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Abstract
Background: Classical homocystinuria is an autosomal recessive disorder caused by cystathionine β-synthase (CBS)
deficiency and characterized by distinctive alterations of bone growth and skeletal development. Skeletal changes
include a reduction in bone density, making it a potentially attractive model for the study of idiopathic osteoporosis.

Methods: To investigate this aspect of hyperhomocysteinemia, we supplemented developing chicks (n = 8) with 0.6%
dl-homocysteine (hCySH) for the first 8 weeks of life in comparison to controls (n = 10), and studied biochemical,
biomechanical and morphologic effects of this nutritional intervention.

Results: hCySH-fed animals grew faster and had longer tibiae at the end of the study. Plasma levels of hCySH,
methionine, cystathionine, and inorganic sulfate were higher, but calcium, phosphate, and other indices of osteoblast
metabolism were not different. Radiographs of the lower limbs showed generalized osteopenia and accelerated
epiphyseal ossification with distinct metaphyseal and suprametaphyseal lucencies similar to those found in human
homocystinurics. Although biomechanical testing of the tibiae, including maximal load to failure and bone stiffness,
indicated stronger bone, strength was proportional to the increased length and cortical thickness in the hCySH-
supplemented group. Bone ash weights and IR-spectroscopy of cortical bone showed no difference in mineral content,
but there were higher Ca2+/PO4

3- and lower Ca2+/CO3
2- molar ratios than in controls. Mineral crystallization was

unchanged.

Conclusion: In this chick model, hyperhomocysteinemia causes greater radial and longitudinal bone growth, despite
normal indices of bone formation. Although there is also evidence for an abnormal matrix and altered bone
composition, our finding of normal biomechanical bone strength, once corrected for altered morphometry, suggests
that any increase in the risk of long bone fracture in human hyperhomocysteinemic disease is small. We also conclude
that the hCySH-supplemented chick is a promising model for study of the connective tissue abnormalities associated
with homocystinuria and an important alternative model to the CBS knock-out mouse.
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Background
Classical homocystinuria is an inborn error of sulfur ami-
no acid metabolism caused by cystathionine β-synthase
(CBS) deficiency [1]. The excess homocysteine (hCySH)
that accumulates because of this defect is exported into
the circulation and spills into the urine. In humans, CBS
deficiency manifests as a distinctive spondylo-epimeta-
physeal dysplasia, characterized by accelerated skeletal
growth, osteopenia, elongated appendicular skeleton and
flattening of the vertebral bodies [2,3]. The overall risk of
osteoporosis has been reported to be 50% by age 16 [4],
and bone mineral density measured by dual X-ray absorp-
tiometry is reduced in affected children [5]. However,
there are no good estimates of the frequency or severity of
fractures, and interactions with late-onset physiologic
bone loss have not been reported. Some of the osseous
manifestations are attributable to a disturbance in colla-
gen cross-links, but there is still little known about the
molecular mechanisms generating the dysmorphic skele-
tal phenotype [6], and the CBS-deficient knock-out
mouse offers few clues. [7]. The role of intermolecular col-
lagen cross-links in bone has been adduced in part from
studies of lathyrism caused by the compound, β-amino-
propionitrile (BAPN), found in the sweet pea (Lathyrus od-
oratus). BAPN irreversibly inhibits lysyl oxidase, and
blocks initial collagen cross-link formation [8,9].

The fast-growing chick has been introduced as an animal
model for detailed study of soft connective tissue abnor-
malities resulting from controlled perturbations of the
transsulfuration pathway [10–12]. In animals receiving
aminoacetonitrile, a less toxic analog of BAPN, electron
microscopy of long bones shows significant enlargement
of Type I collagen fibrils while a similar but less severe ab-
normality is observed in vitamin B6-deficiency and in hy-
perhomocysteinemia induced by hCySH added to the diet
[13]. Changes in collagen solubility and collagen cross-
linking are hallmarks of connective tissue changes associ-
ated with these dietary manipulations [14–16].

