alcian blue stain and
picrosirius-polarization method were used for the study of the extracellular matrix of deep fascia
samples. Leica DM LA image analysis system was used to investigate the quantitative changes of
collagen type I and III.

Results: Alcian blue stain showed that glycosaminoglycans of fascia of each group were composed
of chondroitin sulphate and heparin sulphate, but not of keratan sulphate. Under the polarization
microscopy, the fascia consisted mainly of collagen type I. After leg lengthening, the percentage of
collagen type III increased. The most similar collagen composition of the fascia to that of the normal
fascia was detected at a 20% increase in tibia length achieved via a distraction rate of 1 mm/d.

Conclusion: The changes in collagen distribution and composition occur in deep fascia during leg
lengthening. Although different lengthening schemes resulted in varied matrix changes, the most
comparable collagen composition to be demonstrated under the scheme of a distraction rate of 1
mm/day and 20% increase in tibia length. Efficient fascia regeneration is initiated only in certain
combinations of the leg load parameters including appropriate intensity and duration time, e.g.,
either low density distraction that persist a relatively short time or high distraction rates.

Background
The concept of distraction histogenesis was introduced by
G.A.Ilizarov and classic papers were published in the Eng-
lish literature in 1989[1,2]. Gradual traction on living tis-
sues creates stresses that can stimulate regeneration and

maintain active growth of certain tissue structures. Ilizarov
designated this principle the Law of Tension-Stress [1].
The clinical applications of this principle in orthopaedics
include limb lengthens discrepancy or short stature [3,4],
delayed unions and nonunions of fractures [5], limb
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deformities correction [6], congenital pseudoarthrosis [7],
and the treatment of bone defect [8]. The basic research of
limb lengthening falls into two aspects. One is the
responses of various tissues under tension stress during
limb lengthening, including new bone formatted in the
distraction gap, muscles, tendons, vessels and nerves [9-
11]. The other concerns the underlying molecular mecha-
nism of this principle [12,13]. However, among all the
previous investigations, reports related to the deep fascia
remain limited.

Congenital and developmental deformities are intriguing
and difficult to overcome for orthopedic surgeons. These
deformities are closely related to the lesions of soft tissues,
mainly dense connective tissue. The deep fascia, belong-
ing to connective tissue in histology, is just one of the
most directly related tissues. In the previous study, histo-
logical and ultrastructural alterations of deep fascia in
response to leg lengthening have been reported [14].
However, the response of extracellular matrix of fascia
remains unknown. The aim of this study is to investigate
the morphological characteristics of extracellular matrix,
including glycosaminoglycans (GAGs) and extracellular
matrix proteins, of deep fascia during leg lengthening and
to evaluate candidate strategies to improve regeneration
of fascia tissues, i.e., distraction fasciogenesis.

Methods
Establishment of leg lengthening animal model
In 24 adult New Zealand white rabbits (License number
SCXK 2002–005, lab animal center of the Fourth Military
Medical University), the fascia of the leg was distracted by
a unilateral external fixator applied with four pins to the
medial surface of the tibia. Adult rather than immature
rabbits were used to eliminate the factors of growth and
development which may affect the accuracy of the study.
The committee on animal experimentation of Fourth Mil-
itary Medical University approved all experiments, which
met the NIH guidelines for the care and use of laboratory
animals. A monofocal proximal diaphysis osteotomy
between the second and the third pins was performed
with just little incisions. Then the periosteum and the skin
were closed [15,16].

Leg lengthening
Seven days after operation [17,18], axial distraction was
conducted at 2 different rates, 1 and 2 mm per day, respec-
tively. Lengthening was performed twice daily until 10%
and 20% increases in the initial length of the tibia had
been achieved. The initial length of the tibia varied
between each rabbit with an average length of 9 centime-
ters. Thus the lengthening values were correspondingly
0.9 and 1.8 centimeters. 24 adult New Zealand white rab-
bits were randomly divided into 4 groups. Each group
included 6 animals. The animals were grouped as indi-

cated in Table 1. In a sham group of 2 animals, the exter-
nal fixator system was applied and osteotomy was made,
but no lengthening was performed.

