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diabetes: a two year longitudinal study
Janet M Pritchard1, Lora M Giangregorio2, Stephanie A Atkinson3, Karen A Beattie4, Dean Inglis5, George Ioannidis4,
Hertzel Gerstein6, Zubin Punthakee6, Jonathan D Adachi4 and Alexandra Papaioannou6*

Abstract

Background: The risk of experiencing an osteoporotic fracture is greater for adults with type 2 diabetes despite higher
than normal bone mineral density (BMD). In addition to BMD, trabecular bone microarchitecture contributes to bone
strength, but is not assessed using conventional BMD measurement by dual x-ray absorptiometry (DXA). The aim of this
study was to compare two year changes in trabecular bone microarchitecture in women with and without type 2 diabetes.

Methods: We used a 1 Tesla magnetic resonance imaging (MRI) scanner to acquire axial images (resolution 195 μm ×
195 μm × 1000 μm) of the distal radius. We report the change in the number and size of trabecular bone holes, bone
volume fraction (BVTV), trabecular thickness (Tb.Th), number (Tb.N) and separation (Tb.Sp), endosteal area, nodal and branch
density for each group. Lumbar spine and proximal femur BMD were measured with DXA (Hologic, Discovery QDR4500A)
at baseline and follow-up. Using a multivariable linear regression model, we evaluated whether the percent change in the
trabecular bone microarchitecture variables differed between women with and without type 2 diabetes.

Results: Of the 54 participants at baseline with valid MRI image sets, 37 participants (baseline mean [SD] age, 70.8 [4.4]
years) returned for follow-up assessment after 25.4 [1.9] months. Lumbar spine BMD was greater for women with
diabetes compared to without diabetes at both baseline and follow-up. After adjustment for ethnicity, women with
diabetes had a higher percent increase in number of trabecular bone holes compared to controls (10[1] % versus −7
[2]%, p=0.010), however results were no longer significant after adjustment for multiple comparisons (p=0.090). There
were no differences in the change in other trabecular bone microarchitecture variables between groups.

Conclusion: There were no differences in percent change in trabecular bone microarchitecture variables over two
years in women with type 2 diabetes compared to women without diabetes. This study provides feasibility data, which
will inform future trials assessing change in trabecular bone microarchitecture in women with type 2 diabetes. Larger
studies using higher resolution imaging modalities that can assess change in trabecular and cortical bone
compartments in women with type 2 diabetes are needed.

Background
Adults with type 2 diabetes are at 30-70% greater risk of
experiencing an osteoporotic fracture than those without
type 2 diabetes [1-3], despite normal or higher than nor-
mal bone mineral density (BMD) [4]. Various reasons
for the greater fracture risk in adults with diabetes have
been hypothesized and include medication use [5],
accumulation of advanced glycation end-products [6],

retinopathy [7], peripheral neuropathy and falls [8]. Bone
strength may also be compromised by changes in bone
geometry or trabecular bone microarchitecture, which
are not reflected in BMD measured with dual x-ray ab-
sorptiometry (DXA) [9-11].
Understanding how trabecular bone microarchitecture

changes over time may provide insight into the bone fra-
gility observed in adults with type 2 diabetes. In postmen-
opausal women with type 2 diabetes, we demonstrated
that there are larger trabecular bone holes at the distal ra-
dius compared to women without diabetes [12], and
others have reported that cortical bone is more porous in
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those with diabetes [13]. Trabecular bone micro-
architecture can be modified by osteoporosis treatments
[14-16], yet whether there is skeletal response to
antiresorptive medication in individuals with diabetes is
controversial [17,18].
The primary goal of this study was to explore the hy-

pothesis that postmenopausal women with type 2 dia-
betes have a greater increase in trabecular bone hole size
than women without diabetes when followed over two
years. Secondly, we explored whether women with dia-
betes experience greater increases in the number of tra-
becular bone holes, trabecular separation (Tb.Sp) and
branch density, and greater losses in trabecular bone
volume fraction (BVTV), trabecular thickness (Tb.Th),
trabecular number (Tb.N) and nodal density than
women without diabetes, indicating a loss in bone
microarchitectural integrity over time.

