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Abstract

Background: Skeletal ratios and bone lengths are widely used in anthropology and forensic
pathology and hip axis length is a useful predictor of fracture. The aim of this study was to show
that skeletal ratios, such as length of femur to height, could be accurately measured from a DXA
(dual energy X-ray absorptiometry) image.

Methods: 90 normal Caucasian females, 18-80 years old, with whole body DXA data were used
as subjects. Two methods, linear pixel count (LPC) and reticule and ruler (RET) were used to
measure skeletal sizes on DXA images and compared with real clinical measures from 20 subjects
and 20 x-rays of the femur and tibia taken in 2003.

Results: Although both methods were highly correlated, the LPC inter- and intra-observer error
was lower at 1.6% compared to that of RET at 2.3%. Both methods correlated positively with real
clinical measures, with LPC having a marginally stronger correlation coefficient (r2 = 0.94; r2= 0.84;
average r2 = 0.89) than RET (r2 = 0.86; r2 = 0.84; average r2 = 0.85) with X-rays and real measures
respectively. Also, the time taken to use LPC was half that of RET at 5 minutes per scan.

Conclusion: Skeletal ratios can be accurately and precisely measured from DXA total body scan
images. The LPC method is easy to use and relatively rapid. This new phenotype will be useful for
osteoporosis research for individuals or large-scale epidemiological or genetic studies.

Background ogy and forensic pathology their use in disease prediction

In modern medicine the use of skeletal ratios has focused
mainly on forensic and anthropological studies. The
measurement of bone size has a common use in deter-
mining age, cause of death, stature estimation and other
bodily characteristics in both humans and animals [1].
On a wider scale such data is critical in ergonomics, the
bone geometry of the 'average person' being important in
the design of human environments and equipment [2].
Although such relationships are important in anthropol-

has been overlooked despite the evidence they may give
about the origins of certain bone-modifying diseases.
These may include rickets, osteoarthritis or osteoporosis

[3].

The bowing of long bones, characteristic of rickets, for
example, results in a reduction in standing height [4]. In
osteoarthritis, the growth of new bone alongside old bone
also alters shape and length [5]. Moreover, absolute bone
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lengths vary according to differing body sizes so measure-
ment of a bone ratio would be a better measure for the
relationship between bone sites for varying body shapes.

For well over a decade, DXA (dual-energy x-ray absorpti-
ometry) of the spine and hip has been considered the
standard test in the diagnosis of osteoporosis [6] where
fragility fractures were not evident. It is a quick and cost-
effective way of determining fracture risk with little radia-
tion exposure. Bone size has been shown to be an inde-
pendent risk factor for fracture at a number of sites [7-9]
and studies, including those by the St Thomas' Twin
Research Unit, have shown that hip axis length measured
by DXA may also predict fracture risk independent of
bone mineral density (BMD) [10-12]. Furthermore hip
axis length has been found to be a heritable risk factor and
therefore a useful phenotype for gene discovery [11,13].
In fact, there is already evidence of an association between
femoral length and polymorphisms in the RUNX2 gene
[14].

A limitation of DXA scans is that they are based on two-
dimensional projection images that measure BMD as the
mass of bone per unit area. For this reason they do not
separate the effects of true bone density (i.e. grams of
bone per unit volume) from those of bone size [15]. Nev-
ertheless, DXA scans clearly do contain unused informa-
tion on bone size (i.e. length and width) that could
potentially be used to improve the prediction of fracture
risk over and above that given by BMD alone.

Bone length and bone proportions may provide useful
additional information since fractures also depend on
bone strength and quality and not simply low bone mass
[16]. Total body DXA scans have been beneficial in deter-
mining fat distribution and muscle mass, for example, in
the monitoring of HIV patients during treatment [17].
Some studies have linked stature and skeletal dispropor-
tion to cardiovascular disease and diabetes [18]. However,
no previous studies have used total body scans to obtain
information on skeletal ratios.

On Hologic DXA systems specific areas of a total body
DXA scan can be analysed using the special analysis tool
that allows the user to create up to seven polygonal
regions of interest (ROIs) on the image. Previous studies
have used this tool to obtain central body fat composition
in the trunk [19]. Other tools used to measure areas on the
paper image printout generated from DXA scans are the
reticule, a magnifying glass ball which can be placed over
the image and used to measure image lengths up to 4 cen-
timetres [20] and a standard 30 cm ruler. Despite the pop-
ular use of the special analysis tool in Gruen zone
measurements in orthopaedics, particularly in post-oper-
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ative prosthetic hip studies [21], it has not yet been used
to make linear measurements of user-defined ROIs.