The mechanical integrity of bone is dependent on both
collagenous matrix (which allows for plastic deformation
of the tissue) and mineral (which allows for the elastic de-
formation) [17]. Lathyrism induced by BAPN affects both
components of bone [18–21]. In our hands, vitamin B6
deficiency has been a useful alternative model to study the
effect(s) of altered intermolecular collagen cross-links on
whole bone, because the mineral component is unaltered
[15]. In growing chicks fed a B6-deficient diet, there were
no changes in bone length, bone diameter, or moment of
inertia, but mechanical performance was altered. Moreo-
ver, histomorphometric and radiological studies showed
low-turnover osteopenia [14].

The objectives of the present study were to investigate the
radiologic, biochemical, and biomechanical properties of
bone in the growing chick made hyperhomocysteinemic
by excess dietary hCySH and to evaluate those changes in
relation to skeletal abnormalities characterizing human
CBS-deficiency homocystinuria.

Methods
Animals and diets
Male day-old broiler chicks purchased from the Miami In-
ternational Hatchery (Miami FL) were randomly assigned
to control (n = 10) or experimental (n = 8) groups. They
were fed normal diet and diet supplemented with 0.6 %
w/w of dl-homocysteine, respectively, over eight weeks.
Both diets were supplied by ICN Pharmaceuticals (Aurora,
OH) and were identical in terms of protein and essential
amino acid content. Both were also identically supple-
mented with vitamins and minerals to fulfill all nutrition-
al requirements, including specific needs for vitamin B6, a
coenzyme in the transsulfuration pathway, and menadi-
one (vitamin K), which is essential for the synthesis of os-
teocalcin, involved in bone formation (Table 1). The
vitamin D intake was kept constant and the Ca:P molar ra-
tio optimal for chick bone growth was identical in each di-
et. The dl-hCySH supplement (98% pure) was obtained
from Sigma (St. Louis MO).

The animals were kept in a temperature-controlled envi-
ronment and fed ad libitum and a 12 hr constant light cycle
was maintained. Chicks were weighed at the beginning of

Table 1: Basal diet1

Constituents Composition (w/w %)

Soyamin 23.40
Corn 33.00
Cerelose (glucose monohydrate) 28.00
Corn Oil 4.90
Mineral salts2 5.35
Vitamins3 2.00
Trace minerals4 2.00
I-methionine 0.30
dl-homocysteine 0.60
Glycine 0.30
Choline chloride 0.15

1 Metabolizable energy calculated as 13.8 MJ (3000 kcal) per kg diet 2 

Salt mixture (g/kg diet): CaHPO4, 20.0; CaCO3, 15.0; KH2PO4, 11.0; 
NaCl, 4; MgSO4, 3.5. 3 Vitamin premix (mg/kg diet): retinyl palmitate, 
5.49; cholecalciferol, 0.016; all-rac-α-tocopheryl acetate, 55.0; mena-
dione sodium bisulfite, 1.52; thiamine • HCl, 15; nicotinic acid, 50; 
pyridoxine • HCl, 3; calcium-d-pantothenate, 20; cyanocobalamin, 
0.02; folic acid, 6.0; biotin, 0.6. 4 Trace minerals (mg/kg diet): 
C12H22FeO4 • 2H2O, 700; MnSO4 • 7H2O, 170; ZnO, 65; CuSO4 • 
5H2O, 20; Na2MoO4 • 2H2O, 5; CoCl2 • 6H2O, 1.5; Na2SeO3 • 
5H2O, 0.5; KIO3, 0.7.
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the experiment, and then on a weekly basis, and the
growth curve was used to monitor the health status
throughout the experiment. Experimental procedures
were reviewed and approved by the research animal care
committee of VA Medical Center, Miami FL, in accordance
with current National Institutes of Health policies.