Methods
Study design and participants
Recruitment for this prospective cohort study occurred
between 2008 and 2009. We recruited participants with
type 2 diabetes from tertiary care Diabetes Clinics at two
sites within Hamilton Health Sciences. Participants with-
out type 2 diabetes were recruited from the community by
advertisement. At the time of recruitment, all participants
were ≥ 65 years of age, postmenopausal for > 5 years, and
those in the diabetes group had been diagnosed with type
2 diabetes for ≥ 5 years [19]. Potential participants were
excluded at baseline if they: 1) were taking, or had taken
in the past 24 months, any medication known to affect
bone, including hormone therapy, calcitonin, selective
estrogen receptor modulator, parathyroid hormone, or
bisphosphonate; 2) were taking oral glucocorticoids
(≥ 2.5 mg/day for ≥ 3 months); or 3) had a diagnosis of a
disease known to affect bone (i.e.,metastatic cancer in past
5 years, osteogenesis imperfecta, severe renal impairment,
hyperparathyroidism, hypoparathyroidism). Participants
were asked to complete one study visit as a part of a cross-
sectional study published previously [12], and those with
valid baseline MRI image sets (absence of motion artifact)
were subsequently invited to complete a two year follow-
up assessment. This study was approved by the McMaster
University Faculty of Health Sciences/Hamilton Health
Sciences Research Ethics Board, and all participants pro-
vided written informed consent at baseline and follow-up.

Descriptive variables
Medical history, lifestyle and densitometry data were col-
lected at baseline and follow-up to describe our study par-
ticipants. Ethnicity was captured and coded as Caucasian
or non-Caucasian, which included Native Canadian,
Asian, and Caribbean. Ethnicity was used as a covariate in
the multivariable linear regression model. A medical

history questionnaire was used to assess number of years
since menopause, number of years since a diagnosis of
type 2 diabetes (if applicable), current medication use, his-
tory of major osteoporotic fractures (i.e., non-traumatic
fracture of the hip, wrist, vertebral, or proximal humerus)
[20] and occurrence of osteoporotic fractures since base-
line. The age-adjusted Charlson Index, a global comorbid-
ity index and measure of current health status, was
calculated for each participant at baseline and follow-up
[21]. Physical activity levels were assessed at baseline and
at follow-up using a modified Paffenbarger Physical Activ-
ity Questionnaire, which quantifies the number of kilocal-
ories (kcal) expended per week based on the number of
stairs climbed up, miles walked and participation in recre-
ational activities during a usual week [22]. Each partici-
pants’ average supplemental and dietary intake of calcium
and vitamin D was estimated at both time-points using a
food frequency questionnaire (FFQ) and self-reported sup-
plement intake (including intake from multivitamins) [23].
Anthropometric measurements were collected at baseline
and follow-up, and included height, using a wall-mounted
stadiometer, weight, obtained from a whole body DXA
scan, and waist and hip circumference. A test of grip
strength of the dominant hand (Takei T.K.K.5001 Grip A
Dynamometer, Takei Scientific Instruments Co. Ltd.
Niigata-City, Japan) and a Timed-Up-and-Go (TUG) test
were also completed by participants at both time-points.
A normative cut-off point of 12.0 seconds was used for
TUG test performance [24]. DXA (Hologic, Discovery
QDR4500A) scans were acquired to determine BMD at
the lumbar spine (L1-L4) and proximal femur (femoral
neck and total hip), for descriptive purposes. Whole body
DXA scans were performed to estimate body weight and
percent body fat. The DXA system’s variability for BMD
measurement was 0.315% from the first baseline assess-
ment (September 2008) to the last follow-up assessment
(September 2011). Short-term in vivo precision was less
than 1.70% for BMD measurements [12]. Anonymous
DXA scans were analyzed by a certified DXA technician,
who was blinded to group membership.