The aim of this study was to evaluate the use of both the
special analysis tool and the reticule method to determine
skeletal lengths for their possible use in epidemiological
and genetic studies.

Methods

Subjects

Fifty subjects had two DXA whole body measurements
taken four years apart. These data were used to test intra-
observer error and long-term precision using both linear
pixel count (LPC) & reticule and ruler (RET) methods at
the same bone sites. In another 20 subjects the validity of
the LPC and RET methods was tested by comparing the
measurements made on DXA scans with direct anthro-
pometry. In a further group of 20 subjects the LPC and
RET methods were compared with measurements made
on leg X-rays.

Reproducibility

Fifty normal subjects with whole body DXA scans
(scanned in 1999 and 2003), as part of the TwinsUK Reg-
istry at St Thomas Hospital [22-24], were used to test the
reproducibility of the two measurement techniques. This
population were unselected unrelated female Caucasians
between the ages of 18 and 80 years old. Both sets of scans
were performed on the same QDR 4500W system
(Hologic Inc, Bedford, MA). This scanner's fan-beam
geometry could affect width measurements (at right
angles to the long axis of the scanning table) despite ver-
tical measures (parallel to the long axis of the scanning
table) remaining accurate. Scans were measured for stand-
ing height and regional lengths (spine, femur, tibia and
radius) using a 4 cm reticule and 30 cm ruler. The same
scans were then measured at the same skeletal sites using
the special analysis tool on the DXA machine. This is
available in the analysis mode where there is an option for
sub-regional analysis. Here, the technician can place up to
seven polygonal ROIs on the image to isolate various
bone and soft tissue areas. Both measurement techniques
were applied to scans from 2003 by one observer and
repeated a week later to determine intra-observer error.
Long-term precision was tested between 1999 and 2003
scans. This error also accounts for the longitudinal change
occurring naturally in bone over time. The time taken to
use each method was also recorded.

The RET (reticule and ruler) method involved placing the
ruler over the consistently sized paper image to measure
standing height, from crown to heel, and then positioning
the reticule carefully over regional lengths to measure
bone sizes. LPC (linear pixel count) was the number of
vertical pixels giving the length of the bone. The ROI was
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a rectangular box for all sites and was adjusted according
to the size of the bone (Figure 1).

Validity

Twenty unrelated Caucasian subjects (18 female; 2 male)
visiting the unit during April 2005 were measured using a
stadiometer and measuring tape. Measures in centimetres

http://www.biomedcentral.com/1471-2474/8/113

were taken of standing height, sitting height, femur, tibia
and radius. The sitting height was taken as a surrogate for
the length of the spinal column as it was easier to perform
during a twin visit. Bony landmarks in the limbs whilst
the subject was in a sitting position were used to measure
the femur (greater trochanter to lateral condyle), tibia (lat-

A Total body DXA image from Hologic QDR-4500W indicating cut-off points
(small black horizortal lines) at each measuremert site - height was measured
from the crown to the heel; B. LPC measure of femw from which number of
horizontal lines are automatically calculated as wvertical height of ROl box C.
Reticue with its millimetre scale placed over paper image of femuw, for RET

measurement.

Figure |

DXA Imaging: Comparing LPC & RET. A) Total body DXA image from Hologic QDR-4500WV indicating cut-off points
(small black horizontal lines) at each measurement site — height was measured from the crown to the heel; B) LPC measure of
femur from which number of horizontal lines are automatically calculated as vertical heright of ROI; C) Reticule with its milli-
metre scale placed over paper image of femur, for RET measurement.
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eral condyle to lateral malleolus) and radius (olecranon
process of ulna to ulna styloid process).

Leg x-rays obtained in the vertically upright position in
2003 were reviewed for a separate set of twenty subjects.
The magnification error was estimated to obtain accurate
results. Measurements were taken of the femur and tibia
using a 50 cm ruler and an x-ray light box.

To calculate the magnification error in the x-rays, the
focus film distance (FFD), object film distance (OFD) and
the size of the visual image (VI) were measured. X-ray
films were taken of an aluminium step wedge phantom of
thickness 40 mm and actual height of 380 mm using a
constant FFD of 3000 mm (3 m).