Blood biochemistry
At the end of the eight week experiment, samples of fast-
ing blood were collected by jugular venipuncture using
heparin or EDTA. The blood was centrifuged and plasma
collected for analysis. Erythrocytes were resuspended in
an equal volume of isotonic saline and centrifuged. The
heparin supernatant was discarded and the erythrocytes
analyzed for pyridoxal-5'-phosphate (PLP) according to
the methods of Mahuren and Coburn [22]. HPLC with
pulsed integrated amperometry was used to measure total
hCySH, methionine, cystathionine, and glutathione, as
previously described [23].

Plasma free inorganic sulfate was measured by microassay
using controlled-flow anion chromatography [24,25].
Plasma calcium, phosphate and bone alkaline phos-
phatase (ALP: orthophosphoric monoester phosphohy-
drolase, alkaline EC 3.1.3.1) were assayed on an
automated COBAS-BIO autoanalyser (Hoffmann LaRo-
che, Switzerland). Plasma ALP bone isoenzyme was deter-
mined by using bromotetramisole as inhibitor [26].
Plasma osteocalcin, an index of bone formation, was
measured in serially diluted samples of plasma by radio-
immunoassay [27,28] Circulating IGF-1 level was meas-
ured by radioimmunoassay, as described by Zhao et al.
[29].

Bone measurements, radiographic evaluation, and me-
chanical testing
The chick tibiotarsus bone (the tibia) was selected for fur-
ther analysis because it is known to be the most rapidly
growing and, by inference, the bone most susceptible to
mechanical stress [30]. Immediately after sacrifice by cer-
vical dislocation, left tibias were dissected, cleaned of soft
tissue, wrapped in saline-soaked gauze, and stored at -
70°C until testing. Radiographic and biomechanical stud-
ies were followed by chemical analyses of mineral and
collagen composition.

Whole bones were thawed after 10–20 days of storage (a
procedure known not to affect bone biomechanical prop-
erties) and maintained in a wet condition while they were
weighed and their length measured. They were then im-
mediately tested with 3-point bending, anterior cortex on
the tensile side with the 3-point contact centered on the
mid-shaft of the bone [31–34]. These tests were per-
formed in ambient air on an MTS closed-loop servohy-
draulic apparatus at a displacement rate of 6.25 mm/sec.

Testing to failure was performed in the medio-lateral
plane, using an outer support span of 33 mm and an inner
span of 11 mm. Load versus displacement of the loading
ram was recorded on computer. Specimens were selected
randomly for testing and were kept wet with distilled wa-
ter throughout testing. The whole bone properties of frac-
ture load were determined directly from the load vs.
displacement curve for each specimen. Prior to failure
testing, each specimen was loaded elastically to 5.62 N at
a constant rate of 2.81 N/sec until fracture. Tibias were ra-
diographed (60 kV, 4.5 min) before and after fracture in
the anterior-posterior (AP) and medial-lateral (ML)
planes.

Typical load/deflection curves with both the elastic (line-
ar) and plastic components separated by the yielding
point as described by Burstein et al. [17] were obtained,
enabling graphic determination of the following mechan-
ical properties: maximal load, bone stiffness, and energy
at failure. To consider the influence of diaphyseal geomet-
rical variation on whole bone mechanical properties, in-
ner endosteal and outer periosteal AP and ML diameters
on X and Y axes, respectively, of the tibial fracture section
were measured from the radiograph by digital caliper.
Two geometric characteristics – moment of inertia of the
cross-section in relation to the horizontal axis (Ix) and
cross-sectional area (A) – were calculated as shown in Fig-
ure 1. Moment of inertia is an indicator of the architectur-
al efficiency of the tibial cross-sectional design [33].