Magnetic resonance imaging and image analysis
At baseline and follow-up, each participant’s non-
dominant forearm was immobilized in a brace and inser-
ted into the gantry of a 100mm diameter coil in a 1 Tesla
peripheral MRI system (OrthOne™, GE Healthcare, United
Kingdom). A coronal localizer scan was used to define the
region of interest for the axial images (Figure 1). We used
a spoiled 3D gradient-echo sequence, which yielded 20
axial slices (195 μm × 195 μm × 1000 μm voxel size) of
the distal radius, as previously described (Figure 1) [12].
All scans were performed by the same operator at baseline
and follow-up, and a quality control phantom was scanned
on a daily basis to ensure system stability.
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We used image registration software (Analyze, v.10,
Biomedical Imaging Resource at Mayo Clinic, USA) to
match baseline and follow-up slices in the axial, sagittal
and coronal planes. The first axial slice proximal to the
growth plate region of the radius was selected to be the
most distal slice in the volume of interest that was ana-
lyzed. Given that all participants had at least 8 contigu-
ous slices that matched, 8 matched slices were analyzed
per participant for this study. The slices were uploaded
for blinded slice-by-slice semi-automatic segmentation

using software, previously described [12]. Briefly,
binarization of the image separated bone from marrow
within the endosteal border of the radius. Binarization
reveals holes (i.e., marrow or intertrabecular spaces) of
varying sizes within the trabecular bone network. A re-
gion growing algorithm was then applied to quantify the
number and size of holes in the image [25]. The number
of regions grown and the area of the regions grown cor-
responds to the number of holes in the trabecular bone
arrangement and hole size, respectively. Segmentation of
trabecular bone within the endosteal boundary of the ra-
dius generated nine apparent measures of trabecular
bone microarchitecture, including number and size
(mm2) of trabecular bone holes, endosteal area (mm2)
and trabecular bone volume fraction (BVTV, %). Follow-
ing skeletonization, network analysis was performed to
assess nodal density (number of nodal points/mm2) and
branch density (number of branches/mm2). A model-
independent method was used to estimate apparent tra-
becular thickness (Tb.Th, mm) and separation (Tb.Sp,
mm) [26]. Trabecular number (Tb.N, /mm) was derived
using standard histomorphometry formulae (Tb.N=
(BVTV)/Tb.Th) [27]. Although Tb.Sp and the size of
trabecular bone holes are measures of the same feature
of trabecular bone (i.e., marrow or intertrabecular spaces
in the trabecular bone network), these indices are differ-
ent because they are derived using different techniques.
Trabecular separation is a one-dimensional measure-
ment and is derived using the three-dimensional dis-
tance transform technique, where marrow spaces are
filled with maximal spheres and Tb.Sp is computed as
the mean diameter of the spheres [26,28]. Trabecular
bone hole size is a two-dimensional measurement of
hole area and is computed as the mean area of holes
grown [25]. The baseline comparison of trabecular bone
microarchitecture between women with and without dia-
betes has been published and reflects the analysis of the
central 6 MRI slices [12]. The root mean square coeffi-
cient of variation (RMSCV%) ranged from 1.10% to
4.90% and intraclass correlation coefficient ranged from
0.83 to 0.99 for the assessment of trabecular bone
microarchitecture variables [12].

Statistical analyses
The Kolmogorov-Smirnov test was used to confirm nor-
mal distribution of all variables, therefore descriptive
data are presented as mean (standard deviation, SD) for
continuous variables, and frequency (%) for categorical
variables. Between-group differences in descriptive vari-
ables at baseline and follow-up were determined using
an unpaired Student’s t-test or Chi-square test. For the
assessment of internal validity, an unpaired Student’s
t-test was employed to compare baseline descriptive var-
iables and trabecular bone microarchitecture variables