Histochemistry
The fascia with attached muscles of different groups was
fixed in 10% neutral buffered formalin and embedded in
paraffin. The approximate size of the biopsies was 1 × 0.5
centimeters. Longitudinal and cross sections were ran-
domly selected from the fascia systematically. Sections
were stained with Alcian blue 8GX(Sigma Chemical Com-
pany). To distinguish between sulfated and nonsulfated
GAGs, sections were stained to equilibrim in ascending
molarities of magnesium chloride(MgCl2) in a buffed
Alcian blue solution, pH 5.8, according to the critical elec-
trolyte concentration method of Scott and Dorling [19].
At low molarities of magnesium chloride (MgCl2), e.g.,
0.06 M, both carboxylated and sulfated polyanionic
groups of proteoglycans were stained, whereas at higher
molarities (0.3, 0.5, 0.7, 0.9 M) only sulfated groups were
stained. Picrosinus-polarization method was used to dis-
tinguish collagen type I from type III. Leica DM LA auto-
matic microsystem and Leica Qwin V3.2 software (Leica
Microsystem Ltd., Germany) were used to study the per-
centage of collagen type I and type III in the matrix. In the
fascia sections, pixels corresponding to different colors
were evaluated by the software and the color information
was transformed to quantitative values and comparative
percentages.

Statistic analysis
Statistical comparisons were carried out using SPSS (SPSS,
Chicago). First, the data were screened to detect outliers.
Using origin 5.0 software, the data were evaluated by anal-
ysis of variance and followed by Student t test. A P value
of less than 0.05 was considered significant.

Results
Alcian blue stain showed that GAGs of fascia of each
group were composed of chondroitin sulphate and
heparin sulphate, but not of keratan sulphate.

The morphology of normal deep fascia
Microscopy
Under the polirization microscopy, the picrosinus stain-
ing revealed that the fascia consisted mainly of collagen

Table 1: Classification of animals

Increases in length of tibia Lengthening rate

1 mm/day 2 mm/day

10% Group A Group C
20% Group B Group D
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type I (red staining) as collagen type III (yellow) was
rarely detected.

The morphology of deep fascia after leg lengthening
Microscopy
In contrast to comparable percentages of collagen type I in
the matrixes of control and distraction group, the picro-
sinus staining showed that the relative abundance of col-
lagen type III increased dramatically in the deep fascia
matrix of rabbits subjected to 2 mm/day distraction
(group C and D, Fig 1). A much lower but significant
increase in collagen type III level was also observed in the
fascia following continuous 1 mm/day distraction until
10% leg lengthening (group A, Fig 2). The matrix compo-
sition assay revealed slightly decreased percentages of col-
lagen type I in groups C and D, which might result from
relatively elevated collagen type III levels. Collagen type
III was mainly distributed in layers D1 and D2. Given that
3 layers, including 2 dense layers and 1 loose layer, were
defined in deep fascia microscopy, layers D1 and D2 refers
to the microscopic dense layer of deep fascia, as demon-
strated in a previous study [14]. The relative abundances
of collagen type I and III of fascia of each group were
shown in table 2.

Discussion
The distribution and composition of extracellular matrix
in tissues play important roles in the etiology, pathology
and mechanism of diseases. In particular, the abundance
alterations of collagens are closely related to the injury
and repairing of tissues, fibrosis pathology and the physi-
ologic process of tissue regeneration. The total amount of
collagen type I is approximately equal to that of collagen
type III under normal conditions in most organs and tis-

sues. Total collagens increases from 4% in normal liver to
10% in cirrhosis, and the levels of collagen type I reaches
4 times collagen type III as cirrhosis occurs [20]. Similarly,
collagen type I increases dramatically while collagen type
III decreases in the fibrosis of lung [21]. In contrast, colla-
gen type III but not collagen type I level increases during
tissue repair, suggesting a prior role of collagen type III in
the regeneration of related tissues.