Bone evaluation: mineral and matrix composition
Following mechanical testing, bone samples from the
fracture site were lyophilized, ground in a Spex freezer
mill (Metuchen, NJ) at liquid nitrogen temperature, and
three sets of aliquots set aside for mineral analyses. For
analysis of mineral content, triplicate aliquots of 2 to 4 mg

Figure 1
Representation of the fracture section at tibial mid-
shaft Inner endosteal and outer periosteal AP (antero-pos-
terior) and ML (medio-lateral) diameters on Y and X axes, 
respectively. Equations are given for diaphyseal geometries: 
the moment of inertia (Ix), and the cross-sectional area (A).
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each were transferred to weighed dry crucibles. Dry weight
was determined following heating to constant weight at
110°C. Ash weight was determined following heating to
constant weight at 600°C. Mineral content was calculated
as the ratio of ash weight to dry weight. The ash was dis-
solved in 1 N HCl, as described for our vitamin B6 defi-
ciency model [15]. To calculate the Ca2+/PO4

3- ratio, the
calcium content was measured by atomic absorption spec-
trophotometry and the phosphate concentration deter-
mined spectrophotometrically.

Aliquots of ground bone obtained near the fracture site
were also subjected to wide-angle X-ray diffraction using
CuK-α radiation. The line width at half-maximum of the
c-axis 002 reflection was measured as an index of crystal-
line size and perfection [35]. Each assay was repeated in
triplicate. Two milligram aliquots of ground bone were
mixed with 200 mg KBr, and pellets prepared for infrared
spectroscopy. The pellets were analysed at 4 cm-1 resolu-
tion on a Mattson Cygnus Fourier Transform Infrared (FT-
IR) spectrometer. The spectra were analyzed to provide in-
formation on the relative mineral to matrix ratio; that is,
the ratio of integrated areas of the phosphate v1, v3 mode
(900–1200 cm-1) to the amide I band (1580–1650 cm-1)
and the carbonate (840–890 cm-1) to phosphate (900–
1200 cm-1) ratio [15].

An additional bone sample was dissected from the dia-
physeal section, ground as described above, and aliquots
used for analysis of hydroxyproline to estimate collagen
content [36]. Hydroxyproline analysis was performed on
HCl hydrolysates (6 N, 18 h, 110°C) of EDTA-demineral-
ized ground bone.

Data presentation and statistical analysis
Data are reported as mean ± standard deviation (SD) for
8 experimental and 10 control animals. Differences be-
tween groups for biochemical data and biological, chem-
ical and biomechanical parameters of bone were assessed
by unpaired Student t-test, or non-parametric Mann-
Whitney test when data displayed a significantly non-
Gaussian distribution. The Bartlett test was used to ex-
clude heteroscedasticity. The two-tailed significance level
was set at 0.05. Analysis of covariance was used for bone
biomechanical data to adjust for statistical differences in
biological variables.

Results
Charted body weights of experimental and control chicks
from day 1 to 8 week-old are shown in Figure 2. Mean
weights of hCySH-fed chicks increased at a faster rate than
in the controls, and were significantly (P < 0.01) greater at
the end of the experiment. Tibial weights in animals fed a
hCySH-rich diet were proportionally (12%) greater com-
pared to controls, but the difference did not reach a signif-

icance (Figure 2 – Inset A); however, the positive
difference for length (Figure 2 – Inset B) was significant (P
< 0.01).

Table 2 gives biochemical data regarding sulfur amino
acid and mineral metabolism for each group. Mean
plasma total hCySH concentration in the experimental
group was 8 times that of controls (P < 0.0001) and two
other sulfur amino acids of interest, cystathionine and
methionine, were also increased significantly (P < 0.0001
and P < 0.001, respectively). Cystathionine concentra-
tions were elevated and there was a 30% increase in plas-
ma inorganic sulfate (SO4

2-) (P < 0.001) in the
experimental group under otherwise identical dietary sul-
fur conditions. However, there was no evidence for distur-
bance of glutathione metabolism, which is regulated
independently of the transsulfuration pathway. There was
also no difference in erythrocyte PLP levels. Methionine
was increased by nearly 20%, indicating functional
remethylation characteristic of CBS-deficient
homocystinuria.