A

20 mm

B

C

Figure 1 Representative coronal MRI scout scan depicting
selection of region of interest for axial slices (A) and matched
baseline (B) and follow-up (C) axial MRI images used
for analysis.
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for the participants who dropped out and returned for
the follow-up visit. The absolute change in trabecular
bone microarchitecture was calculated as follows:
follow-up measurement−baseline measurement.
Mulitvariable linear regression was applied to answer

the primary question of whether percent change in tra-
becular bone microarchitecture differed in women with
diabetes compared to women without diabetes. The nine
dependent variables were: percent change (absolute
change/baseline measurement x 100%) in size and num-
ber of trabecular bone holes, endosteal area, BVTV, Tb.
Th, Tb.Sp, Tb.N, branch density and nodal density. In-
clusion of ethnicity in the model was based on previous
literature suggesting that ethnicity influences BMD [29],
and on the statistical principle that a covariate is signifi-
cantly related to the primary dependent variable (percent
change in trabecular bone hole size) [30]. Pearson cor-
relation analysis revealed that ethnicity was related to
the primary dependent variable (r= −0.364, p=0.038).
The Holm’s test for multiple comparisons was used for
the comparison of percent changes in secondary tra-
becular bone microarchitecture variables between groups
[31]. The adjusted means and SD are presented. The cri-
terion for statistical significance was set at alpha < 0.05.
All analyses were performed with SPSS version 20 (IBM
Corporation, Somers, USA).

Results
Study participants
The descriptive characteristics of all study participants
who completed baseline and follow-up assessments are
shown in Table 1. At baseline, 6 MRI image sets were
unacceptable for analysis due to motion artifact. Of the
54 participants with valid baseline MRI scans, 15/29
(52%) participants with type 2 diabetes and 22/25 (88%)
participants without diabetes returned for the follow-up
assessment (Figure 2).
The average time between baseline and follow-up visits

was 25.4 (1.9) months. At follow-up, women with type 2
diabetes had a diagnosis of diabetes for 18.8 (9.7) years,
and the majority of participants (12/15 [80.0%]) were
taking insulin or insulin in combination with another
glucose-lowering intervention. The remaining partici-
pants were either taking metformin (2/15 [13.3%]) or no
medication (1/15 [6.7%]). At baseline and follow-up, the
group of women with diabetes was comprised of fewer
Caucasians with a greater BMI who were prescribed
more medications. Lumbar spine BMD was also greater
for women with diabetes at both time-points (Table 1).

Differences between study participants and drop-outs
The participants who dropped out of the study were not
different from those who returned for the follow-up
visit, regarding the majority of descriptive characteristics

presented in Table 1. The only exception was for percent
body fat in the women without diabetes, which was
greater for those that returned for follow-up compared
to those who dropped out (39.1 [4.2]% versus 31.1
[9.0]%, p=0.003) (remaining data not shown). Regarding
baseline microarchitectural differences, trabecular bone
holes were larger (2.51 [0.31]mm2 versus 2.14 [0.43]
mm2, p=0.042), BVTV was lower (46.9 [0.3]% versus
47.6 [0.9]%, p=0.017), and branch density was greater
(0.48 [0.03]/mm2 versus 0.41 [0.06]/mm2, p=0.003) in
women with diabetes who dropped out of the study
compared to those who returned for the follow-up visit.
In women without diabetes, the number of trabecular
bone holes was greater (92 [12] holes versus 72 [15]
holes, p=0.031) and hole size smaller (1.75 [0.17]mm2

versus 2.06 [0.42]mm2, p=0.030) in those who dropped
out of the study compared to those who returned for
follow-up.

Between-group differences in change in trabecular bone
microarchitecture
Two MRI scans were considered unacceptable for analysis
due to motion artifact, resulting in 14 valid image sets for
the type 2 diabetes group and 21 valid image sets for the
control group. Unadjusted baseline, follow-up and abso-
lute change in trabecular bone microarchitecture variables
are summarized in Table 2 for the participants who had
valid MRI image sets at baseline and follow-up. Table 3
shows the adjusted percent changes in trabecular bone
microarchitecture variables for both groups. Women with
diabetes had a significantly higher percent increase in the
number of trabecular bone holes as compared to women
without diabetes (10 [1]% versus −7 [2]%, p=0.010) and
there were no differences between groups in the change in
trabecular bone hole size (−4.15 [4.88]% versus 5.03
[3.90]%, p=0.172) or in other trabecular bone micro-
architecture variables (Table 3). After adjustment for
multiple comparisons, there were no between-group
differences in percent change in trabecular bone micro-
architecture variables.