In this study, a distraction rate of 2 mm/d led to injuries
of fascia and increasing amount of collagen type III in the
matrix, which represents a repairing process of related tis-
sues. The closest abundance of collagen to that of normal
fascia was detected in the matrix of fascia that had been
distracted at a rate of 1 mm/d until 20% increase in tibia
length was achieved. Combined with our previous find-
ings of increased amount of reticular fibers and ribosome,
a nuclear split, the activation of endotheliocyte and newly
formed young collagenous fibrils in the same scheme

Fascia distracted at 2 mm/d with 10% increase in tibia length under the polarization microscopy (Original magnification 10 × 10)Figure 1
Fascia distracted at 2 mm/d with 10% increase in tibia length 
under the polarization microscopy (Original magnification 10 
× 10). A high abundance and a wide distribution of collagen 
type II (yellow) were detected.

Fascia distracted at 1 mm/d with 10% increase in tibia length under the polarization microscopy (Original magnification 10 × 10)Figure 2
Fascia distracted at 1 mm/d with 10% increase in tibia length 
under the polarization microscopy (Original magnification 10 
× 10). The deep fascia mainly consisted of collagen type I 
(red), and a basal collagen type II (yellow) distribution was 
detected in layers D1 and D2.

Table 2: Relative abundances of collagens in fascia matrix (  ± 
s)

Group Composition percentage

Type I Type III

Normal 97.71 ± 0.69 2.28 ± 0.69
A 97.02 ± 0.40* 3.15 ± 0.14**
B 97.62 ± 0.61* 2.41 ± 0.63*
C 86.88 ± 2.41** 13.14 ± 2.13**
D 93.54 ± 0.60** 6.57 ± 0.75**

*P > 0.05, **P < 0.05.

x

Page 3 of 5
(page number not for citation purposes)



BMC Musculoskeletal Disorders 2008, 9:101 http://www.biomedcentral.com/1471-2474/9/101
[14], these data indicate that the regeneration of multi-tis-
sues involving deep fascia occurs in animals subjected to
distraction-forced leg lengthening. While the distraction
rates represent a certain load exerted on legs, the incre-
ments in tibia length (10% and 20%) may reflect the
duration time of the load. As a result, efficient fascia
regeneration is initiated only in certain combinations of
the leg load parameters including appropriate intensity
and duration time, e.g., either low density distraction that
persist a relatively short time or high distraction rates. This
may explain why 20% lengthening at a rate of 1 mm per
day causes less collagen damage than 10%. Whereas GAGs
are essential components of the extracellular matrix in
normal, embryonic, or tumor tissues, in our study, a
strong staining with Alcian blue in both control and dis-
tracted fascias indicated the presence of chondroitin sul-
phate and heparin sulphate, but not of keratan sulphate.
However, the accurate detection of GAGs in biological
samples has been precluded by the lack of sensitive meth-
ods [22].

Histochemical assays, including Alcian blue stain and
picrosinus-polarizition method, are commonly used in
the studies of the extracellular matrix, and computer-
assisted imagine analysis system is usually imperative for
a quantitative analysis of the imaging data. In this study to
dissect the matrix alterations following leg lengthening,
sections of different fascia regions were prepared, and pix-
els corresponding to different colors are analyzed to quan-
tify the relative abundances of the major matrix
components, collagen types I and III. Available tech-
niques to detect GAGs usually require dissociative extrac-
tion of tissues [23]. For histochemistry, Alcian blue
staining is generally used, in combination with critical
electrolyte conditions at a definite pH [19]. The presence
of sulfated GAGs can be demonstrated in the deep fascia
using Alcian blue added MgCl2. Due to currently unavail-
able quantification methods, the measurement of struc-
tural constituents on sections is usually difficult and the
results are often doubtful [24]. Further study focusing on
more sensitive histochemical methods to quantify GAGs
may facilitate the quantitative comparison of extracelular
matrix during leg lengthening.

Together, this study investigated the extracellular matrix
changes including GAGs and the distribution and abun-
dance of collagens in deep fascia in the context of leg
lengthening for the first time according to our knowledge.
Although further studies are definitely needed to dissect
the synergized cellular and extracellular matrix signaling
network responsible for regeneration and repair of the
deep fascia, our study provides evidence for a potential
clinical application of the Tension-Stress principle to
deformity correction and limb lengthening.
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