Plasma calcium and phosphate were normal in both
groups (Table 2), and markers of bone formation – osteo-
calcin and bone specific ALP – did not vary significantly.
Circulating IGF-1 was also not different, and values in
both groups are comparable to chick data in the literature
[35].

Figure 2
Growth curves (mean ± SD of body weights) for con-
trol (CON) and hyperhomocysteinemic (hCySH) 
groups. hCySH-fed animals were significantly heavier at the 
end of the 8-week experiment (**P < 0.01). Inset: (A) tibial 
wet weight in grams; (B) length of tibia in millimeters (**P < 
0.01).
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Radiologic AP views of distal tibia from representative
control (N) and hCySH-fed animals are seen in Figures 3A
and 3B. It can be seen that there is better visualization of
the trabeculae in control bone, while the hCySH-treated
bone showed less radio-opacity. A well-defined radiolu-
cency overlying the proximal metaphysis is seen in the
hCySH-treated bone. Figures 3C and 3D are representative
lateral views of whole tibia after loading to failure. At the
proximal epiphysis of tibia are the Tuberositas tibia and
Cristae tibiae protuberances, to which the frequently ossi-
fied Ligamenta recta patellae are attached. At the distal epi-
physes, the two joint ridges corresponding to the Ossa tarsi
can be distinguished. The ovoid lucency visible in the
metaphysis (black arrow) corresponds to an unmineral-
ized, avascular collagen "plug", typical of
chondrodysplasia seen on histological analysis (unpub-
lished observation). In hyperhomocysteinemic animals
(Figures 3B and 3D), the presence of multiple transverse
lines of increased density at both proximal and distal ends
(horizontal arrows) suggests more advanced ossification
of the epiphyses. Increased cortical thickness is evident in
both AP and LM views of hCySH-treated bone, particular-
ly in the upper diaphyses. At the fracture site (Figure 3D),
the jagged rupture pattern suggests that the bone from the
hyperhomocysteinemic animal is more brittle than the
control (Figure 3C).

As expected, AP outer (periosteal) diameters (Y axis) of the
tibiae at mid-shaft were significantly greater than LM out-
er diameters (X axis) in both control (P < 0.001) and ex-
perimental (P < 0.01) groups (Figure 4A). The mean
difference between the two axes was smaller in hCysH-fed
animals. The outer AP diameter of their diaphyseal tibiae
was significantly (P < 0.01) greater than in controls. Med-
ullary cavity and cortical cross-sectional areas of hCySH-

treated bone were approximately 10% greater than those
in controls (Figures 4B and 4C). Consequently, moments
of inertia of hCySH-treated tibiae were greater, suggesting
greater architectural efficiency of cross-sectional design
(Figure 4D). However, none of these differences was sta-
tistically significant. The hCySH-treated bone looked big-
ger to the naked eye, a subjective observation confirmed
by morphometric measurement (Figure 5). Differences in
tibial diaphyseal profiles influenced overall shape of cor-
tical bone in hyperhomocysteinemic animals, who dis-
played an abnormally eccentric and more elliptical
medullary cavity. The thicker cortex on one side of
hCySH-treated bone as compared to control was also no-
ticeable on both AP and ML radiographs (Figures 3B and
3D).

Statistical analysis of biomechanical data also indicates
that the hCySH-treated bone is stronger. Mean maximal
load, stiffness and energy-at-failure were all greater than
the values in controls (Figure 6). The increase for energy-
at-failure was significant (P < 0.01). Analysis of covari-
ance, correcting for morphometric differences, showed no
significant differences in structural biomechanical proper-
ties when bone length and cortical thickness were includ-
ed as covariates.