Discussion
Results of our study revealed that over two years of
follow-up, changes in trabecular bone microarchitecture
are not different in women with and without type 2 dia-
betes. This is the first study to explore longitudinal
changes in trabecular bone microarchitecture in women
with type 2 diabetes. Our study provides important feasi-
bility data which should be considered when planning and
conducting subsequent longitudinal studies on trabecular
bone microarchitecture change in older women with type
2 diabetes. The women with type 2 diabetes who did not
attend the follow-up study visit had a different baseline
trabecular bone microarchitecture phenotype than those
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who did attend the follow-up study visit. We demonstrated
that for participants with type 2 diabetes who dropped out
of the study, trabecular bone was less intact (i.e., larger tra-
becular bone holes, lower BVTV, greater branch density).
Thus, our preliminary internal validity data suggests that it
may be important to increase the frequency of study visits
(i.e., annually or semi-annually) for older participants with
type 2 diabetes and multiple comorbidities in order to re-
tain participants and obtain data that is more generalizable
to patients with type 2 diabetes of varying disease severity.
Subsequent studies with adequate follow-up are needed to
verify our observations. In particular, higher resolution im-
aging systems should be used to examine changes in tra-
becular bone microarchitecture relative to changes in

cortical bone structure (i.e., cortical thickness, porosity), as
cross-sectional studies suggest that cortical bone is
compromised in women with type 2 diabetes [13].
Skeletal change in adults with type 2 diabetes has been

limited to the description of BMD change; however,
whether individuals with diabetes lose bone at a faster rate
than non-diabetics is unclear [32-34]. Younger women
with diabetes [33] and women with newly diagnosed dia-
betes [34] experienced greater losses in hip BMD, whereas
in women with diabetes for more than twelve years [32]
and in postmenopausal women [34], no differences in the
rate of BMD loss have been reported. It is possible that
the greatest losses in bone occur during the years sur-
rounding the diagnosis of type 2 diabetes when the

Table 1 Descriptive characteristics of all study participants who were enrolled at baseline and follow-up

Baseline Follow-up

Women with
diabetes n= 30

Controls
n= 30

Difference between
groups p-value

Women with
diabetes n= 15

Controls
n= 22

Difference between
groups p-value

Age, years 71.1 (4.8) 70.7 (4.9) 0.816 73.9 (3.6) 72.5 (4.9) 0.324

Caucasian, n (%) 23 (79.3) 30 (100.0) 0.017* 12 (80) 22 (100.0) 0.009*

History of osteoporotic fracturea

Since age 40 years, n (%) 5 (17.7) 6 (20.0) 0.738 - - -

Since baseline assessment, n (%) - - - 2 (13.3) 1 (4.5) 0.315

BMI, kg/m2 34.6 (7.6) 27.9 (5.5) <0.001* 36.1 (5.7) 27.9 (4.4) <0.001*

Waist:hip Ratio 0.89 (0.07) 0.83 (0.06) 0.002* 0.90 (0.05) 0.83 (0.06) <0.001*

Body fat percentage, % 40.3 (6.1) 37.2 (6.5) 0.056 41.8 (9.5) 39.1 (4.2) 0.256

Time since menopause, years 22 (7) 22 (8) 0.841 24 (5) 23 (7) 0.656

Number of prescribed medications 6.6 (3.5) 1.9 (2.2) <0.001* 8.1 (3.0) 2.4 (2.5) <0.001*

Age-adjusted Charlson Index 4.3 (1.5) 0.1 (0.6) <0.001* 4.5 (1.2) 0.1 (0.6) <0.001*

Total calcium intake, mg/day 1594 (696) 2062 (590) 0.007* 1679 (890) 2019 (639) 0.697