Statistical methods
The regions explored on the total body scans were stand-
ing height, spine, femur, tibia and radius.

Coefficient of variation (CV) was calculated using Excel.
The CV was used since it shows differences between meth-
ods independent of the units of measurement. Variance
comparison tests, calculated using STATA, gave a p-value
to indicate the significance of the differences between
methods when bone lengths were re-scaled to a mean of
1. The analysis tested the null hypothesis that both meth-
ods had the same CV.

Since it was necessary to perform multiple testing and the
variables being analysed were highly correlated, the
number of effectively independent tests performed for
repeated analyses of correlated variables was calculated by
utilising a simple linear regression adjusted 2 statistic
[25].

Results

Collectively, the subjects were scanned between 1999 and
2005. Base-line physical descriptors are shown in Table 1.
The time taken to use LPC during each test was half that
of RET at 5 minutes per scan.

Nominal p-values were evaluated for 19 statistical tests:
variance ratio tests for standing height, spine, femur, tibia
and radius (for both intra-observer error and long-term
precision) and standing height, sitting height, femur, tibia

Table I: Baseline Physical Descriptors

Demographics (n = 50) Baseline Mean £ SD

Age (years) 57.8 £+ 842
Height (cm) 1.61 £ 0.06
Weight (kg) 69.5 + 12.01
BMI (kg m-2) 26.6 = 4.50

http://www.biomedcentral.com/1471-2474/8/113

and radius (for real measures) and left and right femur
and tibia (for X-rays). However, rather than applying the
Bonferroni correction which would be over-conservative
since the tests are related, the effective number of tests was
calculated using simple linear regression [25]. Multiple
testing showed that although 19 statistical tests were per-
formed in total this was equivalent to 6.3 independent
tests. The Bonferroni correction was then applied to calcu-
late the p-value: o = 0.05/6.3 = 0.008.

In deducing magnification error for the leg X-rays OFD
was measured to the centre of the phantom. In contact,
with an OFD of 20 mm, the VI was 380 mm. Simulating
an average examination, at an OFD of 100 mm, the VI was
395 mm giving a magnification error of 3.9%. In the
'worst-case scenario', with an OFD of 200 mm, the VI was
410 mm giving a magnification error of 7.9%.

Reproducibility

Fifty females were used to test observer error. When the
coefficient of variation (CV) was calculated for long-term
precision and intra-observer error using both methods
(Figure 2), mean CV% for LPC (1.6%) was lower than RET
(2.3%). Although units of measurement were different in
each method, comparison of these true measures using

HEIGHT SPINE FEMUR TIBIA
Measurement Site
oLPC LONG TERM PRECISION BRET LONG TERM PRECISION

OLPC INTRA-OBSERVER ERROR BRET INTRA-OBSERVER ERROR

Figure 2

A bar graph of the coefficient of variation of bone lengths (%)
against measurement sites for LPC and RET methods. Long-
term precision was measured between scans performed in
1999 and 2003 and intra-observer error was personal repro-
ducibility measured after one week using scans performed in
2003.
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the root mean square standard deviation (RMS SD)
shown in Figure 3 indicates that deviation for the LPC and
RET were similar for the same sites, except for the tibia
where the LPC was higher than all other measures. For
RET, 1 mm was equivalent to approximately 2.06 cm and
for LPC, 1 line was equivalent to approximately 1.3 cm.

The null hypothesis that the LPC and RET variances were
equal was tested using the variance ratio test. Applying the
Bonferroni correction (p-value = 0.008), the five regions
tested (standing height, spine, femur, tibia and radius)
showed no significant difference between the CVs for the
two methods.

Combined CV% was the overall average CV% between
long-term precision and intra-observer error at each site.
At individual measurement sites (Figure 4) the lowest
average CV% was the LPC measurement of standing
height (0.4%). The highest average CV% was 3.6% for the
RET measurement at the radius.

Validation

Twenty real measures and twenty x-rays were compared to
LPC and RET. Coefficient of variation between methods
showed, as expected, real measures to have the lowest
CV% (4.6%) and x-ray measures to have the highest CV%
(6.4%). LPC and RET had an average CV% of 5.1% and
5.2% respectively (Figure 5).
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Figure 3

A bar graph of RMS SD against region of measurement for LPC
(no. of lines) and RET (mm) methods.
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Measurement Site
Figure 4

A bar graph showing average CV% (long-term precision and
intra-observer error) between five bone measurement sites
using LPC and RET. The largest average CV% belongs to the
radius.