Table 3 describes the mineral and chemical properties of
the hCySH-treated tibiae in comparison to controls. Ash-
ing of diaphyseal tibial bone segments revealed that the
proportion of mineral was not significantly different be-
tween groups. Infrared spectroscopy of hCySH-treated
cortical bone showed no difference in terms of the miner-
al-to-matrix ratio when compared to controls. The
collagen content of this bone, assessed by hydroxyproline
content, was similar to controls. However, qualitative

Table 2: Biochemical assessment of sulfur amino acid status, mineral metabolism, and bone formation.

Analyte Group

Control Experimental

Homocysteine (µmol/L) 43.8 ± 5.0 358 ± 58 ****
Methionine (µmol/L) 141 ± 9 175 ± 13 ***
Cystathionine (µmol/L) 39.8 ± 9.1 226 ± 20 ****
Total inorganic sulfate (mmol/L) 2.18 ± 0.44 3.09 ± 0.09 ***
Glutathione (µmol/L) 1141 ± 55 1066 ± 75
Pyridoxal-5'-phosphate (nmol/L) 162 ± 29 136 ± 46
Bone-specific alkaline phosphatase (IU/L) 2069 ± 317 2135 ± 370
Osteocalcin (µg/L) 1.58 ± 0.38 1.83 ± 0.63
IGF-1 (µg/L) 16.9 ± 4.3 14.2 ± 3.4
Total calcium (mmol/L) 10.8 ± 0.2 10.7 ± 0.2
Phosphate (mmol/L) 7.3 ± 0.8 7.1 ± 0.9

****P < 0.0001 *** P < 0.001
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changes in mineral composition were observed. The mo-
lar Ca2+/PO4 

3- ratio was significantly higher (P < 0.001)
in the experimental group and the CO3

3-/PO4
3- ratio, as

revealed by FT-IR, was reduced (P < 0.01). X-ray diffrac-
tion analysis revealed no difference in the size and

symmetry of mineral crystals, as measured by line broad-
ening (β002).

Discussion
In the present study, the hCySH-rich diet administered to
fast-growing chicks induces a bone disease bearing a strik-
ing similarity to early CBS-deficiency homocystinuria, in-
cluding accelerated skeletal growth, epiphyseal growth
plate lesions, and cortical bone chemical alterations [1–
4,6]. The sulfur metabolite in the transsulfuration path-

Figure 3
Representative radiographs of the tibia at 8 weeks. 
Radiographs (A) and (B) show representative distal tibiae in 
anteroposterior (ap) position with growth plates still visible 
(horizontal bar = 7.5 mm). Bone from hCySH-treated ani-
mals (B) shows characteristic linear densities (white arrow) 
and spherical lucencies (black arrow) in cancellous bone in 
comparison to controls (A). Below are representative lateral 
(lat) radiologic views (vertical bar = 1 cm) of whole tibiae 
after loading to fracture. Here, a distinctive lucency (black 
arrow) is readily apparent in bone treated with hCySH (D) in 
comparison to control (C), but the trabecular elements of 
the secondary spongiosa seen in the anteroposterior radio-
graphs are not as dramatic in these views. The metaphyseal 
lucency corresponds to an unmineralized avascular collagen 
'plug' typical of chondrodysplasia. Note also the difference in 
rupture pattern.