Supplemental, mg/day 446 (481) 678 (482) 0.070 377 (480) 603 (427) 0.138

Dietary, mg/day 1148 (564) 1397 (335) 0.054 1345 (660) 1241 (473) 0.565

Total vitamin D intake, IU/day 806 (622) 1177 (912) 0.073 1316 (828) 1488 (875) 0.562

Supplemental, IU/day 626 (573) 982 (921) 0.080 993 (822) 1285 (866) 0.308

Dietary, IU/day 179 (142) 195 (130) 0.644 252 (124) 218 (155) 0.495

Weekly energy expenditure, kcal/week 1984 (2428) 2584 (2203) 0.333 959 (1129) 2255 (1443) 0.005*

TUG Test, seconds 12.8 (4.0) 9.4 (2.7) <0.001* 14.4 (4.4) 10.0 (3.4) <0.001*

TUG test >12 seconds, n (%) 11 (44.0) 4 (13.3) 0.011* 7 (46.6) 2 (9.1) 0.005*

Grip strength, kg 18.8 (4.8) 21.7 (6.3) 0.058 16.3 (5.0) 20.2 (6.1) 0.048*

Bone density measurements

Lumbar spine, g/cm2 1.07 (0.15) 0.97 (0.19) 0.025* 1.11 (0.15) 0.99 (0.15) 0.022*

Lumbar spine T-score 0.15 (1.40) -0.61 (1.66) 0.038* 0.47 (1.27) −0.51 (1.34) 0.034*

Femoral neck, g/cm2 0.73 (0.11) 0.69 (0.09) 0.254 0.73 (0.11) 0.69 (0.09) 0.254

Femoral neck T-score −1.11 (1.02) 1.40 (0.89) 0.288 −1.14 (0.68) −1.31 (0.88) 0.524

Total hip, g/cm2 0.87 (0.12) 0.86 (0.11) 0.639 0.88 (0.12) 0.87 (0.10) 0.759

Total hip T-score −0.58 (0.99) -0.70 (0.95) 0.657 −0.54 (0.72) −0.59 (0.87) 0.853

Values are mean (SD), unless indicated. * indicates significant between-group differences at p-value <0.05.
aAtraumatic osteoporotic fracture includes hip, wrist, spine or proximal humerus fracture.
Abbreviations: body mass index, BMI; timed-up-and-go, TUG.
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likelihood of hyperglycemia, hypercalcuria, and generation
of reactive oxygen species (ROS) is high [35-37]. The
negative impact of hyperglycemia and ROS on osteoblasts
has been demonstrated in vitro [38,39], and is a potential
mechanism causing diabetic bone fragility [40]. Variability

exists in the concentration of these factors in adults with
type 2 diabetes, depending on duration and control of dia-
betes [35]. This may explain the discrepancy in BMD
change in women with diabetes, and supports our finding
of no difference in the change in trabecular bone

Women without type 2 diabetes
interested in participating in study

n= 34

Completed baseline assessment
n= 30

Valid MRI scans for analysis
n= 29

Completed baseline assessment
n= 30

Valid MRI scans for analysis
n= 25

Women with type 2 diabetes
interested in participating in study

n= 47

Excluded due to:
use of osteoporosis-
related medication (n= 4)

Excluded due to:
use of osteoporosis-related 
medication (n= 11) 
diagnosis of type 2 diabetes 
<5 years (n= 3)
contraindication to MRI scan 
(n= 2)

Withdrew from study prior to 
study visit (n= 1)

Withdrew from study due 
to illness (n= 2 )
Lost-to-followup 
(n= 1)

Withdrew from study due to 
illness (n= 7)
Withdrew from study due to 
lack of time (n= 3)
Lost-to-followup 
(n= 3)
Death (n= 1)

Completed follow-up assessment
n= 22

Valid MRI scans for analysis
n=21

Completed follow-up assessment 
n= 15

Valid MRI scans for analysis
n= 14

Figure 2 Path outlining study participant recruitment, enrollment and follow-up from baseline to follow-up assessment.