The null hypothesis that the population CV of the two
methods were equal was tested using a variance ratio test.
The five regions tested (standing height, sitting height,
femur, tibia and radius) agreed with the null hypothesis

CV %
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Figure 5

A bar graph showing combined population CV% between five
bone measurement sites using four different measurement
techniques — Real, RET, LPC and X-ray (only performed on
femur and tibia). Real measures have the lowest CV% at four
out of five sites.
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and showed there was no significant difference in CVs
using the Bonferroni correction (p-value = 0.008).

Regression analysis resulted in high positive correlation
coefficients for both methods compared to real and x-ray
measures. LPC performed slightly better (12 = 0.94; 12 =
0.84; average r2= 0.89) than RET (12= 0.86; r2= 0.84; aver-
age r2 = 0.85) with x-rays and real measures respectively.
These differences were not statistically significant.

Discussion

Both methods tested correlated with each other and were
found to be good and reproducible methods of measuring
skeletal sizes. Nevertheless, LPC generally performed bet-
ter with long-term precision and less intra-observer error
than RET and with stronger correlation coefficients when
compared to real measures. Moreover, the LPC method
saved time in both the extraction and analysis of DXA
images at 5 minutes per scan which was half the time of
the RET measure.

Although RET is a method easy to use anywhere because
it is so simple - the paper image, one ruler and one reti-
cule - it is a less precise method of measurement. In addi-
tion, the paper images are not as clear as those on screen
and cannot be manipulated to darken or lighten the
image contrast whilst retaining resolution, as in the LPC
method. Nevertheless, observations of RMS SD (Figure 3),
display the same pattern of deviation (excluding standing
height) for both methods. Consequently, RET is a good
substitute for LPC.

There are several potential limitations in this study. The
reproducibility results only apply to Caucasian women.
Gender, ethnic and socio-economic differences that may
not be visible here could account for varying results in
ratio or length [26-29].

Long-term precision and intra-observer error exists
between operators over time [30]. Variation in patient
positioning may lead to random differences between
images and may be due to many reasons including opera-
tor training or arthritic pain. BMI can also have an effect
on the average standing height of the subject above the
scanning table and this can result in a variation in image
dimension across the table in fan beam systems.

Despite variations in the distance from the x-ray source to
the film having only a minor effect on magnification,
small changes in leg thickness may increase magnification
error. In a 'worst-case scenario', where the OFD is
increased to a distance equivalent to that of a subject with
an extremely high BMI, the results show the error of mag-
nification to be approximately 8%. In an average x-ray,
where the OFD with subjects having an approximately

http://www.biomedcentral.com/1471-2474/8/113

normal BMI is less, the results show the error of magnifi-
cation to be 4%. Since the BMI of these subjects was just
over average at 26.6 kg/m?, it was assumed that the error
of magnification at 4% would be inconsequential to x-ray
accuracy for the purposes of this study.

Furthermore, there was greater variation in the spine than
in any other skeletal site. This may be attributable to bone
and joint diseases and caution must be taken in those
aged over 65 years as the spine may be affected by osteoar-
thritis or fractures. Moreover, any scoliosis, kyphosis or
lordosis would cause standing height differences where
there is bending or crushing in the vertebral column.
Obvious differences were accounted for in this subject

group.

One of the major problems encountered in measurement
of total body DXA images is the positioning of the fore-
arm. The forearm should be positioned in parallel to the
long axis of the scanner table (Figure 1) yet, in some cases,
was not. This is normally due to the larger patient's body
size resulting in the forearm being positioned at an angle.
The measurements were corrected using Pythagorus' The-
orem. Using the special analysis tool a triangle was con-
structed from the upper tip of the olecranon process to the
lower tip of the ulna styloid process. Image distortion that
occurs with Hologic fan-beam bone densitometers will
affect horizontal but not vertical measurements. Bone
width was not measured in the present study but will be
evaluated in future research by dividing LPC measured
bone area by bone length.

Conclusion

In conclusion, we have shown that it is possible to meas-
ure bone length reliably from DXA studies. The LPC is a
faster and more consistent method to use when measur-
ing skeletal size from total body DXA scans. This should
encourage its wider use in clinical research. Future studies
may be able to use this novel LPC method to create large
databases of bone ratios, geometry and anthropometry
from existing scans. These databases should lead to a wide
number of studies particularly in the field of genetics and
epidemiology of osteoporosis.
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