Figure 4
Geometric characteristics and structural properties 
of the tibia at mid-shaft. In panel (A) are shown the anter-
oposterior (ap) and lateral outer diaphyseal diameters (mean 
" SD). AP diameters are significantly greater than lateral 
diameters in both groups (P < 0.01). The difference between 
groups is also significant for AP diameters. Panels (B), (C), 
and (D) show medullary cavity area (mm2), cross-sectional 
area (mm2), and moment of inertia (mm4), respectively. 
Dimensions for bone from hCySH-treated chicks was con-
sistently greater.
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way first associated with both accelerated skeletal growth
and abnormal extracellular matrix was homocysteic acid
[37,38], an oxidation product of homocysteine found in
the urine of CBS-deficient patients [39]. In 1976, Clopath
et al [38] demonstrated that homocysteic acid promoted
growth of hypophysectomized rats, a finding associated
with increased thickness of epiphyseal cartilage of the tib-
ia and greater tail growth. We did not evaluate homo-
cysteic acid directly, but we note that hCySH may be
stimulatory in vitro when homocysteic acid is not [40], in-
dicating the need for further studies to identify the key
metabolite(s). Pyeritz and others [6] postulate that a fi-
brillin defect may be central to the skeletal overgrowth
phenotype, since the inherited fibrillin deficiency of Mar-
fan syndrome induces connective tissue changes strikingly
similar to that of CBS-deficiency homocystinuria. They
have also been able to show that cysteine deficiency,
which may occur in CBS-deficiency homocystinuria, can
induce the fibrillin defect in culture [41], which has been
reproduced in the developing chick [42]. Dietary cysteine
deficiency in our model is unlikely because the chicks
were fed a diet enriched in methionine (Table 1) and
showed high circulating concentrations of the cysteine
precursor, cystathionine, and the cysteine product, sulfate.
However, the possibility that tissue insufficiency of
cysteine (through competition with homocysteine [43],
for example) may have specific hard tissue effects in vivo
[44] could be tested in our model.

The major skeletal changes noted in hyperhomocysteine-
mic animals in this study were the increased width and
length of the tibia, features not present in the vitamin B6
deficiency model [15]. However, cystathionine is the pre-
dominant sulfur amino acid elevated in that model [45],

Figure 5
Mean mid-shaft tibial cross-sectional contours for 
control and homocysteine (hCySH)-treated animals. 
hCySH-treated cortical bone is asymmetric with an eccentric 
medullary cavity. Its greater thickness on one side of the X 
axis was also noticeable on radiographs (Figure. 4B). A: ante-
rior cortex of tensile side; P: posterior cortex of compres-
sive side; MC: medullary cavity; ____ periosteal cortical bone 
- - - - - endosteal cortical bone. Bar = 1 mm.

Figure 6
Biomechanical properties of the tibia. Top Panel – Max-
imum load (N); Middle Panel – Stiffness (N/mm); and Lower 
Panel – Energy at failure (N.mm). Unadjusted data (mean ± 
SD) for controls (CON) and hyperhomocysteinemic animals 
(hCySH) are shown by open and shaded bars, respectively. 
Bars with hatching show values statistically adjusted for 
length and cortical thickness by analysis of covariance.
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not hCySH. In the present study, all three amino acids of
the transsulfuration pathway – hCySH, cystathionine and
methionine – were elevated (Table 2). Also unlike vitamin
B6 deficiency, qualitative alterations in the cortical bone
mineral composition were observed. The bone carbonate
to phosphate ratio was slightly but significantly (P < 0.01)
decreased (Table 3), a finding associated with high
turnover and remodeling rates [46]. The increased cross-
sectional area of the medullary cavity (Figure 4B) may also
reflect increased endosteal resorption.

The markers of bone formation we studied – osteocalcin
and bone-specific ALP – were unchanged (Table 2), but
these measures were recorded only at the end of the exper-
iment when the bony abnormality had been established.
Levels of IGF-1, a paracrine and autocrine stimulus of
bone growth [47–51], were also normal, consistent with
recent observations in human CBS deficiency [52]. The in-
creased bone length we observed could be related to
changes in the growth cartilage at the cellular level.
Whether the proliferative zone of the ossification front or
the number or size of hypertrophic chondrocytes is in-
creased warrants further investigation.