Table 2 Unadjusted trabecular bone microarchitecture measures for participants with valid MRI images who completed
both baseline and follow-up assessments

Women with type 2 diabetes Controls

Baseline
n= 14

Follow-up
n= 14

Absolute change
from baseline

Baseline
n= 21

Follow-up
n= 21

Absolute change
from baseline

Between group
difference p-value

Hole size, mm2 2.10 (0.47) 2.04 (0.37) −0.06 (0.48) 2.06 (0.42) 2.08 (0.45) 0.03 (0.32) 0.513

Number of holes 68 (17) 69 (13) 1 (15) 72 (15) 68 (18) −4 (12) 0.283

Endosteal area, mm2 260.7 (51.1) 264.8 (56.9) 4.0 (39.9) 273.2 (58.4) 258.3 (48.9) −14.9 (39.6) 0.939

BVTV, % 47.7 (1.0) 47.9 (0.8) 0.2 (0.9) 47.7 (1.2) 47.8 (1.0) 0.1 (0.7) 0.759

Tb.Th, mm 0.52 (0.01) 0.51 (0.01) 0 (0.01) 0.51 (0.01) 0.51 (0.01) 0 (0.01) 0.549

Tb.Sp, mm 0.55 (0.01) 0.54 (0.01) 0 (0.01) 0.54 (0.02) 0.54 (0.02) 0 (0.01) 0.322

Tb.N,/mm 0.92 (0.03) 0.93 (0.02) 0.01 (0.02) 0.93 (0.03) 0.93 (0.03) 0 (0.01) 0.362

Nodal density, /mm2 0.16 (0.01) 0.16 (0.01) 0 (0.01) 0.16 (0.01) 0.15 (0.01) 0 (0.01) 0.574

Branch density, /mm2 0.41 (0.06) 0.42 (0.05) 0.01 (0.05) 0.41 (0.05) 0.42 (0.06) 0.01 (0.05) 0.940

Values are mean (SD). Between group difference for absolute change in trabecular bone microarchitecture measures for women with and without type 2 diabetes.
Abbreviations: BVTV, bone volume fraction; Tb.Th, trabecular thickness; Tb.Sp, trabecular separation; Tb.N, trabecular number.
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microarchitecture variables in older postmenopausal
women with long-standing type 2 diabetes given that the
average length of time since diabetes diagnosis in our study
was over 18 years. Weight loss is another factor involved in
proximal femur bone loss in adults with type 2 diabetes
[41,42]. In a large prospective study, Caucasian women
with type 2 diabetes lost more femoral neck BMD over 4
years than Caucasian women without type 2 diabetes, and
weight loss was an important mediator of this relationship
[41]. The mechanism involved is likely related to the re-
duction in skeletal loading with weight loss [43]. In our
study, weight was approximately stable over the two years
in both groups, and weight change was not related to the
change in trabecular bone hole size (data not shown). Fur-
ther, we assessed trabecular bone at a non-weightbearing
site, which is unlikely to be impacted by weight change.
In studies with similar sample sizes to our study, non-

diabetic women taking alendronate [44] and estrogen sup-
plementation [16] experienced no change in some
microarchitectural variables assessed with MRI at the ra-
dius. Similarly, nasal calcitonin does not change trabecular
bone microarchitecture at the more distal sites of the
radius, but does preserve microarchitecural quality at
proximal radius sites [14]. We speculate that losses in tra-
becular bone microarchitecture at more proximal sites
might be apparent in women with newly diagnosed type 2
diabetes, which should be investigated in the future. While
measures of trabecular bone microarchitecture can be
assessed using MRI, peripheral quantitative computed
tomography (pQCT) and high-resolution pQCT (HR-
pQCT), the superior signal to noise ratio with MRI allows
for improved differentiation between bone and marrow
[45-47]. Studies have however shown moderate to strong
correlations between measures derived by pQCT or HR-
pQCT and MRI [10,48].
There were several study limitations. First, our sample