The non-collagenous constituents of the epiphyseal ma-
trix are likely important in the pathophysiology of accel-
erated bone growth. McCully demonstrated that addition
of hCySH to culture medium of normal skin cells pro-
duced histological changes in proteoglycan structure sim-
ilar to those found in CBS-deficient cell cultures, along
with an increase in radiolabelled sulfate incorporation
[53]. Although it was postulated that homocysteic acid
may act as a sulfate source for phosphoadenosine phos-
phosulfate (PAPS), the substrate necessary for sulfoester
and glycosaminoglycans synthesis, no direct confirmation
of this concept has been reported [54]. The increased Ca/
P ratio found on bone mineral analysis may parallel an el-
evation of extracellular calcium associated with a greater
production of non-aggregated proteoglycans similar to
those seen in vitro by others [53,55], but further study is

needed. Because of the strongly polyanionic nature of
their sulfate and carboxylate groups, proteoglycans have a
considerable capacity to form calcium complexes, which
may serve as a readily accessible source of mineral for hy-
droxyapatite deposition [56]. In the osteochondrodystro-
phy induced by vitamin B6 deficiency in the growing
chick, connective tissue proteoglycans were found to be
more extractable [45], consistent with the structural
changes seen by light and electron microscopy in arterio-
sclerotic wall arteries [53]. Mineral abnormalities in a
defective connective tissue matrix, particularly calcium,
are also relevant to the role of hyperhomocysteinemia in
arteriosclerosis [53,57].

Unlike osteogenesis imperfecta (OI) with its defective col-
lagen synthesis [58,59], chemical changes and associated
alterations in collagen morphology in this model [13] do
not substantially alter biomechanical properties of long
bone and the mineralization process itself, as assessed by
the size and degree of symmetry in the mineral crystal
analysis (β002 line broading) (Table 3). However, the in-
creased moment of inertia of hyperhomocysteinemic
bone (Figure 4D) and enhanced cortical thickness on one
side (Figure 5) may compensate for abnormally asymmet-
ric and weakened bone due to defective cross links [60] —
hence, the lack of significant difference when size covari-
ants such as length and cortical thickness were included.

This report presents a dietary chick model of severe hyper-
homocysteinemia as a superior alternative to the CBS-
knockout mouse [7] for study of connective tissue
abnormalities. The homozygous knock-out mice display
plasma hCySH concentrations forty times normal and
succumb prematurely after suffering from growth retarda-
tion and marked liver disease, neither of which is typical
of human CBS deficiency. The heterozygote knock-out an-
imals have total homocysteine concentrations only twice
that of wild-type, compared to a difference of more than
5-fold increase that is typical of human CBS deficiency
[43] and seen in our experimental model.

Table 3: Chemical analyses of diaphyseal tibia

Group

Control Experimental

Ash (% of net weight) 61.2 ± 1.4 60.1 ± 1.4
Calcium:Phosphate (molar ratio) 1.79 ± 0.16 2.11 ± 0.15***
Hydroxyproline (µg/mg dry wt) 28 ± 3 29 ± 2
Mineral Matrix FT-IR peak area ratio 4.37 ± 0.35 4.43 ± 0.14
CO3:PO4 FT-IR peak area ratio 0.0190 ± 0.001 0.0174 ± 0.001**
β002 (degrees) 0.531 ± 0.018 0.527 ± 0.024

*** P < 0.001 ** P < 0.01
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Conclusions
In summary, this chick model demonstrates that changes
in bone mineral composition, tibial cross-sectional con-
tour, and radiological changes are induced by a hyperho-
mocysteinemic diet and associated with abnormal bone
matrix. The hyperhomocysteinemia causes greater radial
and longitudinal bone growth with more advanced ossifi-
cation of epiphyses and greater architectural efficiency of
the diaphyseal cross-sectional design, despite the collagen
defect [13], chondrodysplastic cartilage, and the chemical
abnormalities of bone. The cause of accelerated skeletal
growth is an important subject for further study. Moreo-
ver, delineation of the factors maintaining normal biome-
chanical strength in osteopenic bone will be of direct
relevance to the homocystinuric patient and the larger
population at risk for idiopathic osteoporosis alike [61].
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