size was small as approximately 50% of participants with

type 2 diabetes either dropped out of the study, were lost
to follow-up or died after the baseline assessment. To
assess the internal validity of the study, we compared
the baseline descriptive characteristics and trabecular
bone microarchitecture variables for the participants
who dropped out to those who remained in the study. In
women with diabetes who dropped out, the trabecular
bone microarchitecture appeared less intact, and in
women without diabetes who dropped out, the trabecu-
lar bone network appeared to have more holes compared
to those who returned. It is possible that the individuals
who dropped out had more comorbidities that were not
assessed in this study. For example, subclinical periph-
eral arterial disease, which we did not assess, has been
linked to reduced bone mineral content [49] and to
osteoporotic fractures in adults with type 2 diabetes [3].
Due to the large number of participants who did not re-
turn for follow-up assessment, our results may have
been biased towards not detecting a difference in tra-
becular bone microarchitectural changes, given the base-
line differences between those who dropped out and
returned to complete the study. Our analysis should be
considered exploratory and will need to be confirmed in
larger studies. We were also unable to accurately capture
diabetes-related complications in this study, however fu-
ture studies should consider the role of comorbidities,
particularly neuropathy and nephropathy [41] when
examining bone loss in diabetics. While multivariable
linear regression models were used to account for the
differences in ethnicity between women with diabetes
and controls, the study would have been strengthened if
participants were matched based on ethnicity. In
addition, the resolution of the images acquired with our
1 Tesla MRI system restricts our analyses to trabecular
bone, and is not appropriate for the assessment of distal
radius cortical bone. A 1 Telsa MRI system is limited by
signal strength, although we attempted to optimize sig-
nal strength by using a small (100 mm diameter) radio-
frequency coil to enhance the signal-to-noise ratio. The
lack of overall microarchitectural change may have been
due to the lower signal strength of the 1 Tesla MRI sys-
tem and it’s limited ability to detect small changes in
microarchitecture, such as the thickness of trabeculae.
Future studies should explore longitudinal changes in
trabecular bone microarchitecture using 1.5, 3 or 7 Tesla
systems which have superior signal-to-noise ratio and
higher image resolution. Finally, no prospective data
were available at study inception on the change in the
size or number of trabecular bone holes, therefore we
were unable to estimate an ideal sample size required at
follow-up to capture differences in these key variables.
Given our study limitations, larger studies with more
complete follow-up, the ability to look at multiple study
outcomes and those that assess potential confounders

Table 3 Adjusted percent changes over two years in
trabecular bone microarchitecture variables for women
with and without type 2 diabetes

Women with
type 2 diabetes

n=14

Controls
n=21

Between group
difference
p-value

Holm’s
adjusted
p-value

Hole size −4.1 (4.9) 5.0 (3.9) 0.172

Number of holes 10.1 (5.2) −7.1 (4.4) 0.010 0.090

Endosteal area 2.8 (4.4) −4.5 (3.5) 0.225 1.00

BVTV 0.7 (0.4) 0.1 (0.4) 0.263 1.00

Tb.Th −0.6 (0.5) −0.3 (0.4) 0.661 1.00

Tb.Sp −1.0 (0.4) −0.2 (0.3) 0.206 1.00

Tb.N 1.3 (0.5) 0.3 (0.4) 0.119 0.952

Nodal density −0.8 (1.8) −3.8 (1.4) 0.221 1.00

Branch density 0.5 (3.6) 3.3 (2.9) 0.566 1.00

Values are mean (SD). Multivariate analyses adjusted for ethnicity.
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(i.e., diabetes related complications) are needed prior to
making definitive conclusions about the lack of change
in trabecular bone microarchitecture in women with
type 2 diabetes.

Conclusion
This study provides early evidence suggesting that trabecu-
lar bone microarchitecture change is not different in
women with type 2 diabetes compared to women without
type 2 diabetes. Understanding whether microarchitectural
adaptations of the trabecular and cortical bone with type 2
diabetes are distinctly different from age-related changes
would inform future research and fracture prevention
strategies in adults with type 2 diabetes.
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